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Abstract: The Subadult Virtual Anthropology Database (SVAD) is the largest available repository of
contemporary (2010–2019) subadult reference data from around the world. It is composed of data
collected from individuals aged between birth and 22 years. Data were collected from skeletal remains
(n = 43, Colombia) and medical images (n = 4848) generated at medical examiner’s offices in the
United States (full-body Computed Tomography (CT) scans), hospitals in France, The Netherlands,
Taiwan (region-specific CT scans), and South Africa (full-body Lodox Statscans), a private clinic
in Angola (region-specific conventional radiographs), and a dental practice in Brazil (panoramic
radiographs). Available derivatives include individual demographics (age, sex) with standardized
skeletal and/or dental growth and development indicators for all individuals from all samples, and
segmented long bone and innominate surfaces from the CT scan samples. Standardized protocols
for data collection are provided for download and derivatives are freely accessible for researchers
and students.

Keywords: identified collections; biographical data; growth; development; skeletal data; dental data;
human variation; medical imaging

1. The Need for Contemporary Subadult Reference Samples

With a few exceptions [1,2], contemporary skeletal reference collections often present
with few or no subadult specimens. The handful of osteological collections that do have
subadult specimens present numerous issues that are not unexpected, but are problematic
when developing or validating subadult methods, especially for use in forensic contexts.
These include one or several of the following limitations: relatively small samples [3,4], un-
even age distributions [1], anatomically incomplete or taphonomically damaged skeletons,
historic samples that do not accurately reflect contemporary growth and development or
health [5,6], samples truncated to one type of indicator [7], and/or incomplete or inaccu-
rate information on demographics, population affinity, or socio-economic status [1,6,8,9].
Therefore, the subadult material to use as reference material in forensic anthropology or
for ontogenetic studies of modern populations is limited, if not questionable [10]. As
evident with the Granada Collection [1] where infants younger than the age of one year
old make up 80% of the subadult sample, available skeletal collections also often have
unequal age distributions because of differential mortality risks in subadults. Very young
individuals, such as infants and perinates, are often over-represented compared to children
and juveniles; mortality increases again with age and therefore adolescents are also usually
over-represented compared to children and juveniles [10–12]. Unbalanced age groups
can potentially bias results built with these samples, such as the negative impacts of age
mimicry in regression models [13,14].

When skeletal content is available, there are still obstacles associated with access to
skeletal collections. Using the material is dependent on the policies of the laboratories or
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museums that house them as well as governmentally emplaced and linked to employers.
Open access repositories of complete subadult osteological reference data are rare, if
in existence at all, even though biological anthropologists have been urging for open-
source approaches and discussions about open science is standard in many fields [15,16].
When sample information is available through publications, data are often limited to
summary statistics. The limitations pertaining to documented skeletal collections have
been consistently brought to the attention of anthropological researchers and forensic
practitioners over the past few decades [8,17–19], and illustrates the material, logistic,
political, and ethical complexities preventing from effectively increasing accessibility.

Most of the practical limitations of subadult osteological collections can be alleviated
with the use of digital or virtual data and specimens obtained from two-dimensional or
three-dimensional medical imaging. Virtual data are now more commonly used in bio-
logical and forensic anthropology, as they have become easier to access through ethical
collaborative research [20]. The most common two-dimensional and three-dimensional
advanced imaging techniques used in biological and forensic anthropology include radiog-
raphy (conventional or other), computed tomography (CT) scans, and magnetic resonance
imaging (MRI). Stacks of two-dimensional images, such as CT scans and MRIs, have the
advantages of radiography (i.e., the ability to see beyond the external surfaces), but the
additional benefit of alleviating orientation, position ambiguity, magnification, and super-
imposition issues that are inherent to two-dimensional radiograph imaging. The possibility
for visualizing internal structures and high image resolution have proven time and again
that the rendered image series [21–25] and the specific derivatives, such as segmented bone
surfaces and the skeletal and dental variables collected directly from the image series or
the virtual reconstructions, are reliable and accurate [26–31].

