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Abstract: The verification of probabilistic forecasts in hydro-climatology is integral to their devel-
opment, use, and adoption. We propose here a means of utilizing goodness of fit measures for
verifying the reliability of probabilistic forecasts. The difficulty in measuring the goodness of fit for
a probabilistic prediction or forecast is that predicted probability distributions for a target variable
are not stationary in time, meaning one observation alone exists to quantify goodness of fit for
each prediction issued. Therefore, we suggest an additional dissociation that can dissociate target
information from the other time variant part—the target to be verified in this study is the alignment
of observations to the predicted probability distribution. For this dissociation, the probability integral
transformation is used. To measure the goodness of fit for the predicted probability distributions,
this study uses the root mean squared deviation metric. If the observations after the dissociation can
be assumed to be independent, the mean square deviation metric becomes a chi-square test statistic,
which enables statistically testing the hypothesis regarding whether the observations are from the
same population as the predicted probability distributions. An illustration of our proposed rationale
is provided using the multi-model ensemble prediction for El Niño–Southern Oscillation.
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1. Introduction

The use of probabilistic predictions (also referred to as probabilistic forecasts) is
increasingly common in weather and climate systems [1–6] as well as in the field of
hydrology [7]. The uncertainty estimated and expressed in such probabilistic predictions
can be used to quantify the risk of potential disasters [3], which is crucial for rational
decision-making [8,9]. Consequently, probabilistic forecast verification has become critical
for ensuring the acceptability of products to end users [10] and improving prediction
accuracy [10,11].

One of the most referenced metrics for probabilistic forecast verification is the Brier
Score [12], suggested by Brier [13] for binary (or categorical) events such as rainfall occur-
rence. This metric was developed under the definition that a perfect probabilistic forecast is
that for which the occurrence of an event has probability of 1. The Brier Score summarizes
the mean squared difference between the observation probability (either 1 or 0, according
to the occurrence of an event) and forecast probabilities.

As a generalization of the Brier Score [14], the Ranked Probability Score [15] measures
the difference between observed and forecast probabilities of an event in the same manner
as the Brier Score, but it compares the cumulative probability of categorical events using a
sequence of such events (e.g., sequential categories of rainfall amount). For a continuous
variable, this metric can be extended to the form of an integral, called the Continuous
Ranked Probability Score (CRPS) [14,16,17], using the Heaviside function [14] to measure
the distance between the observed cumulative distribution and the forecasted probability
distribution.

Forecasting 2021, 3, 763–773. https://doi.org/10.3390/forecast3040047 https://www.mdpi.com/journal/forecasting

https://www.mdpi.com/journal/forecasting
https://www.mdpi.com
https://orcid.org/0000-0002-4227-0872
https://orcid.org/0000-0002-6758-0519
https://doi.org/10.3390/forecast3040047
https://doi.org/10.3390/forecast3040047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/forecast3040047
https://www.mdpi.com/journal/forecasting
https://www.mdpi.com/article/10.3390/forecast3040047?type=check_update&version=1


Forecasting 2021, 3 764

Both the Brier score and the CRPS can be decomposed to assess forecast reliabil-
ity [14,18], although in different ways. According to Murphy [18], the Brier Score can
be decomposed into reliability, resolution, and uncertainty. The decomposed reliability
metric is defined as the weighted average of the squared difference between the predicted
probabilities and the corresponding conditional frequencies of observed events [19]. The
reliability of a prediction increases as the predicted probabilities come closer to the actual
frequency of the observations. Hersbach [14] similarly decomposed the CRPS and sepa-
rated the reliability term, measuring whether the observations are distributed in greater
alignment with the predicted probability distributions. These reliability metrics assess the
degree to which a suggested probability distribution (the predicted probability distribution)
matches observations, which is a measure of goodness of fit. This definition is important in
probabilistic prediction verification because it assists developers and decision makers in
both improving prediction and realising the reliabilities of the estimated probability and
risk, and forms the premise for the metric proposed here.

