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Abstract: The urban heat island effect has posed negative impacts on urban areas with increased cooling 

energy demand followed by an altered thermal environment. While unusually high temperature in 

urban areas has been often attributed to complex urban settings, the function of urban forests has 

been considered as an effective heat mitigation strategy. To investigate the cooling effect of urban 

forests and their influence range, this study examined the spatiotemporal changes in land surface 

temperature (LST) of urban forests and surrounding areas by using Landsat imageries. LST, the size 

of the urban forest, its vegetation cover, and Normalized Difference Vegetation Index (NDVI) were 

investigated for 34 urban forests and their surrounding areas at a series of buffer areas in Seoul, 

South Korea. The mean LST of urban forests was lower than that of the overall city, and the 

threshold distance from urban forests for cooling effect was estimated to be roughly up to 300 m. 

The group of large-sized urban forests showed significantly lower mean LST than that of small-

sized urban forests. The group of urban forests with higher NDVI showed lower mean LST than 

that of urban forests with lower mean NDVI in a consistent manner. A negative linear relationship 

was found between the LST and size of urban forest (r = −0.36 to −0.58), size of vegetation cover (r = 

−0.39 to −0.61), and NDVI (r = −0.42 to −0.93). Temporal changes in NDVI were examined separately 

on a specific site, Seoul Forest, that has experienced urban forest dynamics. LST of the site decreased 

as NDVI improved by a land-use change from a barren racetrack to a city park. It was considered 

that NDVI could be a reliable factor for estimating the cooling effect of urban forest compared to the 

size of the urban forest and/or vegetation cover. 

Keywords: urban forest; urban heat island; land surface temperature (LST); thermal environment; 

remote sensing; Landsat imagery; vegetation index; landscape analysis 

 

1. Introduction 

The urban heat island (UHI) effect describes an urbanization-driven phenomenon where the 

ambient temperature is higher in built-up areas than surrounding rural areas particularly at night. It 

can result from a variety of different urban settings including anthropogenic influence, microclimate, 

and geographical and environmental factors, similar to other urban issues [1–4]. As rapid and steady 

urban growth is expected to take place in many cities over the world, there are concerns that the UHI 

effect is one of the major factors that negatively affect the current global warming trend, followed by 

the increased cooling energy consumption [5–7]. In response to the ongoing situation, there have been 

extensive efforts to identify the role of urban forests in mitigating the UHI effect. Urban forests are 

an assemblage of a variety of tree species, which can meteorologically affect the thermal environment 

in urban areas by providing a divergent outflow of cool air toward surrounding areas at surface level 
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and replacing the hotter surfaces of urban features such as buildings and roadways with green 

canopies [1,8]. Such beneficial functions expected from the presence of urban forests can become less 

effective when urban forests are replaced with or disturbed by urban features over time. Mitigation 

performances of tree species on cooling surface temperature may change during and after 

disturbance occurred by anthropogenic activities, and urban forests can be more susceptible to such 

changes due to their location particularly in urban settings. 

There have been several attempts to investigate the thermal environment of urban forests over 

a vast area. The relationships among land surface temperature (LST), vegetation abundance, and 

land-use type were investigated at the city-scale with the use of satellite imagery. For example, a 

negative relationship was found between LST and vegetation abundance estimated using a series of 

vegetation indices was presented [9]; and LST was lower in the areas containing higher area 

proportion of forests and semi-natural areas [10]. The relationships among the LST and characteristics 

of urban forests such as forest patch size and area proportion of green space at a city scale based upon 

a single satellite imagery per sample site were also examined [11,12]. A negative correlation was found 

between the urban forest park size and LST estimated by using two different satellite data [11], and a 

negative correlation was found between the percent cover of green space in the city and the LST by using 

a series of satellite data with different sensor resolutions [12]. Despite many community- and/or local-

scale studies on the cooling effect of an urban forest on its neighboring area, it is still challenging to 

understand such effects on a larger scale due to lack of meteorological data and detailed information 

on the urban forest area. Since weather stations are limited fundamentally in number and also in the 

diversity of location, primarily focusing on representative urban areas with high population [13], the data 

availability to investigate thermal environment in and/or around urban forests such as ambient 

temperature and LST generally relies on field observation conducted by individual researchers. To 

overcome this limitation, remote sensing-based approaches to performing landscape-scale temperature 

mapping have been developed. For instance, thermal band data retrieved from satellites have been 

used for estimating LST over a large area in the use of a series of different algorithms [9,10,14–20]. 