While there are an increasing number of available virtual resources [20], they are
also not without their respective limitations. De Tobel and collaborators [32] have an
extensive review on skeletal imaging in forensic age estimation and discuss some of these
considerations including, sample sizes are often small and lack diversity, medical images
are region-specific and often include a single or a limited number of indicators, and the
protocols for data collection are not always standardized or transposable to other imaging
modalities. The New Mexico Decedent Image Database (NMDID) is a new and remarkable
resource that has made full body CT images of over 15,000 individuals, of which a little
over 1000 are subadults, available for researchers [33]. The full body image series offer a
unique opportunity to collect a wide variety of data from the entire skeleton, mimicking
the ability of working with dry bone from a cadaveric or donated collection. Yet, there
are two major limitations with NMDID. First, the variation captured in the sample is
constrained to Albuquerque, New Mexico, United States (U.S.). This is not unlike most
donated and cadaveric skeletal collections, but important for interpretations gleaned from
the sample. Second, virtual data collection is at the intersection of computer science,
medical imaging, and social and biological sciences. Its multidisciplinary nature requires a
particular skillset that are not commonly incorporated into the higher education coursework
or commonplace for faculty/practitioners to have familiarity with software and virtual
data types. In contrast to NMDID, Patricia is an online radiographic repository of over
9000 individuals, all of which are less than 20 years of age [34]. This database has a wider
representation of biological and geographic variation in the sample because most images
were generated at medical examiner’s offices around the US, and it has more individuals
less than 20 years compared to the NMDID. Yet, the primary data source is conventional
radiographs, which restricts the variety of data types to just those that can be collected
from two-dimensional images (i.e., skeletal and dental maturation stages). Even with
the limitations of these repositories, the extraordinary pro for each is that they are freely
available resources that enable researchers to access large samples of contemporary data.

The Subadult Virtual Anthropology Database (SVAD) is a new, open-source resource
that includes myriad data from contemporary subadults, incorporates a wide range of
human variation, includes all developmental ages with substantial sample sizes through-
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out ontogeny, and has known demographics. This unique combination of features over-
come limitations associated with other virtual resources. The SVAD is an outcome of
three federally funded projects dedicated to improving the subadult biological profile (Na-
tional Institute of Justice Award 2015-DN-BX-K409 and 2017-DN-BX-0144 and the National
Science Foundation BCS-1551913). Data are required to improve methodology and because
of that, the SVAD was created. The database contains an extraordinary amount of data for
future research that could easily involve questions extending beyond the boundaries of
biological and forensic anthropology. The composition of the database, its derivatives, and
how to access the material is described below.

2. The SVAD

The SVAD constitutes a repository of medical images, standardized osteological data,
and other derivatives of 4891 contemporary subadults (n = 2077 females and n = 2814 males).
Individuals are aged between birth and 22 years and stem from eight different countries lo-
cated around the world, namely Angola, Brazil, Colombia, France, The Netherlands, South
Africa, Taiwan, and the U.S. (Table 1). The available derivatives include: (1) segmented sur-
faces of long bones (humerus, radius, ulna, femur, tibia, fibula) and/or innominate bones of
2603 individuals and (2) skeletal and dental growth and development indicators, including
diaphyseal dimensions, epiphyseal fusion stages, dental development stages, and vertebral
neural canal measurements (Figure 1). The standardized protocols used to collect these
data on medical images or 3D bone surfaces are also available (Figure 1). While the deriva-
tives are freely available for future research, not all collaborating institutions allow sharing
of the medical images that the data were collected from. However, 1795 medical images
are available for future research and some of those are housed in the SVAD (panoramic
radiographs from Brazil and CT scans from The Netherlands) and some in NMDID (CT
scans from the U.S.) (Figure 1). The acquisition of the medical image series and biological
data was done retrospectively in compliance with the Declaration of Helsinki for the pro-
tection of data privacy. The project descriptions and research designs were reviewed by
the University of Nevada, Reno Research Integrity office who considered the research to
collect the derivatives was exempt from IRB review since it did not comprise any personal
identifiable information. This is consistent with the ethical principles described in the
Belmont Report [35] and in compliance with applicable U.S. federal, state, and local laws.

Table 1. Demographics of the SVAD samples.

