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Abstract: Forest biomass reflects the material cycle of forest ecosystems and is an important index 
to measure changes in forest structure and function. The accurate estimation of forest biomass is the 
research basis for measuring carbon storage in forest systems, and it is important to better 
understand the carbon cycle and improve the efficiency of forest policy and management activities. 
In this study, to achieve an accurate estimation of meso-scale (regional) forest biomass, we used 
Ninth Beijing Forest Inventory data (FID), Landsat 8 OLI Image data and ALOS-2 PALSAR-2 data 
to establish different forest types (coniferous forest, mixed forest, and broadleaf forest) of biomass 
models in Beijing. We assessed the potential of forest inventory, optical (Landsat 8 OLI) and radar 
(ALOS-2 PALSAR-2) data in estimating and mapping forest biomass. From these data, a wide range 
of parameters related to forest structure were obtained. Random forest (RF) models were established 
using these parameters and compared with traditional multiple linear regression (MLR) models. 
Forest biomass in Beijing was then estimated. The results showed the following: (1) forest inventory 
data combined with multisource remote sensing data can better fit forest biomass than forest 
inventory data alone. Among the three forest types, mixed forest has the best fitting model. Forest 
inventory variables and multisource remote sensing variables can match each other in time and 
space, capturing almost all spatial variability. (2) The 2016 forest biomass density in Beijing was 
estimated to be 52.26 Mg ha−1 and ranged from 19.1381-195.66 Mg ha−1. The areas with high biomass 
were mainly distributed in the north and southwest of Beijing, while the areas with low biomass 
were mainly distributed in the southeast and central areas of Beijing. (3) The estimates from the RF 
model are better than those from the MLR model, showing a high 𝑅𝑅2 and a low root mean square 
error (RMSE). The 𝑅𝑅2  values of the MLR models of three forest types were greater than 0.5, and 
RMSEs were less than 15.5 Mg ha−1, The 𝑅𝑅2 values of the RF models were higher than 0.6, and the 
RMSEs were lower than 13.5 Mg ha−1.We conclude that the methods in this paper can help improve 
the accurate estimation of regional biomass and provide a basis for the planning of relevant forestry 
decision-making departments. 

Keywords: forest biomass estimation; forest inventory data; multisource remote sensing; random 
forest; biomass density 

 

1. Introduction 

Forest ecosystems are an important component of the terrestrial ecosystem. Forests store 
76%~98% of the organic carbon in terrestrial ecosystems [1] and play an irreplaceable role in 
mitigating global warming caused by the increase in atmospheric carbon dioxide [2]. Forest biomass 
reflects the material cycle of forest ecosystems and is an important indicator for measuring changes 
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in forest structure and function. Additionally, forest biomass is closely related to the carbon sources 
and sinks in forest ecosystems [3]. Because the monitoring of forest biomass resources is expensive 
and time consuming, most countries do not have effective monitoring systems. Therefore, accurate 
estimations of forest biomass can effectively replace forest monitoring systems and are an important 
basis for assessing ecosystem processes, the carbon balance of ecosystems and climate change [4]. 

Meso-scale forest biomass estimations are usually obtained from forest inventory data [5]. In 
many countries, the use of large-scale forest inventories is considered an effective method for 
estimating biomass accurately [6]. China conducts a large-scale forest resource survey every five 
years to provide good data for statistical forest resources. Using these inventory data, forest biomass 
can be estimated at provincial or national scales [7]. However, with the continuous change in the 
forest resource structure of China, there have been some problems with these inventory data in 
regional biomass estimation [8]. To obtain the total volume or biomass of forest, the volume or 
biomass of one tree is calculated, and then the volumes or biomasses of all the trees in the sample 
plot are added together. Obviously, this method requires a high amount of manpower and material 
resources [9]. Moreover, inventory data cannot fully reflect forest information [6,10]. Therefore, we 
need data that cover a wide area and contain a high amount of vegetation information to supplement 
forest inventory data. 

With developments in technology, remote sensing has increased the possibilities for forest 
biomass research [11,12]. The use of remote sensing data in the research of meso-scale biomass is an 
important technical method. Various remote sensing indicators based on optical sensors, such as the 
normalized difference vegetation index (NDVI) and other factors obtained by image transformations, 
have been shown to be well correlated with the ground vegetation, providing reliable information 
for forest biomass estimation [13–15]. However, applications with optical data are often limited due 
to the complexity of biomass in time and space and limitations in the spatial and spectral 
characteristics of satellite data [16]. More abundant remote sensing data are needed to depict detailed 
forest information. Lidar can penetrate dense forests, provide accurate three-dimensional 
information of trees, and then be used to obtain forest biomass [17]. However, because of its limited 
coverage, high cost and inconvenience to transport, Lidar is not suitable for forest biomass estimation 
at the meso-scale [18]. Synthetic Aperture Radar (SAR) data, such as L-band Advanced Land 
Observing Satellite/Phased Array L-band Synthetic Aperture Radar (ALOS/PALSAR) [19] and X-
band TerraSAR-X data, are widely used in the estimation of forest biomass [20,21]. SAR is not affected 
by illumination and climate conditions and it can penetrate vegetation to obtain information, 
covering relatively large areas in a short period of time [20]. 

At the meso-scale, many studies have demonstrated the potential of optical and radar remote 
sensing-derived indicators to estimate forest biomass [22,23]. However, there is a large range and 
many uncertainties of remote sensing. For example, the resolution of remote sensing images might 
be insufficient, and the vertical structure information of forest canopies cannot be obtained, which 
has certain limitations in high biomass areas. Therefore, at the regional scale, the accuracy of forest 
biomass estimation using remote sensing data is low [24]. 