Employing the temperature mapping algorithms suggested in earlier studies, this study 

concentrated on identifying the spatiotemporal changes in LST over urban forests and their adjacent 

area in the city of Seoul, South Korea. The objectives of this study were: (i) investigating the cooling 

effect of urban forest on its surrounding area (ii), identifying vegetation characteristics of urban 

forests which could be related to the cooling effect of urban forests, and (iii) examining temporal 

changes in the thermal environment from urban forest characteristics. 

2. Materials and Methods  

2.1. Study Area  

The study area included urban forests distributed across Seoul, South Korea. Seoul is one of the 

megacities that have been experiencing rapid urbanization and is currently the most populated metropolis 

in South Korea with approximately 10 million inhabitants in 600 km2 in area. This has been followed by 

high population density and the city is a highly developed setting which has led to increasing concerns 

and efforts, such as green initiatives, to mitigate the UHI effect on the city [21,22]. The landscape of Seoul 

consists of a complex assortment of urban surfaces and features, mountains and natural forests, and green 

infrastructure including flattened and hilly urban forests, parks, and open green spaces [23,24]. A suite of 

urban forests was selected as the samples in this study, considering size and characteristics of the 

surrounding environment as well as topographical features of the urban forest. Urban forests located on 

relatively flat surfaces were counted as samples to exclude the effect of topographical setting. A group of 

urban forests connected to big mountainous forests and/or water bodies was excluded to avoid the 

influence of additional natural environments. Simultaneously, urban forests smaller than 2 ha in the 

area were also out of the scope of this study due to their insufficient characteristics as urban forest in 

general [25]. One of the urban forests, Seoul Forest, was used for reviewing its time-series changes 

because of its recent creation during our study period. Spatial information such as locations of urban 

forests and land-use of Seoul was obtained from the Korean Ministry of the Interior and Safety [26] 
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and Seoul Metropolitan Government [27]. The samples selected from the urban forests in this study 

area were delineated in Figure 1 and listed in Table 1 subsequently. 

 

Figure 1. Distribution of the Seoul’s urban forests of which sizes are larger than 2 ha in area (in shade) 

and the selected urban forests as samples (in green and red) in this study; the samples are numbered 

in the order of size from the smallest (no. 01) to the largest (no. 33); the sample named “SF” indicates 

where a separate case study is conducted. 

Table 1. Code, name, and size of the 33 selected urban forests in the study area coded in the size order 

from the smallest urban forest (UF 01) to the largest (UF 33), and the separate case study area of “SF”. 

Code Name Area (ha) Code Name Area (ha) 

UF 01 Mullae neighborhood park 2.5 UF 18 Gaepo park 9.8 

UF 02 Cheonho park 2.7 UF 19 Gyeonghuigung palace 9.8 

UF 03 Garak neighborhood park 2.8 UF 20 Sinsa neighborhood park 11.0 

UF 04 Paris park 3.0 UF 21 Seodaemun independence park 11.3 

UF 05 Dosan park 3.0 UF 22 Naksan park 15.4 

UF 06 Hak-dong park 3.0 UF 23 Hyochang park 16.1 

UF 07 Sanggye neighborhood park 3.0 UF 24 Yangjae citizen’s forest 18.3 

UF 08 Yangjae neighborhood park 3.3 UF 25 Ogeum park 21.9 

UF 09 Yangcheon park 3.4 UF 26 Yeouido park 22.6 

UF 10 Sayuksin park 4.9 UF 27 Seojeongneung 24.1 

UF 11 Cheongdam Park 5.9 UF 28 Boramae park 41.5 

UF 12 Deoksugung Palace 6.1 UF 29 Changdeokgung park 46.8 

UF 13 Yeongdeungpo Park 6.2 UF 30 Seoul children’s grand park 60.8 

UF 14 Dongmyeong neighborhood park 6.5 UF 31 Myeongil park 64.4 

UF 15 Asia neighborhood park 6.6 UF 32 North Seoul dream forest 66.5 

UF 16 Gogu dongsan 8.0 UF 33 Gil-dong eco park 70.8 

UF 17 Hongneung neighborhood park 9.6 UF SF Seoul Forest 54.8 

2.2. Urban Forest Buffer and Land Use Land Cover (LULC) 

To identify an influence range of each urban forest, the surrounding area from an individual 

sample was divided by distance [28]. At each sample, domains were designed by being given four 

distance groups from the outer boundary of each, which was called a “buffer” in this study: 0 to 100 m 