Continent Country Sample Size (by Sex) Age Range (Years) Deceased/Living

Africa
Angola N = 186 (99 F, 87 M) 0–15 years Living

South Africa N = 1352 (531 F, 821 M) 0–12 years Living

South America
Colombia N = 31 (5 F, 26 M) 0–22 years Deceased

Brazil N = 500 (248 F, 252 M) 0–15 years Living

Europe France N = 578 (260 F, 318 M) 0–15 years Living
The Netherlands N = 218 (109 F, 107 M) 0–15 years Living

Asia Taiwan N = 730 (306 F, 424 M) 0–16 years Living

North America

United States
(Maryland) N = 244 (96 F, 148 M) 0–20 years Deceased

United States
(New Mexico) N = 1077 (441 F, 636 M) 0–21 years Deceased

2.1. Collaborations, Contributions, and Imaging Modalities

Each collaboration provided previously generated medical images and all data were
cross-sectional (Tables 1 and 2). The composition of the samples varies and depends on
the institution. The unique parameters per collaborator include: data source (hospital
versus medical examiner’s office), image modality (CT scan, Lodox Statscan, dry bone,
panoramic or conventional radiograph), and type of image (element/region specific versus
full body). While there are eight countries represented, some countries have more than
one collaborator and/or city. As such, each unique combination of these parameters and
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the specific policies and procedures for data sharing, and the type of medical image,
impacted what was collected and/or what is available for future researchers.
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The data were collected from four types of anonymized medical images: CT scans,
Lodox Statscans, conventional radiographs, or panoramic radiographs (Figure 2). The
CT scan and Lodox Statscan images follow the Digital Imaging and Communications in
Medicine (DICOM) Standard for facilitated storage (.dcm format), transfer, and visualiza-
tion of the images without any loss of information and data [36]. DICOM images require
medical imaging visualization software for data collection. The two-dimensional conven-
tional (Angola, Colombia) and panoramic (Brazil) radiographs are stored in other formats
common to digital images (e.g., .JPG, .TIFF formats). Other medical imaging databases
composed of .JPG files have been set up and studies have shown that loss of information
is minimal and image resolution is preserved after conversions from .dcm files [34,37].
However, because of the possibility of distortion and/or magnification associated with
these three radiographic samples, only ordinal data (i.e., developmental stages), not contin-
uous data (i.e., measurements), were collected on them. The collaborators from hospitals
and/or dental practices usually contributed element- or region-specific images of living
individuals. This was true for the Brazilian radiographic sample, the Dutch CT scan sample,
the French CT scan sample, the Taiwanese CT scan sample, and the Angolan radiograph
sample. The South African sample stemmed from a hospital (living individuals) and a
medical examiner’s office (deceased individuals) that used Lodox Statscan to produce
full-body images [31]. The Lodox Statscan is an imaging device that can generate high
quality radiographic images of up to 1.8 m in length at high speed, with minimal radiation
or distortion, and is routinely used in trauma and forensic cases [38]. The U.S. sample is
comprised of deceased individuals and therefore the full body CT scans were generated at
medical examiners’ offices in Baltimore, Maryland and Albuquerque, New Mexico. The CT
scans of the individuals from Albuquerque, New Mexico are part of the NMDID virtual
repository and accessible via the NMDID website (https://nmdid.unm.edu/ accessed
on 1 November 2021). The only SVAD sample that had data collected from skeletal re-
mains was Colombia. Individuals in this sample died between the 1990s and early 2000s
and were exhumed from public cemeteries in Medellin and housed at the Universidad
de Antioquia [39].

https://nmdid.unm.edu/
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Table 2. Context and availability of SVAD images and derivatives.

Country Partner Institution Context Modality Derivatives Availability

Angola

Departamento de Ciências da
Vida, University of Coimbra and

private medical cabinets from
Luanda, Angola

Private practice Conventional
radiograph

Epiphyseal fusion stages
Dental development stages Derivatives

South Africa

Red Cross War Memorial
Children’s Hospital, Cape Town

Hospital
Hospital Lodox Statscan

Dental development
stagesEpiphyseal fusion stages

Long bone dimensions
Derivatives

Forensic Pathology Services, Salt
River, Cape Town Forensic Lodox Statscan Long bone dimensions Derivatives

Colombia Universidad de Antioquia,
Medellin Forensic

Dry bone (long bone
dimensions and

epiphyseal fusion)
Conventional

radiograph (dental
development and
epiphyseal fusion)

Long bone dimensions
VNC diameters

Epiphyseal fusion stages
Dental development stages

Radiographs and
derivatives

Brazil Universidade de São Paulo
(FOUSP) Dental Practice Panoramic radiograph Dental development stages