Optical and radar remote sensing data can match forest inventory data in time and space [25]. 
In addition, these data can provide forest attributes and structural information that are missing from 
inventory data. Therefore, combining multisource remote sensing data with forest inventory data for 
regional forest biomass research provides a more consistent spatial and temporal analyses than forest 
inventory data alone. Generally, the uncertainty in the estimation can be reduced by this combination 
[25]. Furthermore, this combination can promote the application of forest biomass estimation and 
other ecological research at the meso-scale. However, there is little information on the potential of the 
combination of sample plot survey data with multisource remote sensing data to estimate and map 
biomass. Most forest biomass estimation studies focus on the impact of environmental variables on 
forest biomass [26]. Therefore, it is necessary to better assess and understand the modeling potential 
of sample survey factors and remote sensing factors to provide decision makers with information on 
forest resources. 
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In this study, by synthesizing the existing technical means, we combined forest inventory data 
with multisource remote sensing data to estimate forest biomass and improve the accuracy of 
biomass estimation at the regional scale. There are three objectives of the present study: the primary 
objective is to assess the potential of forest inventory data combined with multisource remote sensing 
data in modeling and mapping forest biomass. The second objective is to estimate the biomass of 
different forest types in Beijing in 2016 and provide data support for regional biomass estimation. 
The third objective is to estimate biomass using multiple linear regression (MLR) and the random 
forest (RF) model and compare the performances of the two models. 

2. Materials and Methods  

2.1. Data Collection 

2.1.1. Forest Inventory Data 

The National Forest Resources Continuous Inventory system is a method of forest resource 
investigation that aims to understand the status and dynamics of macroforest resources and 
periodically reviews both with fixed sample plots. It is an important part of the comprehensive 
monitoring system for forest resources and ecological conditions in China. China’s Ministry of 
Forestry has carried out eight consecutive national surveys and inventories of forest resources [27]. 
According to the technical regulations of the national forest resources continuous inventory, 
systematic sampling is used to lay out fixed sample plots, the size of which is 4 km × 4 km, and the 
sample plots are laid out at the intersection point of the kilometer network of the newly compiled 
50,000 or 100,000 topographic map of the country. To ensure that the sample points are not repeated 
and missed, computer technology such as GIS, is used as far as possible [28]. In recent years, the 
collection of forest inventory data depends primarily on manual work, and it is supported by high-
tech survey instruments that can automatically collect data to improve the accuracy of inventory 
results [29].  

In this study, we used the Ninth Beijing Forest Inventory data of 2016, which involve 1431 
sample plots located in all districts and counties of Beijing, as shown in Figure 1, covering coniferous, 
broadleaf and mixed coniferous-broadleaf forest types. The dataset describes in detail plot locations, 
measurement dates and forest compositions. For each plot, multiple attributes were collected, 
including the mean diameter at breast height (DBH), mean tree height, mean age, crown density, 
volume, land use and cover, and ecological conditions. The biomass, mean DBH, mean tree height, 
mean age and crown density were used as the inventory variables to establish the model, as shown 
in Table 1. The real biomass value was calculated using the equation for the biomass-volume 
relationship of the stand type and age group [30]. The stem volume of each tree was provided by FID, 
and the stand volume of each fixed sample plot was the sum of all tree volumes. The area of each plot 
was 0.0667 hectares. 

There are significant differences in topography and administrative functions among different 
districts in Beijing. From the topographic point of view, the northwest is a mountainous area with a 
higher terrain, and the southeast is a plain; from the administrative function point of view, the central 
part of Beijing is the capital and core functional area, the Northwest Mountainous Area and the 
southwest are ecological conservation functional areas, and the plain is a densely populated scientific 
and technological innovation and economic development area, which also leads to differences in 
forest biomass distribution. More than 80% of Beijing's forest resources are distributed in 
mountainous counties in the west and north of the city. The forest coverage in mountainous areas of 
Beijing has reached more than 50%, but the forest area in the plain of southeast Beijing accounts for 
less than 20% of the whole city. 

The forest ecosystem contains arbors, shrubs and herbs, but the amount of biomass from shrubs 
and herbs is less than the amount of arboreal biomass [31]. Therefore, this study considers only 
arboreal biomass and does not consider shrub and herb biomass. 
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Figure 1. Spatial distribution map of the forest sample plots in Beijing. 

Table 1. Statistics of the main forest inventory dataset (plot number and biomass of the three forest 
types in Beijing, China). 

Forest types 
Coniferous forest (n1 = 663) Mixed forest (n2 = 272) Broadleaf forest (n3 = 496) 
Max Min Mean Max Min Mean Max Min Mean 

Biomass (Mg ha−1) 260.45 5.08 51.83 170.45 21.63 51.78 138.23 11.82 51.71 
Mean H(m) 32.40 1.00 7.42 27.7 1.50 7.41 22.80 1.50 7.41 

Mean DBH (cm) 51.00 1.00 12.8 40.60 3.50 12.8 42.50 3.00 12.8 
Mean age 115 1 25 100 3 24 80 3 24 

Crown density 90 20 48 90 20 48 90 20 48 

2.1.2. Remote Sensing Data and Preprocessing 

We used optical (Landsat 8 OLI) and radar (ALOS-2 PALSAR-2) remote sensing sources. 

Landsat 8 

Landsat 8 Operational Land Imager (OLI, which developed by Bauer Aerospace and Technology 
Corp, Colorado, USA) images included a 15 m panchromatic band, with a spectral range from 0.500 
to 0.680 μm and eight 30 m multispectral bands, with a spectral range from 0.433 to 2.300 μm. They 
were selected for biomass estimation due to their suitability in terms of their resolution ratio; a spatial 
resolution of approximately 30 m by 30 m is adequate to assess information at the forest stand level. 
We selected eight Landsat 8 OLI scenes of Beijing with low cloud cover as the research images. The 
image range was 122 to 124 paths and 31 to 33 rows. The image acquisition time used in this study 
was June-August 2016, and the time phase was basically the same as the time phase of the Beijing 
forest inventory data. 