(Buffer100), 100 to 300 m (Buffer300), 300 to 500 m (Buffer500), and 500 to 1000 m (Buffer1000) (Figure 2). 
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Figure 2. Distributions of the 33 samples of urban forest and their buffers of 0 to 100 m (Buffer100), 100 

to 300 m (Buffer300), 300 to 500 m (Buffer500), and 500 to 1000 m (Buffer1000). 

To investigate the changes in thermal environment with different urban settings, nearby urban 

forests, the land use and land cover (LULC) information at each domain was quantified. The LULC 

data was obtained from the Seoul Metropolitan Government [27]. 

2.3. Data Collection and Processing 

2.3.1. Satellite-Borne Data 

LST over the whole study area was estimated with the use of satellite-borne imagery. Temporal 

changes in LST over the study area were investigated by two separate seasons of summer and winter 

from 2002 to 2019, using a series of images with its cloud cover less than 10%. Landsat 5 Thematic 

Mapper (TM) Collection 1 Level-1 data products (LT05_L1XX) and Landsat 8 Operational Land Imager 

and Thermal Infrared Sensor (OLI/TIRS) Collection 1 Level-1 data products (LC08_L1XX) in 30 m 

sensor resolution were downloaded from the USGS online data archive [29]. The acquisition times of 

Landsat 5 and 8 images were approximately 02:00 UTC (11:00 AM in Korean local time) only when 

the satellite overpasses the study area. The information on the imagery is explained in Table 2. 

Table 2. Acquisition information of the Landsat 5 and 8 images used in this study. 

No. 
Date 

(yyyymmdd) 
Season File no. Sensor 

1 20020630 Summer LT05_L1TP_116034_20020630_20161207_01_T1 Landsat 5 TM 

2 20030108 Winter LT05_L1TP_116034_20030108_20161206_01_T1 Landsat 5 TM 

3 20040603 Summer LT05_L1TP_116034_20040603_20161201_01_T1 Landsat 5 TM 

4 20050113 Winter LT05_L1TP_116034_20050113_20161127_01_T1 Landsat 5 TM 

5 20090601 Summer LT05_L1TP_116034_20090601_20161025_01_T1 Landsat 5 TM 

6 20091124 Winter LT05_L1TP_116034_20091124_20161022_01_T1 Landsat 5 TM 

7 20150704 Summer LC08_L1TP_116034_20150704_20170407_01_T1 Landsat 8 OLI/TIRS 

8 20151227 Winter LC08_L1TP_116034_20151227_20170331_01_T1 Landsat 8 OLI/TIRS 

9 20190613 Summer LC08_L1TP_116034_20190613_20190619_01_T1 Landsat 8 OLI/TIRS 

10 20191206 Winter LC08_L1TP_116034_20191206_20191217_01_T1 Landsat 8 OLI/TIRS 

2.3.2. Land Surface Temperature (LST) Modeling  

In order to retrieve the estimated LST, multispectral data retrieved at band 3 (red), 4 (near-infrared 

(NIR)), and 6 (thermal) from Landsat 5 images, and band 4 (red), 5 (near-infrared), and 10 (thermal) 

from Landsat 8 images were pre-processed according to the following steps including improved mono-

window algorithm: (i) the pixel values of thermal bands were converted to Top of Atmospheric (TOA) 
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spectral radiance [14,30,31], (ii) the TOA spectral radiance was converted to at-sensor temperature 

[9,15,31], (iii) the pixel values of visible bands (red) and near-infrared (NIR) bands were used to 

calculate Normalized Difference Vegetation Index (NDVI) (See Section 2.3.3), (iv) the proportion of 

vegetation was calculated by using the NDVI [16,17,32,33], (v) the land surface emissivity was 

computed by using NDVI Thresholds Method [16,18,30], and (vi) the emissivity-corrected LST was 

calculated [9,10,19,20,30,34]. Temperature maps modeled in this procedure were used to estimate the 

LST of each urban forest and its surrounding area, considering mean LST on each site as the 

representative value regardless of size and environmental conditions of the spot. 