Panoramic
radiographs and

derivatives

France Public hospital services of
Marseille (AP-HM) Hospital CT scan

Long bone dimensions
VNC diameters

Epiphyseal fusion stages
Dental development stages
Segmented bone surfaces

Derivatives

The
Netherlands

Amsterdam Medical Center
(Hospital) Hospital CT scan

Long bone dimensions
VNC diameters

Epiphyseal fusion stages
Dental development stages
Segmented bone surfaces

CT scans and
derivatives

Taiwan National Taiwan University
Hospital, Taipei City Hospital CT scan

Long bone dimensions
VNC diameters

Epiphyseal fusion stages
Dental development stages
Segmented bone surfaces

Derivatives

United States *

Office of the Chief Medical
Examiner, Baltimore, Maryland Medico-legal CT scan Long bone dimensions

Epiphyseal fusion stages Derivatives

University of New Mexico Health
Sciences Center, Office of the

Medical Investigator,
Albuquerque, New Mexico

Medico-legal CT scan

Long bone dimensions
VNC diameters

Epiphyseal fusion stages
Dental development stages

Pelvic landmarks
Segmented bone surfaces

CT scans ** and
derivatives

* For the two U.S. samples, age, sex, population affiliation/social race, manner of death and cause of death are
also known. ** The University of New Mexico CT scans can be downloaded via the NMDID website and linked to
the derivatives we have available (https://nmdid.unm.edu/ accessed on 1 November 2021).

As mentioned above, the available data varied across collaborating institutions. Gener-
ally, region/anatomic-specific images were associated with living individuals and hospital
samples, most likely in an effort to minimize unnecessary exposure to radiation [40]. In
contrast, a full body image was standard for the medical examiner’s office and therefore
the deceased samples do not have notable amounts of missing data, if any. The differing
contexts of origin for the SVAD samples and the fact that it is comprised of data from
deceased and living individuals do not seem to influence the range of values for indicators
in each population. A recent study showed no differences in long bone lengths and dental
development between the deceased (medical examiner’s office context) and living (hospi-
tal/clinical context) individuals from the U.S. and South African samples [10]. Although
these findings should be verified on the other SVAD samples, they suggest there is no
bias in skeletal and dental indicators that is related to the type of collaborating institution,
the context of origin of the individuals (forensic or clinical), or the type of medical image
(CT scan or radiograph), and that these indicators could be compared across samples for
anthropological research [28].

https://nmdid.unm.edu/
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2.2. Sample Demographics

Age and sex are known for all individuals in the SVAD and are the only two variables
provided by each institution. The full age range represented in the SVAD is birth to 22 years.
There are minimally 200 individuals per chronological age in the SVAD, up until the late
teens; there are approximately 100 individuals per chronological age from the ages of
16 to 20 years (Figure 3).
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The sampling distribution varies at the institution level (Figure 4, Table 1). In general,
subadult mortality patterns are bimodal with a high mortality rate for infants, a reduction
in mortality in early to mid-childhood, and another increase in mortality during adoles-
cence [10,34]. In comparison, a living sample from a hospital/clinical setting will likely
show a more uniform age distribution for most age groups except for infancy (Figure 4).
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The youngest individuals are usually less represented in clinical contexts because ionizing
medical imaging is scarcely used unless absolutely necessary [40]. However, the cumulative
distribution in the total SVAD sample is somewhat equal across the ages (Figure 3).
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An age distribution separated by sex (n = 2077 females and n = 2814 males) reveals a
larger number of males compared to females per chronological age (Figure 5). Numerous
clinical studies have shown the existence of sex disparities in pediatric hospital admissions,
with a predominance of male patients over female patients both in emergency and long-term
care, independently of the country or healthcare system involved [41–45]. A slight sex bias
towards males has been observed in the medico-legal context, although it is less significant
for pre-teen subadults than it is for adolescent and young adults [46,47]. Although care was
taken to avoid substantially unbalanced sex distributions, the opportunistic, or convenience,
sampling approach used to select individuals generally reflects the sex ratios at each
collaborating institution (Figure 5).
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Additional demographic derivatives varied for each institution and depended not
only on the policies of the institution but also if the individuals were deceased or living.
For deceased individuals (the U.S. sample only), manner of death (MOD) and cause of
death (COD) were known. Population affinity is only known for the U.S. and South African
samples, as that parameter was not recorded by the additional collaborating institutions in
the SVAD.