The image preprocessing steps included geometric correction, radiation correction, atmospheric 
correction, and image clipping. Because the downloaded images were Level-1 data products, the 
geometric accuracy was high, so only radiation and atmospheric corrections were needed. 

Based on the preprocessed Landsat 8 OLI data, we acquired the surface reflectance for 6 bands 
of the Landsat 8 OLI (Band 2-Band 7) and then acquired the vegetation indices, namely, normalized 
difference vegetation index (NDVI), difference vegetation index (DVI) and ratio vegetation index 
(RVI) (Table 2), through band processing and the Landsat 8 OLI image calculation. The NDVI, DVI, 
and RVI are commonly used vegetation indices that are sensitive to vegetation, as shown in Equation 
(1) - (3). Another dataset was derived by image transformation from the original satellite band, which 
involved tasseled cap transformation (TCT) and texture features as shown in Table 2. Tasseled cap 
transformation, also known as a K-T transform, is an image enhancement method for vegetation 
information extraction. It can enhance vegetation information of images. After the K-T transform, the 
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same number of components as the number of bands can be obtained, and the second component is 
the green index, which has a strong relationship with the vegetation coverage and biomass on the 
ground [32]. Therefore, based on the TCT coefficients of the OLI sensor onboard Landsat 8, we chose 
the second band generated from the TCT, which was marked as the greenness [32]. 

In addition, we extracted the texture factor of the image. Texture is an important feature of 
remote sensing images and can be extracted by using the gray-level cooccurrence matrix (GLCM). 
Previous research has shown that Band 2 of a Landsat 8 OLI image contains much information about 
the image; thus, we extracted the texture feature of Band 2. The larger the selected window is, the 
greater the information content will be [33]. According to the sample area, five texture eigenvalues 
were extracted from the 15 *15 window, namely, the mean, variance, contrast, correlation and second 
moment [34], as shown in Equation (4)–(8): 

Normalized Difference Vegetation Index (NDVI): 

NDVI =
𝑁𝑁𝑁𝑁𝑁𝑁1 − 𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁1 + 𝑅𝑅

 (1) 

Difference Vegetation Index (DVI): 

Ratio Vegetation Index (RVI): 

DVI = NIR1 − R (3) 

Mean(ME): 

ME=∑ 𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0  (4) 

Variance(VA): 

VA=∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0 (𝑖𝑖 − 𝑀𝑀𝑀𝑀)2 (5) 

Contrast(CO): 

CO=∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0 (𝑖𝑖 − 𝑗𝑗)2 (6) 

Correlation (CC): 

CC=∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0 �(𝑖𝑖−𝑀𝑀𝑀𝑀)(𝑗𝑗−𝑀𝑀𝑀𝑀)

�𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑗𝑗
� (7) 

Second Moment(SM): 

SM=∑ 𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖2𝑁𝑁−1
𝑖𝑖,𝑗𝑗=0  (8) 

Using bilinear interpolation, the average values of the remote sensing factors at and near 
sampling points can be extracted. This method effectively solves the problem that occurs when 
sampling sites do not match the image completely and can cover areas that the inventory data cannot 
fully cover, thus improving the estimation accuracy. 

ALOS-2/PALSAR-2 

We downloaded six images of ALOS-2/PALSAR-2 (L-band) taken in 2016 from Japan Aerospace 
Exploration Agency ((JAXA (http://www.eorc.jaxa.jp/ALOS/en/index.htm)). The PALSAR data had 
a 25-m spatial resolution and contain two polarized bands, HH and HV. The preprocessing of 
PALSAR data was completed by the JAXA. The digital numbers (DN) of the PALSAR signal 
amplitude were extracted and converted to gamma naught backscattering coefficients (dB) in decimal 
units using the following equation [35,36]: 

𝛤𝛤0 = 10 × 𝑙𝑙𝑙𝑙𝑙𝑙10𝐷𝐷𝐷𝐷2 − 𝐶𝐶𝐶𝐶 (9) 

RVI =
𝑁𝑁𝑁𝑁𝑁𝑁1
𝑅𝑅

 (2) 
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where 𝛤𝛤0 is the backscattering coefficient, DN is the digital number value of pixels, and CF is the 
calibration factor, which equals -83 [36]. Then, we calculated the sum, difference and ratio values 
using the backscattering coefficients of HH and HV, as shown in Equation (10)–(12): 

sum = 𝛤𝛤𝐻𝐻𝐻𝐻0 + 𝛤𝛤𝐻𝐻𝐻𝐻0  (10) 

difference = 𝛤𝛤𝐻𝐻𝐻𝐻0 − 𝛤𝛤𝐻𝐻𝐻𝐻0  (11) 

ratio = 𝛤𝛤𝐻𝐻𝐻𝐻0 /𝛤𝛤𝐻𝐻𝐻𝐻0 , (12) 

where 𝛤𝛤𝐻𝐻𝐻𝐻0  and 𝛤𝛤𝐻𝐻𝐻𝐻0  are the backscattering coefficients of HH and HV in decibels. 

Table 2. Remote sensing factors calculated from the Landsat 8 and ALOS-2/PALSAR-2 images. 