We aim to use goodness of fit metrics as the basis for verifying the reliability of
probabilistic forecasts. However, a traditional goodness of fit metric cannot be directly
applied with a time-variant probabilistic forecast. To address this, we propose an additional
dissociation step that dissociates the target information (the alignment of observations
with the predicted probability distribution) from time-variant predictive uncertainty. The
probability integral transformation is considered for the dissociation, as will be explained
later in the paper. With the dissociation step based on the transformation, the root mean
squared deviation can be utilized as a measure of goodness of fit, enabling a familiar means
for assessing probabilistic forecast reliability to users who are familiar with this metric
in the context of traditional goodness of fit tests in statistics. This transformation and
the resulting goodness of fit metric is explained in Section 2. In Section 3, we extend the
proposed methodology, presenting the basis for testing the hypothesis regarding whether
observations can be considered to be from the same population as the predicted probability
distribution. An example application to illustrate the goodness of fit metric and the
associated statistical hypothesis test is provided in Section 4, and the methods and results
are discussed in Section 5.

2. Goodness of Fit Metric

The goodness of fit, defining how closely a probability distribution fits observations,
is closely related to probabilistic forecast reliability. This can be defined as the similarity
between predicted and observed frequencies according to the reliability term of the de-
composed Brier Score. However, goodness of fit metrics cannot be directly applied, since
observations in the reliability verification are samples of time-variant predictive uncertainty.
Each predicted probability distribution has only a single observation to be compared. An
additional initial step that can dissociate the reliability information to be verified from the
time-variant predictive uncertainty becomes necessary to enable the use of a collection of
observations to compare to a predicted probability distribution.

2.1. Dissociation

One possible technique for the dissociation could be to apply a probability integral
transformation (PIT) under the assumption that the probability–probability (p-p) rela-
tionship between the predictions and observations is time invariant. The time invariant
assumption of the p-p relationship is actually necessary for general reliability metrics (e.g.
the reliability term of the decomposed Brier Score) that uses observations of a certain
period to estimate its frequency in comparison to a predicted probability value. We note
that Jolliffe and Stepheson [20] implicitly implied that the PIT can be used for predictions
with time-variant predictive uncertainty, and Nipen and Stull [21] applied the PIT for the
purpose of calibration of a probabilistic prediction system with time-variant predictive
uncertainty. Although Nipen and Stull [21] did not consider the goodness of fit metric and
test, which requires an additional independence assumption that can be controversial in
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cases of probabilistic forecasts, we could see from related studies such as the studies of
Anderson [22] and Wilks [23] that the independence assumption and chi-square test may
not be fully impractical. The independence assumption and the goodness of fit test will be
explained in the next section.

As the previous studies may imply, the dissociation could be carried out via the
PIT together with the general assumption of the time-invariance of the p-p relationship
to dissociate the target information (the observation alignment to the predicted proba-
bility distribution) to be verified from the time-variant predictive uncertainty. After the
dissociation, the observations only contain information regarding the time-invariant p-p
relationship with the predicted probability distribution and can be used collectively to
measure the goodness of fit.

Equation (1) represents the probability integral transformation applied for a random
variable xF

t having a predicted probability distribution FF
t at time t. After the PIT, a random

variable x̃F
t follows a uniform distribution U [0, 1] for all t.

x̃F
t = FF

t

(
xF

t

)
(1)

The same transformation can be applied to the observations xO
t (Equation (2)) so that

the corresponding probabilities x̃O
t after the PIT can be compared with x̃F

t . Equation (2),
under the assumption of a time-invariant p-p relationship, is referred to as ‘dissociation’ in
this study since the PIT observations x̃O

t after the transformation only contain information
regarding the p-p relationship to be verified.

x̃O
t = FF

t

(
xO

t

)
(2)

It should be noted that, after the dissociation, while x̃F
t follows the standard uniform

distribution, only for perfectly reliable probabilistic predictions can x̃O
t be considered to

be from the same uniform distribution. Under the assumption of a time-invariant p-p
relationship within a certain period, the distribution for x̃O

t is time-invariant as the standard
uniform distribution of the prediction x̃F

t . Although the time-invariant assumption con-
cerning the p-p relationship is the common assumption necessary for all reliability metrics
such as the reliability term of the decomposed Brier Score that uses the observations of a
certain period to estimate its frequency, special attention must be paid to check if the sets
used can satisfy this assumption, in order to improve the verification and its interpretation.
More discussions on this assumption are found in Sections 3 and 4. We denote F̃O as the
distribution of x̃O

t and F̃F as the standard uniform distribution for x̃F
t .

2.2. Goodness of Fit

To measure the goodness of fit, a root mean squared deviation Rd (Equation (3)) is used.
This summarizes the deviation in density between the predicted probability distribution
f̃ F (= dF̃F(x̃)/dx̃) and the distribution f̃ O (= dF̃O(x̃)/dx̃) of the observations x̃O

t , which
decreases as the two become more similar.