Sampling variability can be quite complex and level of details to consider can vary
depending on the scale and research question. Country and city level statistics (i.e., human
development index, Gini coefficient) could provide a snapshot of the broad population,
but nuanced information at the institution level will provide the most accurate reflection
of the sample. One component to consider is the type of institution. Researchers have
illustrated different sectors of society may visit different types of doctors at different
frequencies even when there is equity in healthcare [41–45]. Therefore, countries with
public healthcare like Brazil, France, and South Africa, may present greater diversity in
their hospital samples, compared to the samples that may populate medical examiner’s
offices [46,47] and dental practices.
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2.3. Derivatives

Skeletal and dental growth and development indicators were collected on images,
dry bones, or virtual bone surfaces (Table 2, Figures 6–8). Each country’s complete dataset
(.CSV format) and the protocols developed to standardize the collection of the indicators on
medical images (.PDF format) are available for download via the SVAD Zenodo Commu-
nity [44]. Virtual bone surfaces of the long bones and coxal bones (in .PLY format) for the
French, Dutch, Taiwanese, and U.S. samples were segmented per their availability using a
standardized protocol based on the Amira™ (AmiraTM v.6.5.0, Thermo Fisher Scientific,
Waltham, MA, USA) imaging visualization software [23,48]. Segmented surfaces are also
available for research but require one to contact the authors for access.

The specific skeletal and dental variables that comprise the datasets are detailed below.
Long bone measurements, epiphyseal fusion, and dental development stages were collected
following standardized protocols [49] using the KScollect Graphical User Interface (GUI) [50].
The variable levels used in KSCollect are compatible with the KidStats GUI. Both KScollect
and KidStats are referenced and available for download in the SVAD Zenodo Community
(https://zenodo.org/record/5601936#.YZgRJC-B3z8 accessed on 1 November 2021).

https://zenodo.org/record/5601936#.YZgRJC-B3z8
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2.3.1. Diaphyseal Data

Eighteen diaphyseal length and breadth measurements of the six long bones (femur,
tibia, fibula, humerus, radius, and ulna) were collected per individual (Figure 6). They
follow the definitions presented by Stull, L’Abbé, & Ousley in 2014 [31], which were based
on Fazekas and Kosa [51] and Moore-Jansen et al. [52]. Left-sided elements were mea-
sured by default and their right antimere were measured if unavailable or broken. Length
measurements were taken only from unfused long bones. Therefore, the age range for
each measurement varies and is dependent on the fusion age, though data for the long
bones were mostly unavailable after 13 years of age. Long bone data were measured on
segmented bone surfaces in the four CT samples (France, The Netherlands, Taiwan, the
United States). The South African long bone data were previously collected by Stull [25,53]
from Lodox Statscan images using DVS (2.9.6), the Lodox imaging software. Measure-
ments were taken directly on the dry bones in the Colombian sample using a digital
caliper (0.01 mm precision). Previous publications document the high repeatability and
accuracy of Lodox Statscan measurements [25,53] and high precision, accuracy, repeatabil-
ity, and reproducibility of measurements collected on virtual reconstructions of skeletal
elements [21,22,26,27,30,31,49,54].

2.3.2. Vertebral Neural Canal Measurements (VNC)

Antero-posterior (AP) and transverse (TR) diameters of vertebrae thoracic 10 to
lumbar 5 were collected following definitions by Watts [55,56]. The data were measured on
the virtually reconstructed surfaces in the four countries that provided CT images (France,
The Netherlands, Taiwan, the United States) (Figure 7) and collected directly on the dry
vertebrae in the Colombian sample.

2.3.3. Dental Development

Dental development was collected for the 32 permanent teeth following AlQahtani,
Hector, and Liversidge [57] 13-stage revision of the Moorrees, Fanning and Hunt [58]
mineralization stages for mono-radicular and pluri-radicular teeth (Table 3). The data
collection team used a numerical adaptation of the 13 stages rather than the abbreviations
that were associated with the original and modified stage definitions used. For example,
1 was used rather than Ci (Table 3). Teeth were scored directly from CT slices, panoramic
and conventional radiographs generated at the original institutions, and from radiographs
generated on site in Colombia using a portable Nomad Pro 2 handheld X-ray system
(Patterson Dental). In the South African sample, dental development of only the first and
second molars was scored because of the insufficient visibility and superimposition.