Factor type Remote sensing factors Data source 
Band value Band 2, Band 3, Band 4, Band 5, Band 7 Landsat 8 OLI 

Vegetation index NDVI, DVI, RVI Landsat 8 OLI 
Tasseled cap transformation Greenness Landsat 8 OLI 

Texture analysis Mean, Variance, Contrast, Correlation, Second moment  Landsat 8 OLI 

Backscattering coefficients 𝛤𝛤𝐻𝐻𝐻𝐻0 , 𝛤𝛤𝐻𝐻𝐻𝐻0 ,𝛤𝛤𝐻𝐻𝐻𝐻0 + 𝛤𝛤𝐻𝐻𝐻𝐻0 ,𝛤𝛤𝐻𝐻𝐻𝐻0 − 𝛤𝛤𝐻𝐻𝐻𝐻0 , 𝛤𝛤𝐻𝐻𝐻𝐻0 /𝛤𝛤𝐻𝐻𝐻𝐻0  ALOS-2/ 
PALSAR-2 

2.2. Multiple Regression Model 

The allometric growth equation is the most widely used model for estimating forest biomass. 
Many studies have confirmed the advantages of the allometric growth equation for estimating forest 
biomass [37–39]. This model regresses a correlated variable (biomass) based on one or more 
independent variables. The DBH and tree height, as the two most relevant factors of biomass, are 
often used in biomass prediction in the form of single or compound variables. Based on the allometric 
model and previous research results, we introduced new variables (Landsat 8 data and 
backscattering coefficients) into the model to explore its ability to estimate forest biomass, as shown 
in Equation (13). 

ln(B) = 𝛽𝛽0 + 𝑎𝑎ln (𝑑𝑑2𝐻𝐻) + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2
+ ⋯+𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗  

(13) 

where B is the biomass of the sample plot, each 𝑥𝑥𝑗𝑗  is an independent variable (j = 1,2,3 …), 𝛽𝛽𝑗𝑗  is the 
regression coefficient of 𝑥𝑥𝑗𝑗, 𝛽𝛽0 is a constant, and a is the regression coefficient of the model. 

However, the remote sensing variables were highly collinear. To overcome this problem, we 
used a stepwise regression analysis method, which gradually screens variables and leaves highly 
correlated variables that are not collinear in the model, to retain a model that was not very complex 
and to reduce the number of calculations. The basic idea of stepwise regression is to introduce 
variables into the model one by one. After introducing an explanatory variable, we need to conduct 
F-test and t-test for the selected explanatory variables one by one. When the original explanatory 
variables are no longer significant due to the introduction of later explanatory variables, they will be 
deleted. To ensure that only significant variables are included in the regression equation before each 
new variable is introduced. This is a repeated process until neither significant explanatory variables 
are selected into the regression equation nor insignificant explanatory variables are removed from 
the regression equation. To ensure that the final set of explanatory variables is optimal.  

2.3. Feature Selection and Random Forest Model 

We used R to establish an RF model to estimate forest biomass. The RF model was a classification 
and regression algorithm based on decision trees [40]. By establishing and combining multiple 
decision tree predictions (1000 trees in our study), the average value of all the decision tree prediction 
results was taken as the final prediction result [41]. The RF model can effectively alleviate the problem 
of overfitting and is insensitive to the collinearity between variables, so it is suitable for establishing 
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a nonlinear model [42]. RF is increasingly used to perform biomass regression and estimate forest 
biomass [43,44]. 

First, subsets of variables were selected as input for the RF prediction using feature selection to 
ensure that the input variables were highly correlated with biomass. Feature selection refers to the 
selection of subsets from the original feature set to optimize a certain evaluation criterion so that the 
model established with the optimal feature subset can achieve a prediction accuracy similar to or 
better than that of the model established without feature selection. RF provides an increase in the 
mean-squared error (percentage of IncMSE, where IncMSE indicates the increase in MSE) for each 
independent indicator, quantifying the increase in the MSE when the indicator is randomly 
permuted. This error measures the relative importance of each indicator, where a high IncMSE 
implies that the indicator has a high weight in the model prediction and vice versa [23]. Then, we 
used the data after feature selection as the independent variable, forest biomass as the dependent 
variable, and the random forest software package in R to establish an RF model. 

2.4. Model Accuracy Evaluation 

To test these models, we assessed the prediction accuracy on randomly selected subsets (20%) 
of the original dataset retained before the model was developed. To evaluate the advantage of the 
use of an advanced regression tree model versus more traditional approaches, the performance of the 
RF model was computed and compared with that of a stepwise multiple linear regression model. 

We used the proportion of variance explained (𝑅𝑅2) and the root mean square error (RMSE) to 
evaluate the model performance on the complete datasets. In addition, we computed the relative 
RMSE (RMSE%), the bias and the relative bias (bias%). Bias was calculated as the difference between 
a population mean of the measurements or test results and an accepted reference or true value, R2 
values were used to judge the model, and RMSE, Bias%, RMSE% reflect the precision of the model 
[45]. 

These statistics were calculated as follows:  

𝑅𝑅2 = 1 −
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
 (14) 

RMSE = �∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2

𝑛𝑛 − 1
 (15) 

RMSE% =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦�𝑖𝑖

× 100% (16) 

Biasc =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (17) 

Bias% =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝑦𝑦�𝑖𝑖

× 100% (18) 

where 𝑦𝑦𝑖𝑖 is the observed biomass of the plot, 𝑦𝑦�𝑖𝑖 is the predicted biomass of the plot, and 𝑦𝑦�𝑖𝑖 is the 
mean biomass of n plots. 

3. Results 

3.1. Univariate Correlation Analysis 

Previous studies have typically analyzed the relationship between a single remote sensing 
variable and the forest biomass or have used the original band and variables transformed from 
images for feature selection [46,47]. Through the Pearson correlation coefficient (r), we analyzed the 
ability of each variable to estimate biomass and obtained the correlation between each variable and 
the biomass, as shown in Table 3. 