Rd =

( ∫ 1
x̃=0

(
f̃ F(x̃)− f̃ O(x̃)

)2
dx̃
) 1

2

=

( ∫ 1
x̃=0

(
dF̃F(x̃)/dx̃− dF̃O(x̃)/dx̃

)2
dx̃
) 1

2
(3)

Equivalently, using the notation for the cdf:

Rd(m) =

(
∑m

i=1

([
F̃F(x̃i)− F̃F(x̃i−1)

]
−
[

F̃O(x̃i)− F̃O(x̃i−1)
])2
·(x̃i − x̃i−1)

−1
) 1

2
(4)
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where m is the number of intervals (categorized by x̃i) the distribution can be discretised
into, given x̃0 = 0, x̃m = 1, and x̃i > x̃i−1. Assuming equally distanced intervals, the
increment in the cumulative probability distribution can be denoted as:

Ei = F̃F(x̃i)− F̃F(x̃i−1) = x̃i − x̃i−1 = m−1,

Oi = F̃O(x̃i)− F̃O(x̃i−1),

where Ei and Oi are the expected and actual probabilities of falling within the interval
range i, respectively. Then, Equation (4) can be expressed in the form of Equation (5).

Rd(m) =
(
∑m

i=1(Ei −Oi)
2·Ei

−1
) 1

2 (5)

which for the equally distanced intervals can be simplified to

Rd(m) =
√

m·∑m
i=1(m

−1 −Oi)
2 (6)

This becomes the proposed reliability distance, derived based on the root mean square
deviation for the density of the predicted probability distributions from observations.
Simply put, this reliability distance can be calculated by estimating the relative frequency
Oi of observations x̃O

t falling in the ith interval of the range [0, 1]:

Oi =
1
n ∑n

t=1 I(x̃i−1<x̃O
t ≤x̃i)

(7)

where I(x̃i−1<x̃O
t ≤x̃i)

is the indicator function, which becomes 1 if the given condition

x̃i−1 < x̃O
t ≤ x̃i is satisfied or 0 otherwise.

As a synthetic example, suppose that two different probabilistic prediction systems,
an existing and a new forecasting system, are available to a forecaster (Figure 1) and
that the aim is to identify which of these is more reliable. For simplicity, only nine-time
steps are considered with very clear p-p relationships, as shown in Figure 1. At first, to
test the existing system, the forecaster calculates x̃O

t (= FF
t
(
xO

t
)
) and decides to use three

ranges (m = 3, so (x̃0, x̃1, x̃2, x̃3) = (0, 0.333, 0.666, 1.0)). The relative frequency Oi can be
calculated by Equation (7), which is described in Figure 1a, and the reliability distance then
measured using Equation (6) as follows:

Rd(3) =
√

3·∑3
i=1(3−1 −Oi)

2

=
√

3·
(
(1/3− 4/9)2 + (1/3− 1/9)2 + (1/3− 4/9)2

) 1
2
= 0.47

To compare with the reliability of the existing system, the forecaster also calculates
x̃O

t (= FF∗
t
(

xO
t
)
) for the new system. Again, using the same number of probability ranges

(m = 3) and estimating Oi as described in Figure 1b, the reliability distance can be mea-
sured as:

Rd(3) =
√

3·
(
(1/3− 3/9)2 + (1/3− 3/9)2 + (1/3− 3/9)2

) 1
2
= 0

The measured reliability distance (Rd(3) = 0.0) of the new system has a lower value
than the existing system (Rd(3) = 0.47). The value becomes closer to 0.0 when the obser-
vations are distributed more closely to the predicted probability distributions, implying
higher reliability. For the existing system in this synthetic example, the observations are
dispersed more sparsely than predicted, meaning that the probabilistic prediction system
underestimated the uncertainty, whereas the new system predicted the uncertainty range
more reliably.
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Figure 1. Synthetic example illustrating a hypothetical probabilistic prediction system (FF
t is a predicted probability

distribution from an existing system, FF∗
t is from a new prediction system, and x̃O

t is after the dissociation by Equation (2)).