2.3.4. Epiphyseal Fusion (EF)

Epiphyseal fusion stages for proximal and distal long bone epiphyses, the calcaneal
tuberosity, the ischiopubic ramus, the ilium and ischium, and ossification of the patella
were recorded for both left and right-sided elements. Ossification of carpals and tarsals
were scored binary absent (0)/present (1), and then the component score was recorded
to indicate the number of elements present on either the left or right side. Three different
staging systems were employed (Figure 8): a seven-stage system was used for the long
bone epiphyses and the calcaneal tuberosity; a three-stage system was used for the pelvic
epiphyses; and a binary absent/present was used for the carpals and tarsals, the ossification
of the elements of the proximal and distal humerus (e.g., humeral head, lesser tubercle,
greater tubercle, capitulum, trochlea, composite epiphyses), and the patella. Epiphyseal
fusion was scored on CT slices for France, The Netherlands, Taiwan, and the United States
samples, and on radiographs taken for the Angolan, Colombian, and South African samples.
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Table 3. Stages used to score development of permanent teeth.

Stage Monoradicular Teeth Pluriradicular Teeth Description

1
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Apex closed (root ends converge) with wide perio-
dontal ligament 
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Apex closed with normal periodontal ligament 
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Epiphyseal fusion stages for proximal and distal long bone epiphyses, the calcaneal 

tuberosity, the ischiopubic ramus, the ilium and ischium, and ossification of the patella 
were recorded for both left and right-sided elements. Ossification of carpals and tarsals 
were scored binary absent (0)/present (1), and then the component score was recorded to 
indicate the number of elements present on either the left or right side. Three different 
staging systems were employed (Figure 8): a seven-stage system was used for the long 
bone epiphyses and the calcaneal tuberosity; a three-stage system was used for the pelvic 
epiphyses; and a binary absent/present was used for the carpals and tarsals, the ossifica-
tion of the elements of the proximal and distal humerus (e.g., humeral head, lesser tuber-
cle, greater tubercle, capitulum, trochlea, composite epiphyses), and the patella. Epiphys-
eal fusion was scored on CT slices for France, the Netherlands, Taiwan, and the United 
States samples, and on radiographs taken for the Angolan, Colombian, and South African 
samples. 

2.4. Observer Error and Agreement 
Intra- and inter-observer errors for continuous data (Table 4) were calculated using 

technical error of measurement (TEM) and relative TEM (%TEM). Intra- and inter-ob-
server agreement rates for ordinal data (Table 5) were assessed using quadratic weighted 
Cohen’s Kappa. The original presentation of the agreement rates [28] used linear weighted 
Cohen’s Kappa; the authors have since recognized that quadratic coefficients are more 
appropriate. Essentially, the quadratic approach put more weight on a difference in ordi-
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ference between a score of 1 and a score of 2), which limits the risk of overestimating the 
resulting Cohen’s kappa values [59]. All TEM, %TEM and Cohen’s Kappa values for each 
indicator are available in the SVAD data collection protocol stored in the SVAD Zenodo 
Community [49]. 

Table 4. Observer errors of continuous data: minimum, maximum, and average values of technical 
errors of measurement (TEM) and percent TEM. 

 
Intra-Observer Error Inter-Observer Error 

TEM (mm) TEM (%) TEM (mm) TEM (%) 
MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG 

Long Bone Di-
mensions 

0.0426 0.364 0.156 0.069 1.723 0.502 0.0354 0.34 0.133 0.098 0.877 0.453 
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2.4. Observer Error and Agreement

Intra- and inter-observer errors for continuous data (Table 4) were calculated using
technical error of measurement (TEM) and relative TEM (%TEM). Intra- and inter-observer
agreement rates for ordinal data (Table 5) were assessed using quadratic weighted Cohen’s
Kappa. The original presentation of the agreement rates [28] used linear weighted Cohen’s
Kappa; the authors have since recognized that quadratic coefficients are more appropriate.
Essentially, the quadratic approach put more weight on a difference in ordinal scores of
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two or more increments (e.g., a difference between a score of 1 and a score of 3 for dental
development) than a difference in ordinal scores of one increment (e.g., a difference between
a score of 1 and a score of 2), which limits the risk of overestimating the resulting Cohen’s
kappa values [59]. All TEM, %TEM and Cohen’s Kappa values for each indicator are
available in the SVAD data collection protocol stored in the SVAD Zenodo Community [49].