Among all variables, forest inventory variables were highly correlated with biomass in three 
forest types. Different remote sensing variables (OLI data and PALSAR data) showed different 
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degrees of correlation. The shortwave infrared (SWIR) optical band (Band 7) showed the greatest 
relevant biomass among the Landsat data because it allowed an effective separation between high- 
and low-biomass data. The importance of the SWIR wavelengths in biomass prediction is consistent 
with previous studies [40]. In addition, Band 5, Band 4, Band 3, Band 2, the NDVI, and the greenness 
were also highly correlated with biomass, and the most relevant texture factors were the mean, 
correlation and second moment. The other Landsat variables had little correlation with biomass. SAR 
data can penetrate dense forests and obtain the vertical structure information of forests, so the 
PALSAR HH and HV backscatter coefficients and their derivative variables (sum, difference, ratio) 
were correlated with forest biomass. In addition, correlations between the forest biomass and HV 
backscatter coefficients of different forest types were higher than those between the forest biomass 
and HH backscatter coefficients, which is in line with previous research results [22,48]. All these 
factors can be considered potential variables for forest biomass estimation. 

Table 3. Coefficients of correlation between forest biomass and variables. 

 Variables Code 
Correlation (r) 

Coniferous 
forest Mixed Forest 

Broadleaf 
forest 

FID 
𝑑𝑑2𝐻𝐻 N1 0.492 0.510 0.489 

Crown density N2 0.373 0.451 0.401 
Mean age N3 0.455 0.412 0.359 

Original bands 

B2 X1 0.359 0.290 0.367 
B3 X2 0.118 0.257 0.213 
B4 X3 0.219 0.197 0.156 
B5 X4 0.237 0.211 0.181 
B7 X5 0.235 0.243 0.221 

Vegetation index 
NDVI X6 0.336 0.332 0.317 
DVI X7 0.105 0.116 0.132 
RVI X8 0.089 0.124 0.098 

Tasseled cap Greenness X9 0.239 0.159 0.224 

Texture (15×15) 

Mean X10 0.196 0.195 0.174 
Variance X11 0.089 0.077 0.103 
Contrast X12 0.130 0.114 0.082 

Correlation X13 0.138 0.211 0.243 
Second moment X14 0.145 0.056 0.097 

Backscattering 
coefficients 

𝛤𝛤𝐻𝐻𝐻𝐻0  
𝛤𝛤𝐻𝐻𝐻𝐻0  

𝛤𝛤𝐻𝐻𝐻𝐻0 + 𝛤𝛤𝐻𝐻𝐻𝐻0  
𝛤𝛤𝐻𝐻𝐻𝐻0 − 𝛤𝛤𝐻𝐻𝐻𝐻0  
𝛤𝛤𝐻𝐻𝐻𝐻0 /𝛤𝛤𝐻𝐻𝐻𝐻0  

X15 
X16 
X17 
X18 
X19 

0.135 
0.165 
0.148 
0.132 
0.127 

0.125 
0.187 
0.099 
0.071 
0.126 

0.126 
0.173 
0.106 
0.121 
0.187 

3.2. Results of Forest Biomass Model Establishment 

3.2.1. Multiple Stepwise Regression Model 

To avoid overfitting, the multiple stepwise regression method was used to screen variables and 
establish a multiple linear model. The results are as follows: 

The multiple stepwise regression model of coniferous forests was: 
 

ln(𝐵𝐵𝐶𝐶) = 3.821 + 0.226 × 𝑁𝑁1 + 0.111𝑁𝑁2 + 0.139𝑁𝑁3 − 0.120𝑋𝑋1 − 0.246𝑋𝑋6 − 0.089𝑋𝑋10
− 0.656𝑋𝑋16 +  0.538𝑋𝑋17 − 0.308𝑋𝑋19  

(19) 

The multiple stepwise regression model of mixed forest was: 

ln(𝐵𝐵𝑀𝑀) = 3.776 + 0.291 × 𝑁𝑁1 + 0.155𝑁𝑁2 + 0.108𝑁𝑁3 − 0.153𝑋𝑋1 + 0.302𝑋𝑋2 − 0.132𝑋𝑋3
− 0.05𝑋𝑋4 +  0.052𝑋𝑋6 + 0.037𝑋𝑋13 

(20) 
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The multiple stepwise regression model of broadleaf forests was: 

ln(𝐵𝐵𝐵𝐵) = 3.810 + 0.127 × 𝑁𝑁1 + 0.137𝑁𝑁2 + 0.181𝑁𝑁3 + 0.110𝑋𝑋1 + 0.039𝑋𝑋6 − 0.088𝑋𝑋9
+ 0.024𝑋𝑋13 +  0.043𝑋𝑋15 − 0.057𝑋𝑋18 

(21) 

Then, the biomass estimation model was obtained as follows: 

𝐵𝐵𝐶𝐶 = 𝑒𝑒
3.821+0.226×𝑁𝑁1+0.111𝑁𝑁2+0.139𝑁𝑁3−0.120𝑋𝑋1

−0.246𝑋𝑋6−0.089𝑋𝑋10−0.656𝑋𝑋16+ 0.538𝑋𝑋17−0.308𝑋𝑋19   (22) 

    𝐵𝐵𝑀𝑀 = 𝑒𝑒
3.776+0.291×𝑁𝑁1+0.155𝑁𝑁2+0.108𝑁𝑁3−0.153𝑋𝑋1

+0.302𝑋𝑋2−0.132𝑋𝑋3−0.05𝑋𝑋4+ 0.052𝑋𝑋6+0.037𝑋𝑋13   (23) 

𝐵𝐵𝐵𝐵 = 𝑒𝑒
3.810+0.127×𝑁𝑁1+0.137𝑁𝑁2+0.181𝑁𝑁3+0.110𝑋𝑋1

+0.039𝑋𝑋6−0.088𝑋𝑋9+0.024𝑋𝑋13+ 0.043𝑋𝑋15−0.057𝑋𝑋18   (24) 

where 𝑋𝑋𝑖𝑖 and 𝑁𝑁𝑖𝑖 in each formula correspond to the variables in Table 3. 
P values represent the probability that the sample results differ from the original hypothesis. 