2.3. Skill Score

The reliability distance (the root mean squared deviation of the density) can be inter-
preted via a relative comparison to reference predictions from a well-established model.
However, if such reference predictions are not available, an alternative can be the skill
score in Equation (8) that considers the reference prediction of the worst possible scenario
as opposed to the best possible scenario of a perfect prediction. A perfect probabilistic
prediction in terms of reliability is one where the predicted probabilities are the same as
the actual event frequency, such that Rper f

d(m)
for the perfect prediction becomes 0. The Rre f

d(m)

for the worst possible scenario is the maximum reliability distance (Equation (9)) that can
be calculated with m probability ranges.

RS(m) =
(

Rre f
d(m)
− dd(m)

)
/
(

Rre f
d(m)
− dper f

d(m)

)
= 1− Rd(m)/Rre f

d(m)
(8)

Rre f
d(m)

=

√
m·∑m

i=1

(
m−1 − I(i=m)

)2
=
√

m− 1 (9)

where I(i=m) is the indicator function, which is 1 if i = m or 0 otherwise; categories other

than m (in the indicator function) also result in the same results. In Equation (9), Rre f
d(m)

represents the predictions with no measurable skill under m ranges. With Equations (6)
and (9), the Reliability Skill Score RS in Equation (8) can be written as:

RS(m) = 1−
√
(1−m−1)

−1·∑m
i=1(m

−1 −Oi)
2, (10)

RS(m) assumes its minimum value of 0.0 for a probabilistic prediction system with
no measurable skill and its maximum value of 1.0 for a system producing a perfectly
predicted probability distribution in terms of the goodness of fit adopted (root mean
squared deviation of probability density under m categorised ranges).

3. Goodness of Fit Test

Assuming that the observations x̃O
t after the dissociation are independent for all t con-

sidered, the squared reliability distance R2
d(m) multiplied by the number n of sampled obser-

vations equals the chi-square test statistic (Equation (11)) and follows a chi-squared distribu-
tion with m− 1 degrees of freedom for the observation frequencies O = {O1, O2, . . . , Om}
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for m probability ranges. The reliability distance, measuring the goodness of fit, can be
used for the statistical hypothesis test if the observations can be considered to be from the
same population as the predicted probability distribution. The p-value for the statistical
test can be calculated using the chi-square distribution Fχ2

as in Equation (12).

nR2
d(m) =

∑m
i=1(nEi − nOi)

2

nEi
∼ χ2

m−1 (11)

pv

(
Rd(m)

)
= 1− Fχ2

(
n·R2

d(m)

)
(12)

The p-value in Equation (12) is the probability that the sampling error from the
observation sample size can result in a higher reliability distance than the observed distance
Rd(m). A p-value higher than the significance level (generally 0.05) means that the reliability
distance of the probabilistic forecasts from the observations is not statistically significant,
considering the sampling error of the observation sample size. A higher p-value means
that the sampling error of the limited observations itself is more likely to cause a higher
reliability distance than the observed one. Since the verification of the reliability depends
on the frequency estimation with the sampling error from a limited number of observations,
significant evidence with a p-value lower than the significance level is necessary to reject
the hypothesis of a reliable probabilistic prediction.

The independence assumption could be controversial depending on the sets of the
probabilistic forecasts used for the verification. However, there are previous studies that
show cases applying the independence assumption in practical applications of the chi-
square test, such as the studies of Anderson [22] and Wilks [23], although they used
ensemble members themselves as bins (and thus the number of bins was the number of
ensemble members plus 1). This verification approach could be considered one special case
of the verification approach in this study—if the number of bins in Equation (12) is set to
be the same as the number of ensemble members plus 1, the results would become similar,
although not exactly the same. These previous studies could imply that the independence
assumption (including the time-invariance assumption of the p-p relationship between the
predictions and observations) in the verification of the probabilistic forecast may not be
fully impractical. Thus, with the independence assumption, we provide a way to directly
apply the goodness of fit metric and test and interpret the reliability of the probabilistic
forecasts based on the statistical goodness of fit results. For example, with the dissociation,
the number of bins for the chi-square test in Equation (12) can determined by observations
instead of the number of ensemble members, and other goodness of fit tests, such as the
Kolmogorov–Smirnov goodness of fit test that measures the maximum distance between
the prediction and observation distributions, can also be simply applied.