2.3.3. Green Patch Analysis 

To evaluate the vegetation status of each urban forest by estimating the vegetation greenness 

based upon spatial information and remotely sensed data, a tree-covered area called a green patch in 

this study was extracted from the individual urban forest. Green patch size in the area was computed 

by using NDVI employed as the indicator of vegetation greenness, healthiness, and/or density of 

urban forest [35] with the following fundamental formula:  

NDVI = (NIR−R)/(NIR + R) (1) 

where NIR is the value of near-infrared of the surface reflectance from Landsat imagery, and R is the 

red value [35,36]. Due to two different data sets providing different settings of spectral resolution, 

the equations used for NDVI retrieval in this study were distinguished as follows:  

NDVI (Landsat 5) = (Band 4−Band 3)/(Band 4 + Band 3)  (2) 

NDVI (Landsat 8) = (Band 5−Band 4)/(Band 5 + Band 4)  (3) 

where Bands 3 and 4 in Equation (2) are retrieved from Landsat 5 dataset and Bands 4 and 5 in 

Equation (3) are from Landsat 8 dataset with no atmospheric correction due to the imageries’ single-

scene coverage having marginal differences in atmospheric information between the scenes [18,30,37]. 

The mean NDVI computed on the area each urban forest was assigned to each sample. The software 

ArcMap version 10.2 (ESRI, Redlands, California) was used for the data processing on green patch 

size and NDVI. 

2.4. Statistical Analysis 

To investigate the cooling effect of an urban forest on its surrounding area, the mean LST of the 

urban forest sample and its neighboring buffers were compared to each other. To identify the factors 

that could affect the cooling capacity of the urban forest, correlations analyses were conducted 

between size in area and NDVI of each sample and land-use type of the surrounding area. 

Comparative analyses including one-way ANOVA analysis were conducted between the temporal 

changes in mean LST of the group of large-sized urban forests and their buffers and the group of 

small-sized urban forests and their buffers. All statistical analyses were performed by using the 

software SPSS Statistics 25 (International Business Machines, Armonk, New York, NY, USA). 

3. Results 

To examine the cooling effect of an urban forest on its surrounding area, the LSTs of the 

individual samples of urban forests and their buffers were plotted, using the data from 13 June 2019 

data as an example (Figure 3). 
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Figure 3. Mean land surface temperatures (LSTs) for the individual urban forests and their Buffer100, 

Buffer300, Buffer500, and Buffer1000 (solid line) and of the entire urban forests and their buffers (dotted 

line) on 13 June 2019 in the study area, Seoul. 

The mean LSTs for most urban forests tended to get higher with the distance from themselves 

up to 300 m, and then become lower after the distance of 300 m (Figure 3). Such a trend was also 

found in time-series analysis on the changes in the annual mean LST of the suites of urban forests 

and their buffers during the study period of 2002 to 2019, yet only in summer (Figure 4).  

 

Figure 4. Mean surface temperatures (LSTs) of the selected urban forests and their Buffer100, Buffer300, 

Buffer500, and buffer1000 and standard errors in (a) summer seasons and (b) winter seasons in the study 

area, Seoul. 

Unlike the clear pattern in summer, there was no noticeable trend found in winter (Figure 4b); 

therefore, further analyses were focused on the summer season after this point. The mean LSTs 

increased sequentially up to 300 m from the urban forests and then decreased with distance after 300 

m from the urban forests (Figure 4). According to the pattern, the influence range of the cooling effect 

of the urban forest was decided to reach the Buffer300 in this study.  
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Regarding the LST changes in some urban forests shown in Figure 3, which deviated from the 

general trend, it was considered that there might be a certain property in the urban forest that is 

strongly related to the cooling capacity against its surrounding area. To identify the significant factor 

for the cooling effect, land use over buffer regions of urban forests was investigated. The size in the 

area of each land use was computed, and correlation analysis was conducted between the LST, the 

size of the urban forest and green patch, NDVI over urban forest, and area proportion of each land 

use by Buffer100 or Buffer300 showing the outcome in Table 3.  

Table 3. Pair-wise correlations between the variables from the selected urban forests and their 

Buffer100 and Buffer300. 