The smaller the P value is, the more significant the results are. Generally speaking, p < 0.05 indicates 
a significant difference, and p < 0.01 indicates a very significant difference. Table 4 shows that the P 
values of the model coefficients of different forest types, which are less than 0.05, some of which are 
less than 0.01. These results show that the differences in the selected variables are significant.  

Table 4. P values of the coefficients of models for different forest types. 

Forest type Variables p-value 

Coniferous forest 

N1 0.001 
N2 0.004 
N3 0.010 
X1 0.011 
X6 
X10 
X16 
X17 
X19 

0.020 
0.010 
0.015 
0.009 
0.022 

Mixed forest 

N1 0.002 
N2 0.001 
N3 0.004 
X1 0.016 
X2 
X3 
X4 
X6 
X13 

0.011 
0.002 
0.015 
0.008 
0.037 

Broadleaf forest 

N1 0.005 
N2 0.003 
N3 0.010 
X1 0.033 
X6 
X9 
X13 
X15 
X18 

0.020 
0.010 
0.025 
0.019 
0.002 
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3.2.2. Random Forest Model 

First, feature variables were selected for the variables involved in the modeling. The importance 
of the variables was ranked according to IncMSE%, and the unimportant variables were eliminated. 
Generally, the number of final variables is 1/3 of the total number of input variables [49].Table 5 
shows that 𝑑𝑑2𝐻𝐻 and the mean age are two very important variables in the RF model. IncMSE% was 
more than 20% in the different forest types. NDVI, Band 2 and Band 7 were also important to the 
model with regard to optical data. The most influential backscattering coefficient factors were 𝛤𝛤𝐻𝐻𝐻𝐻0  
and 𝛤𝛤𝐻𝐻𝐻𝐻0 − 𝛤𝛤𝐻𝐻𝐻𝐻0 . The IncMSE% of these factors were all higher than 10%. 

Table 5. The IncMSE% of the top five most important variables in the biomass fitting of different 
forest types in the random forest model. 

Forest type Variables IncMSE% 

Coniferous forest 

𝑑𝑑2𝐻𝐻 40.82 
The mean age 19.83 

Band 2 15.39 
NDVI 12.36 

𝛤𝛤𝐻𝐻𝐻𝐻0  11.15 

Mixed forest 

The mean age 32.28 
𝑑𝑑2𝐻𝐻 25.52 
𝛤𝛤𝐻𝐻𝐻𝐻0 − 𝛤𝛤𝐻𝐻𝐻𝐻0  18.48 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 14.23 
Crown density 11.88 

Broadleaf forest 

𝑑𝑑2𝐻𝐻 43.46 
Crown density 23.02 

Band 7 12.77 
𝛤𝛤𝐻𝐻𝐻𝐻0  11.70 

NDVI 10.08 

3.3. Model Precision Evaluation and Comparison of Two Models 

To test the goodness of fit of the model, 20% of the samples were used for validation. We 
analyzed the scatter diagrams of different forest types in Figure 2 and obtained the accuracy of the 
linear regression and RF models in Table 6. 

Figure 2 shows that correlations between the estimated biomass and observed biomass in the 
coniferous forests, mixed forests, and broadleaf forests were all better for the RF models than for 
linear regression. In the linear model, as the biomass value increased, the performance of the model 
decreased, and most of the high-value biomass was underestimated. In particular, the high biomass 
values of mixed forests were greatly underestimated. RF can improve the performance of the model. 
When the biomass was less than 100 Mg ha−1, the difference between predicted and observed values 
is lower than that of the linear model; the error under higher biomass values was slightly larger, and 
some of the higher values were underestimated. 
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Figure 2. Graphs of the predicted versus observed values of three forest types for two models. (a1) 
and (a2) Coniferous forest; (b1) and (b2) Mixed forest; (c1) and (c2): Broadleaf forest. 

Table 6. Estimation accuracy of different models. 

Model Forest type 𝑹𝑹𝟐𝟐 
RMSE 

(Mg ha−1) RMSE% 
Bias 

(Mg ha−1) Bias% 

MLR 
Coniferous forest 

Mixed forest 
Broadleaf forest 

0.59 
0.70 
0.53 

14.15 
14.54 
15.26 

29.65 
27.92 
32.48 

0.34 
0.90 
0.16 

0.71 
1.73 
0.33 

RF 
Coniferous forest 

Mixed forest 
0.66 
0.77 

13.23 
11.09 

27.24 
22.89 

−2.67 
−3.34 

−5.50 
−6.89 

Broadleaf forest 0.64 11.98 27.02 −4.02 −9.08 
 
Table 6 shows that the Bias% values were all near 0, and the RMSE% ranged from 27.92% to 

32.48% for the MLR model. For the RF model, the Bias ranged from −2.67 to −4.02 and the RMSE% 
ranged from 22.89%–27.24%. These results showed that the two types of models were relatively stable 
and could be used to estimate biomass. However, an improvement in performance was found in the 
RF models for coniferous forest (𝑅𝑅2 = 0.66, RMSE = 13.23 Mg ha−1), mixed forest (𝑅𝑅2= 0.77, RMSE = 
11.09 Mg ha−1), and broadleaf forest (𝑅𝑅2 = 0.64, RMSE = 11.98 Mg ha−1), in comparison to the linear 
regression models for coniferous forest (𝑅𝑅2 = 0.59, RMSE = 14.15 Mg ha−1), mixed forest 𝑅𝑅2= 0.70, 
RMSE = 14.54 Mg ha−1), and broadleaf forest (𝑅𝑅2 = 0.53, RMSE = 15.26 Mg ha−1). Generally, the RF 
model was characterized by a high 𝑅𝑅2and a low RMSE, indicating a good fitting result. 