As an application example, consider the synthetic case in Figure 1, where the number
n of sampled observations is 9 and m = 3 ranges were used in calculating the metric Rd.
With m = 3, such that (x̃0, x̃1, x̃2, x̃3) = (0, 1/3, 2/3, 1), the p-value of Equation (12) for
the measured reliability distance Rd(3) can be calculated as following:

pv = exp
(
−n·R2

d(3)/2
)

,

For the existing system, the measured reliability distance Rd(3) of 0.47 (the root mean
square deviation) gives a p-value of 0.37, which is larger than the general significance
level 0.05. This means that the measured distance is not statistically significant enough to
reject the hypothesis that the observations are from the same population as the predicted
distribution. Although the existing system has a reliability distance higher than the new
system (Rd = 0.0) in Figure 1, with a p-value of 0.37, a developer cannot conclude that the
existing system is not reliable and needs to be changed to the new system. The measured
reliability distance is not statistically significant given the sample size (9 observations,
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suggesting large sampling error), and no conclusion on the system reliability can be made
yet. In this example, further observations are necessary.

If the p-value is higher than the significance level while the observed sample size is
sufficiently large (and consequently the sampling error can be considered to be minor),
then this can conclusively mean that the probabilistic predictions reliably predicted the
period tested, showing only a minor error smaller than most of the sampling error from
the large sample size used.

4. Application to IRI ENSO Predictions

The reliability assessment metrics presented in previous sections were applied to
assess the reliability of a well-established and widely used El Niño–Southern Oscillation
prediction system. A multi-model ensemble provides probabilistic prediction from the
International Research Institute El Niño–Southern Oscillation (IRI ENSO), using dynam-
ical and statistical models for predicting sea surface temperature in the Nino 3.4 region
(http://iri.columbia.edu/ (accessed in 1 January 2015)). The purpose of the multi-model
ensemble application could be to assess the possible range of different predictions from
different experts as well as their agreement, but it was also interesting to see whether
the observations (actual ENSO events) happened as frequently as predicted based on
the multi-model ensemble. The reliability distance (the root mean square deviation) was
applied to measure the goodness of fit between the predicted probability distribution and
the observations, together with the skill score to evaluate the relative level of reliability.

The data consisted of monthly ensemble forecasts issued from January 2013 to January
2015 from 15 dynamic and 8 statistical models (Figure 2). At first, the dissociation via
Equation (2) was applied to the observations xO

t under the assumption of a time-invariant
p-p relationship for the verification period. Figure 3 shows the observations x̃O

t after the
dissociation and the histograms for various values of m. If the observations are samples
from the same population as the predicted probability distribution, the observed variable
x̃O

t will follow the uniform distribution (the predicted distribution F̃F after the dissociation
by Equation (1)), but the histogram for various probability ranges consistently showed
that the observed density was higher in the middle of the predicted distribution (Figure 3).
This suggests that the multi-model ensemble had a relatively larger variance than the
distribution of observations. However, as the number of probability ranges (m) became
larger, the observed frequencies showed higher fluctuations and eventually became binary
values (i.e., 0 or 1). To approximate the observation density properly, various guidelines
have been suggested regarding the optimum number of categories. This study used a
simple square root approach as follows:

m =
√

n,

where n is the number of observations and m is the number of the categories. With
25 observations in the IRI ENSO prediction data set, the chosen number of categories was 5.

Next, the relative frequencies (O1, O2, O3, O4, O5) were calculated from the frequencies
of the observations x̃O

t for each range (Table 1) as Equation (7). The squared deviation of the
prediction probability Ei from the observation relative frequency Oi was calculated (final
column, Table 1) and the summation of this difference was 0.112. Applying Equations (6)
and (10) with m = 5, the reliability distance and skill score were 0.75 and 0.63, respectively.
The results can be interpreted as the goodness of fit of the predicted probability distributions
(the root mean squared deviation of 0.75 in the density of the probability distribution), with
63% skill in comparison with perfectly predicted probability distributions.

http://iri.columbia.edu/
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Table 1. Reliability distance Rd(5) and skill score Rs(5) with m = 5 for IRI ENSO forecasts.

i Range Frequency Relative Frequency Oi (m−1−Oi)
2

1 0.0–0.2 5 0.20 0
2 0.2–0.4 4 0.16 0.0016
3 0.4–0.6 12 0.48 0.0784
4 0.6–0.8 3 0.12 0.0064
5 0.8–1.0 1 0.04 0.0256

Sum 25 1.00 0.1120
Rd(5)