Dependent 

Variable 

Independent Variable 

Temp a UF b Green c NDVI d 

100 Temp e 0.86 * −0.31 * −0.34 * −0.52 * 

300 Temp f 0.74 * −0.23 * −0.26 * −0.41 * 

*: p ≤ 0.05. a: Mean land surface temperature (LST) of urban forests in this study b,c,d: Mean urban forest 

size, green patch size, and Normalized Difference Vegetation Index (NDVI) of the urban forest e,f: 

Mean LST at Buffer100 and Buffer300 of the urban forests. 

In terms of mean LST, the correlation was stronger between urban forests and their Buffer100 (r = 

0.86, p ≤ 0.05) than their Buffer300 (r = 0.74, p ≤ 0.05), which indicated that the areas in closer proximity 

to urban forests could be more advantageous for mitigating high LST. As for urban forest size, green 

patch size, and NDVI, they presented stronger correlations with the mean LST of Buffer100 than those 

of Buffer300 (Table 3). It was estimated that the influence range of the cooling effect of urban forests, 

which supported the general pattern of summer LST in Figure 4a, might not go much farther than 

300 m. Based upon the result from correlation analysis (Table 3), the outputs from investigating the 

relationships between the LST, urban forest size, and green patch size are shown in Figure 5.  

 

Figure 5. Temporal changes in summer land surface temperature (LST) through the study period for 

the selected urban forests in the series of size groups: 2 to 5 ha, 5 to 10 ha, 10 to 15 ha, 15 to 25 ha, and 

over 25 ha (a) urban forest size and (b) green patch size. 

The temporal changes in the mean LSTs of the urban forests in five different size groups were 

distinguished in Figure 5. The pattern of urban forests (Figure 5a) was also compared with the green 

patch (Figure 5b) by size in area. Overall, the mean LST was lower where the urban forest size was 

larger (Figure 5a), and a similar tendency was found between the mean LST and green patch size 

within the urban forest (Figure 5b). The LSTs tended to be lowest in both the largest urban forest size 

group and the largest green patch size group, and to be highest in both the smallest urban forest 

group and the smallest green patch group in a given time. Among the in-between sizes, however, the 

LST changed differently over time between the urban forest and green patch by size (Figures 5). 

Hence, because each urban forest has a different proportion of green patch within it, correlation 

analysis was conducted between the LST and the size of an urban forest and green patch, respectively, 
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in order to identify which variable between urban forest and green patch sizes could be more 

influential on the thermal environment (Figure 6).  

 

Figure 6. Comparison of two correlations (i) between the mean land surface temperatures (LSTs) in 

summer and urban forest size in area (UF—solid dots (•) with solid line (──) for the trend line in 

blue), and (ii) between the mean LSTs in summer and green patch size in area (GP—“×” marks with 

dashed line (- - -) for the trend line in red). 

Due to the cooling effect of an urban forest, negative linear relationships were presented between 

the mean LSTs and urban forest sizes with Pearson’s correlation r values ranging from −0.36 to −0.58, 

and green patch sizes with the r values from −0.39 to −0.61 (Figure 6). Due to the stronger correlation 

found between the LST and green patch size than urban forest size, it was considered that the cooling 

effect of an urban forest was better explained by the size of vegetation covered within urban forest 

than the urban forest size per se. To examine the cooling effect of the green patch size within an urban 

forest on its surrounding areas, urban forests were re-grouped by green patch size. The time-series 

changes in the LST of an urban forest and its buffers by green patch size are presented in Figure 7. 
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Figure 7. Comparison of spatiotemporal changes in mean land surface temperature (LST) between 

urban forest distinguished by green patch size and neighboring areas by buffer during the study 

period: one with green patch size smaller than 10 ha (small, in orange); the other with green patch 

size larger than 10 ha (large, in green). Average LST of Seoul is shown in red. 