For the same model with different forest types, the fit of the mixed-forest models was better than 
that of the models with the other two forest types. The 𝑅𝑅2 of the linear regression model based on 
mixed forests was 0.11 and 0.17 higher than the 𝑅𝑅2  of the linear regression models based on 
coniferous forests and broadleaf forests, respectively. The 𝑅𝑅2 of the RF model based on mixed forests 
was 0.11 and 0.13 higher than the 𝑅𝑅2 of the RF models based on coniferous forests and broadleaf 
forests, respectively, and the RMSE was 4.35 and 4.13 Mg ha−1 lower, respectively. Overall, the model 
for mixed forests had a high estimation accuracy. 

3.4. Results of Biomass for Different Forest Types and Spatial Distribution of the Forest Biomass Density in 
Beijing 
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Based on the model estimation results, the forest biomass and biomass density of coniferous 
forests, broadleaf forests and mixed forests were estimated, the kriging interpolation was used and 
biomass density distribution maps of three forest types were obtained. Biomass of different forest 
types are shown in Table 7 and biomass density distribution in Figure 3. 

The total forest biomass obtained from the survey data was 74,746.10Mg, and the biomass 
density was 19.14–195.66 Mg ha−1, with an average biomass density of 52.26 Mg ha−1. Among these 
values, the total biomass of coniferous forest was 35,622.99 Mg, the average biomass density was 
53.73 Mg ha−1; the total biomass of mixed forest was 13,926.40 Mg, the average biomass density was 
51.20 Mg ha−1; the total biomass of broadleaf forest was 25,196.80Mg, and the average biomass density 
was 50.80 Mg ha−1. 

Table 7. Biomass and biomass density of each forest type. 

Forest type Area 
(ha−1) 

Biomass 
(Mg) 

Biomass density 
(Mg ha−1) 

Coniferous forest 663 35,622.99 53.73 
Mixed forest 272 13,926.40 51.20 

Broadleaf forest 496 25,196.80 50.80 

As shown in Figure 3, the biomass distribution of arbor forests was basically consistent with the 
distribution of forestland in Beijing. The high-biomass area corresponded to dense forestland, and 
most of these forests were mature and overmature and were mainly distributed in the north and 
southwestern part of Beijing. The low-biomass area was mainly located in the southeast and central 
parts of Beijing. Because this area is urban with mostly developed land, the biomass in this area is 
low. The biomass density in most areas of Beijing was less than 70 Mg ha−1.  

  
Figure 3. Biomass density distribution in Beijing, China (a) Coniferous forest; (b) Mixed forest; (c) 
Broadleaf forest; (d) all forest sampling plots. 

The distribution of the three types of forest was obviously different. Coniferous forests were 
mainly distributed to the west and south of Beijing, mixed forests were mainly distributed in the west, 
and broadleaf forests were mainly distributed in the north and southwest. 
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This study did not consider shrubs and herbs, so the estimation of biomass can be considered 
relatively conservative but can also represent the basic situation of biomass in Beijing. At present, 
China's biomass estimation system is still not perfect. This study provides a feasible method for 
regional biomass estimation. 

4. Discussion 

4.1. Forest Biomass Estimation Model Based on Forest Inventory and Multisource Remote Sensing Data 

In this paper, we propose a novel approach to modeling and mapping the biomass of forests at 
the regional scale that provides more detailed and accurate information than other approaches, such 
as estimating using only a single remote sensing data source or forest inventory data.  

We combined forest inventory data with multisource remote sensing data (OLI and PALSAR) 
to estimate forest biomass, capturing almost all forest biomass spatial variability, and producing 
spatially explicit biomass estimates over regions. 

According to the biomass characteristics of different forest types, it is very important to select 
variables with a high importance to the model [48]. The forest inventory factors selected in this study 
included not only the DBH and height, which are the two most relevant factors to biomass [38,39,50] 
but also the mean age and canopy density, which have received increasing attention in recent studies. 
Many previous studies have demonstrated that these two factors show a good correlation with 
biomass [40,51], which is consistent with our results. Landsat optical data are sensitive to forest 
vegetation, and their spatial resolution is suitable for the sample plot size. Zheng et al. confirmed that 
the red and NIR bands (Bands 4 and 5, respectively) are effective predictors of biomass [13]. Zheng 
et al. found that the SWIR band (Band 7) showed a satisfactory estimation ability in forests with a 
high canopy density [52], Foody et al. found that the NDVI and other vegetation indices are strongly 
correlated with biomass [53]. These results are consistent with our results. The models established by 
these factors fit the data relatively well. Multiple-variable PALSAR data have a higher correlation 
with forest biomass than individual-variable PALSAR HH and HV data because of their ability to 
detect canopy structure and retrieve forest biomass [54,55]. In addition, the biomass estimation model 
based on multisource remote sensing data combined with forest inventory data had a higher accuracy 
than that based on single-source data. Zhao used Landsat TM and ALOS PALSAR data to establish 
forest biomass models in Zhejiang Province. The 𝑅𝑅2 of each forest type was below 0.5 [56]. Urbazaev 
used SAR backscatter, Landsat images and topographic factors to obtain the best 𝑅𝑅2, a value of only 
0.62 [57], which was lower than the accuracy in this study. This indicates that our model is suitable 
for estimating forest biomass in Beijing. 