√
5·0.112 = 0.75

Rs(5) 1−
√(

1− 5−1
)−1·0.112 = 0.63

Assuming that the observations x̃O
t after the dissociation are independent, the p-value

for the goodness of fit (the reliability distance Rd(5) = 0.75) can be calculated (using
Equation (12)) to statistically test the hypothesis regarding whether the observations can be
considered to be samples from the same population as the predicted probability distribution.
For the goodness of fit measured, the p-value (Equation (12)) is 0.01, which was lower
than the general significance level 0.05. The measured distance from 25 observations
was statistically significant and the hypothesis that the observations were from the same
population as the predicted probability distribution could be rejected. If the ensemble
approach’s aim is to reliably predict the frequency and risk of events, the approach can be
improved by reducing the reliability distance measurable from the 25 observations used.

It should be noted that to maintain the simplicity and clarity of this application
example, all samples were considered together, although there was mild correlation in
the observations after the dissociation. In actual application, if the observations after the
dissociation cannot be assumed to be independent, they can be divided into subsets that
can satisfy the assumption—for example, if observations with a gap of a certain time step
can be assumed to be independent, they can be selectively used as the set for the statistical
hypothesis test.

5. Discussion and Conclusions

The reliability of probabilistic predictions has a specific meaning that is important
to various users (such as developers, forecasters, and decision makers). It explains how
reliable both the predicted probabilities and corresponding estimated risk are. The relia-
bility (as the decomposed term of the Brier Score) has been measured as the difference in
predicted probabilities from conditional observation frequencies given specific predicted
probability values. This verification of the reliability is closely related to the goodness of fit.
The metric and statistical hypothesis tests of the goodness of fit that are commonly known
and can be shared across many disciplines can be a useful tool for the communication of
reliability. In addition, our understanding and common experiences with the goodness of
fit could improve the interpretation of reliability in application to the probabilistic forecasts.
However, in the verification of reliability, the observations are single-valued samples from
a time-variant predictive uncertainty and cannot be used collectively to assess goodness of
fit in the traditional sense.

To apply the goodness of fit metric and its statistical test, a dissociation is applied for
the predictions and observations under the assumption of a time-invariant p-p relationship
for a specified period (Equations (1) and (2))—the periods can be specified to recognize
different reliabilities for different periods (e.g., periods with different seasons or climate
conditions) and to satisfy the assumption of a time-invariant p-p relationship for the
goodness of fit metric and the assumption of independence for the statistical hypothesis test.
After the dissociation, the observations and predicted probability distributions maintain
the same p-p relationship as the original ones but are time-invariant within the period
considered.
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In this study, for the verification of the reliability, the goodness of fit is measured by
the metric in Equation (6). The metric, called the reliability distance, is the root mean square
deviation in the density of the predicted probability distribution. Assuming independence
for the observations after the dissociation, the reliability distance provides the chi-square
test statistic (Equation (12)) to test the hypothesis regarding whether the observations can
be considered to be from the same population as the predicted probability distribution. The
chi-square test is used to test the statistical significance of the observed reliability distance
for sampling error from the limited number of observations. If the observed reliability
distance is not statistically significant, one cannot reject the possibility of probabilistic
forecasts being reliable, for which the observations can be considered to be samples from
the same population as the predicted probability distribution. If the observation sample
size of the test is sufficient, then this result can be used to conclude that the probabilistic
forecasts reliably predicted the considered period, having observed error smaller than most
of sampling error from the large sample size used.

As a practical application example, a multi-model ensemble of sea surface temperature
in the Nino 3.4 region from the IRI ENSO predictions was tested for the period (2013 to 2015).
The reliability distance Rd(5) for the predictions was 0.75, the goodness of fit measured
by the root mean square deviation in the density of the predicted probability distribution.
According to the reliability skill score for the measured distance, the predictions had 63%
skill (Rs(5)= 0.63) in comparison with a perfectly reliable prediction system. The histogram
of the observations (after the transformation by Equation (2)) suggested that the reduction
in skill was mainly due to over-estimation of the predictive uncertainty. Finally, the p-value
for the statistical hypothesis test was calculated to be 0.01 (for the reliability distance 0.75),
which was lower than the general significance level 0.05. The reliability distance measured
for the period with 25 observations was statistically significant. This indicates that the
probabilistic predictions can be improved by upgrading the applied ensemble approach in
such a way as to reduce the reliability distance Rd(5) for the given 25 observations.
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