The ‘large’ group showed significantly lower mean LSTs than the ‘small’ group (p ≤ 0.05) (Figure 

7). As for the ‘large’ group, urban forests indicated a significantly lower LST than Buffer100 (p ≤ 0.05), the 

‘small’ group of showed a similar pattern (p ≤ 0.05) (Figure 7). The mean LSTs of the ‘large’ group were 

significantly lower than those of Seoul (p ≤ 0.05), and those of the ‘small’ group were significantly lower 

than those of Seoul (p ≤ 0.05) (Figure 7). Considering the strong correlation of NDVI to the mean LST 

compared to urban forest size and green patch size (Table 3), a degree of green within the urban forest 

could be a reliable factor for estimating the cooling effect of urban forests. To investigate the relationship 

between greenness of urban forests and LST, correlation analysis was conducted in time-series between 

mean NDVI and mean LST for the individual urban forest (Figure 8). 

Negative and strong linear relationships were found between the mean LST and mean NDVI 

with the r values ranging from −0.42 to −0.93 (Figure 8). The mean LST was reduced as the mean 

NDVI increased (Figure 8). Based upon the result in Figure 7 which suggested the cooling effect of 

urban forests could be explained from the size of green patch [38–40] and the result in Figure 8 where 

the NDVI showed a fairly strong correlation with LST [41–43], the mean NDVI of the urban forests 

with different green patch sizes were compared among themselves (Figure 9). 

In both the ‘small’ and ‘large’ groups, the urban forests that showed a cooler mean LST showed 

a higher mean NDVI than those that showed a warmer mean LST during the entire study period in 

a consistent manner (Figure 9). It was considered that NDVI can be used for estimating the cooling 

capacity of urban forests.  

To investigate if NDVI could be used for tracing the cooling capacity of urban forests which have 

been and/or would be undergoing forest dynamics over time, Seoul Forest was selected for time-

series analyses. This site was once used as a racetrack and underwent overall destruction and re-

development into an urban forest from the winter of 2003 to the spring of 2005. The completion of 

the redevelopment to a new large green space in the city was in the summer of 2005. The time-series 

mean LST and NDVI of Seoul Forest (UF SF) and those of the selected urban forests (UF 01 to UF 33) 

were compared to each other (Figure 10). 

Compared to the group of the selected urban forests (UF 01 ~ UF 33), Seoul Forest showed 

relatively higher mean LST and lower mean NDVI in 2002 and 2004 (Figure 10a). There was a noticeable 

decrease in LST in Seoul Forest as the NDVI increased after 2009 (Figure 10a). Considering such a 

decrease in LST followed by improved NDVI, the cooling effect of an urban forest could be evaluated 

by NDVI. 
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Figure 8. Temporal pattern in the correlations between the mean land surface temperatures (LSTs) 

and the mean NDVI for the urban forests in Seoul, from 2002 to 2019. 

 

Figure 9. (a) Mean NDVI of the urban forests in the ’large’ group which showed higher (dotted line) 

and lower (solid line) mean land surface temperatures (LSTs) than those of the entire urban forests in 

the group, and (b) mean NDVI of the urban forests in the ‘small’ group which showed higher (dotted 

line) and lower (solid line) mean LSTs than those of the entire urban forests in the group. 
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Figure 10. (a) Mean land surface temperature (LST) and NDVI of Seoul Forest and the group of the 

selected urban forests (UF 01 to 33) from 2002 to 2019, (b) airborne imagery of Seoul Forest, (c) Landsat 

imagery (true color) of Seoul Forest and its administrative boundary (in solid yellow) in 2002 and 

2019, and (d) NDVI of Seoul Forest and its administrative boundary (in solid black). 

4. Discussion 

4.1. Cooling Effect of Urban Forest  

To identify the influence range of urban forests towards surrounding areas in terms of cooling 

effect, LSTs of individual and groups of urban forests and their neighboring buffers were investigated. 

In general, urban forests showed lower LST compared to surrounding areas, and the changes in LST 

across the buffer regions presented that the cooling effect of the selected urban forests extends beyond 

the outer edge of the urban forests. This result corresponded to the results in earlier case studies on 

the cooling effect of urban forests with regards to distance from the urban forest. The LST increased 

gradually as the distance from the urban forest increased, and the cooling effect of the urban forest 

extended up to 300 m and 350 m in the previous studies [44,45]. In the study of Skoulikaa et al. [46], 

the LST tended to increase up to 300 m distance from the urban forest and stabilize at the range from 

300 to 350 m beyond the park. Similarly, in our study, the result from investigating the cooling effect 

of urban forests indicated the point of inflection of about 300 m from the boundary of urban forest 

(Figures 3 and 4), although there were some sample sites which deviated from this general trend.  