Optical and radar data are an effective supplement to inventory data, provide spatial 
information for estimating regional forest biomass, and can continuously estimate forest biomass 
[51]. In the results, the 𝑅𝑅2 and RMSE of the three forest types were all greater than 0.5 and less than 
20 Mg ha-1. The models are reliable, but the model accuracy differed among different forest types. 

In our results, mixed forests had the highest estimation accuracy, followed by coniferous forests 
and broadleaf forests, which is inconsistent with previous research.  

Previous studies have shown that coniferous forest biomass estimation models have a high 
accuracy [58]. This inconsistency may be because the three types of modeling factors included in this 
study are highly sensitive to the structure of mixed forests. Moreover, differences in the study area 
location, tree species and forest types lead to different model estimation accuracies for different forest 
types. 

However, the 𝑅𝑅2 values of the model were all less than 0.8, which indicates the present model 
has less precision than the model established in a previous study [25]. A possible reason is that 
previous studies have mostly focused on small-scale areas. Our research mainly focuses on meso-
scale areas, including a variety of terrain and environmental conditions, causing different 
environmental factors to have a certain impact on the modeling accuracy. 

4.2. Estimation and Spatial Distribution of Forest Biomass in Beijing 
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The results of this study suggest that it is possible to produce spatially explicit biomass estimates 
over regions if adequate inventory data and remote sensing data are available. This meso-scale study 
was based on a relatively large sample size. 

Because the data set used in this research did not contain all sample plot data from the forest 
inventory in Beijing, it can represent the distribution but not the total amount of biomass, while 
biomass density can represent the state of forest resources in Beijing well [9]. The 2016 forest biomass 
density range of Beijing was estimated by this model to be 19.14–195.66 Mg ha−1, and the average 
biomass density was 52.26 Mg ha−1. The forest biomass density in Beijing increased compared with 
previous studies [24]. 

Overall, forest resources show a pattern of more forests in mountainous areas, less forests in 
plains, as well as more forests outside urban areas and less forests in urban areas [59]. This is 
consistent with the distribution map of biomass density obtained in this study, as shown in Figure 3. 
However, this study shows that the biomass density in the central city is high, which is inconsistent 
with the distribution of forest resources in Beijing. This result may be caused by the fact that in recent 
years, the central city has insisted on the construction of ecological cities and increases in the area of 
green space, so the forest biomass has increased. 

China is vigorously promoting the construction of eco-cities. At the meso-scale, forestry biomass 
estimation and biomass density mapping can provide decision makers with detailed information on 
forest resources to strengthen the management of forest resources. 

4.3. Comparing Performance between MLR and RF Models. 

We also compared the performance of the MLR model and the RF model. We found that the 
prediction effect of the linear model for extreme biomass values (extremely high or very low) was not 
completely ideal. Low values were overestimated, and high values were underestimated, which is 
also common in previous studies [25,60]. The range in biomass for the multiple regression prediction 
is larger than that for the RF model. 

This finding indicates that this model may be applicable only in the estimation of biomass values 
within a certain range. The use of the RF model had a positive impact on the estimation accuracy of 
extreme values [61]. The results showed that the RF model captured the complex nonlinear 
relationship between the optical and SAR data and biomass and compensated for the lack of 
inventory data, capitalizing on the strengths of both the forest inventory and remote sensing data. 
Therefore, the fit of the RF model is better than that of the linear regression model. 

Linear regression and RF model contain different independent variable factors. Because of the 
collinearity between variables, some variables will be eliminated in linear model, while RF model can 
fully consider the fitting problem. The two model types include forest investigation factors such as 
𝑑𝑑2𝐻𝐻, crown density and the mean age, indicating that the FID variables has a greater impact on the 
estimation of biomass and is not affected by collinearity. The RF models contain more PALSAR 
variables, and the model accuracy is higher, which indicates that the PALSAR variables are more 
sensitive to forest biomass. 

Certainly, there are still some limitations in our research. Two thirds of Beijing is plain, and one 
third is mountainous area. Terrain correction is a part of remote sensing image correction under 
rugged surface, which can offset the influence of terrain to a certain extent, and is helpful to improve 
the accuracy of biomass estimation. Therefore, the research of terrain correction will be strengthened 
in future research. In the image preprocessing stage, the inaccuracy of the biomass models based on 
forest types and age classes and the lack of a consideration for the impact of environmental factors 
such as topography, soil and hydrology on biomass, which will be strengthened in the future research. 
Despite these problems, this study aimed to improve the performance of the regional forest biomass 
model and can provide a reference and support for future plans of relevant forestry departments, 
which has certain practical significance. 

5. Conclusions 
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This paper proposed an approach for establishing the forest biomass of different forest type 
models and calculating forest biomass in Beijing by combining forest inventory data with multisource 
remote sensing data. The approach can capture all spatial variability and provide a reliable method 
for estimating forest biomass at a meso-scale with a high efficiency and low cost. In addition, we used 
this model to predict the forest biomass in Beijing in 2016. Among the three studied forest types, 
coniferous forest had the highest biomass density. According to the distribution of forest biomass in 
Beijing, the northern and southwestern parts of Beijing had a high biomass, while the central and 
eastern parts have a low biomass density. At present, there is no perfect biomass estimation system 
in China. Therefore, this method can provide a basis for meso-level biomass estimation and a 
reference for the planning of relevant forestry decision-making departments. 
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