Table 4. Observer errors of continuous data: minimum, maximum, and average values of technical
errors of measurement (TEM) and percent TEM.

Intra-Observer Error Inter-Observer Error

TEM (mm) TEM (%) TEM (mm) TEM (%)

MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

Long Bone Dimensions 0.0426 0.364 0.156 0.069 1.723 0.502 0.0354 0.34 0.133 0.098 0.877 0.453
Vertebral Neural Canal 0.024 0.178 0.103 0.161 1.104 0.589 0.118 0.358 0.193 0.672 2.117 1.127

Table 5. Observer agreement of ordinal data using quadratic weighted Cohen’s Kappa.

Intra-Observer Error Inter-Observer Error

Cohen’s Kappa Cohen’s Kappa

MIN MAX AVG MIN MAX AVG

Epiphyseal fusion stages * 0.545 1.00 0.974 0.501 1.00 0.930
Dental development stages * 0.687 1.00 0.939 0.774 1.00 0.965

* Values updated from [28]; the original publication employed linear weighted Cohen’s Kappa.

3. Access and Expansion

Each partner institution has indicated their preferred conditions for data sharing
and access of the medical images and/or their derivatives (Table 2, Figure 1). While all
derivatives (segmented bone surfaces, demographic data, and biological data) from each
sample are freely accessible and available for download on the SVAD Zenodo Community,
it is more uncommon to share the anonymized images. The radiographs from Brazil and the
CT scans from The Netherlands can be accessed via a secure server hosted by the University
of Nevada, Reno. Prior to providing access to these images, users will need to read and
sign a Data Use and Sharing Agreement form and fill out a Research Form describing the
purpose and use of the images for a given research project that will need to be submitted
to the SVAD curators. Both forms are available via the SVAD University of Nevada, Reno
webpage (https://www.unr.edu/anthropology/research-and-facilities/subadult-database
accessed on 1 November 2021). The CT scans for the U.S. UNM sub-sample are available for
download via the NMDID website; their NMDID ID has been linked for efficient merging
of data.

Along with fellow forensic and biological anthropology colleagues [28,32,33,60–66],
we recognize the need to standardize and “optimize” data collection and ease the access
to samples, medical images, and skeletal derivatives, and the resulting anthropological
methods. The SVAD is substantial in size and diversity and the derivatives are freely
available via the SVAD Zenodo Community for fellow researchers to use for their own
research questions. Since it is a living repository, it is built to welcome contributions from
other researchers whether that be biological and demographic derivatives or anonymized
medical images. Open-access derivatives will foster collaborations among researchers at the
professional and graduate student levels and allows for new research on various projects
exploring ontogeny, variation, methodology, and many others in anthropology and various
sister fields. The SVAD Zenodo Community can host links to the various publications and
presentations using part or all its content, thus acting as a primary information sharing
point on subadult research and reinforcing collaborative efforts and networking. New
collaborations will allow it to continue to increase in size and diversity, and collectively
will positively increase accessibility to large reference datasets and vertically advance

https://www.unr.edu/anthropology/research-and-facilities/subadult-database
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research in our field. If you are interested in contributing and have inquiries, please contact
the authors.

4. Conclusions

The SVAD is a new and exceptional resource for researchers interested in virtual data
more broadly and subadult research more specifically. Additionally, the data have potential
in various fields of research relying on medical images or skeletal and dental variables
and elements. Visit https://zenodo.org/communities/svad/?page=1&size=20 accessed
on 1 November 2021 for more information and https://www.unr.edu/anthropology/
research-and-facilities/subadult-database accessed on 1 November 2021 to apply for access
to the available medical images. By developing the open-access platform, we hope to steer
the culture of forensic anthropological research specifically and forensic science research
more generally towards open science, which leads to greater collaboration and mutual
gains, ensures scientific integrity through transparency, and improves the overall quality
of research [66]. With this platform established, the SVAD will allow for the inclusion of
additional data via new collaborations so that samples can increase in size and diversity.
Ultimately, the SVAD can host and provide access to derivatives from various projects
and individual and country-specific demographic information, including entire datasets,
medical images, segmented bone surfaces, data collection protocols, automated segmenta-
tion tools, resulting methods, novel R packages and scripts, and GUIs. The end goal is to
facilitate access to large-scale anthropological data, avoid costs of traveling, and limit the
effects of missing data/structures that are common with physical skeletal collections.
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