The use of Landsat imagery for the purpose of a spatiotemporally extensive time-series research 

involves three issues on data analysis and interpretation. Firstly, as the spatial resolutions of thermal 

infrared sensors (TIR) of Landsat 5 and 8 are 120 m and 100 m, respectively [31,47], it is not fully 

sufficient yet to fit our buffer regime that has a 100 m interval. As this study should cope with three 

critical conditions of satellite imagery which are large spatial coverage, multi-bands provision 

including thermal infrared, and the availability of time-series analysis, it was a challenge to make all 

the data sets and conditions fit for this design this time. The second issue is the possibility of mixing 

spatial information between two different neighboring features, which is partially related to the first 

issue above. As based on the set-up of the spatial unit, data analysis, and interpretation are affected, 

it is important to design how to deal with the areas where a feature adjoins the other. In the case that 

a forested patch could invade a non-forest area, the cooling effect of an urban forest might be 

exaggerated or underestimated. The impact range in this study, however, would be sustained 

because it was on the basis of pattern analysis. Lastly, the availability of Landsat imagery is in general 
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limited at a certain time for our study area, and the acquisition time at 11 am local time is not the 

moment when neither the UHI effect nor the cooling effect is maximized or effectively observed. 

Fortunately, despite not using the data in the climax, it is considered identified patterns in this study 

positively meaningful. Nevertheless, future study can improve the outcome with more accuracy and 

precision by selecting different or additional available data sets and/or developing a more practical 

and effective approach.  

4.2. Factors for the Cooling Effect  

There is much research on the impact of the characteristics of land use and land cover (LULC) 

on the LST change in an urban area [48–51]. In this study, LULC which were the size of the whole 

urban forest, the size of vegetation cover within the urban forest or green patch, NDVI of the urban 

forest, and major types of land use in Buffer100 and Buffer300 were examined, but the result from the 

correlation analysis was not so significant (Table 4).  

According to the correlation analysis between the mean LST of an urban forest and the major 

land-use types within Buffer100 and Buffer300, it was found that land use did not play a critical role in 

the thermal environment (Table 4). Rather, the LST of the urban forest tended to decrease, followed by 

increased urban forest size and green patch size, and improved NDVI of urban forests in general (Table 

3; Figures 5 and 6). Based upon the stronger negative correlation that the LST showed against the green 

patch area and NDVI than urban forest size, it was considered that it could be more reliable to use 

vegetation-involved characteristics of an urban forest for estimating the cooling effect of urban forests. 

A similar suggestion was discussed in earlier studies with regards to the cooling effect with canopy 

density of vegetation distributed within urban forests. Whereas Jonsson [52] found urban forests 

containing dense vegetation showed relatively lower LST and quicker cooling rate than those 

containing sparse vegetation, Murphy et al. [53] and Ali and Patnaik [54] discovered ambient 

temperature of the urban forest tended to decrease followed by the increased proportion of vegetation 

cover and tree canopy density within the urban forest. Such relationships between the cooling effect of 

urban forests and vegetation-involved factors were well-reflected in spatiotemporal changes in LST in 

this study. The areas in close proximity to urban forests were under the influence of the cooling effect 

of the urban forests, and the cooling effect was more conductive where the land area of vegetation cover 

within the urban forest was larger (Figure 7). However, regardless of the differences in the vegetation 

coverage within urban forests, the LSTs were lower in the urban forests where NDVI was higher (Figure 

9). It was considered that the cooling effect of urban forest on surrounding areas could be more 

affected by the condition of the vegetation within urban forests such as vegetation greenness and 

healthiness.  
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Table 4. Correlation analysis between the land surface temperature (LST) of urban forest and a suite of variables in relation to vegetation cover and major land use 

near the urban forest. 

Dependent 

Variable 

Independent Variable 

UF b Green c NDVI d 100G e 100R f 100C g 100T h 300G i 300R j 300C k 300T l 

Temp a −0.44 ** −0.47 ** −0.78 ** −0.39 ** −0.30 ** 0.14 −0.22 ** −0.41 ** −0.18 * 0.03 −0.18 * 

※ Descriptions for land use and land cover (LULC)  

 Forest and open space (green patch): Forest, grassland, paddy field, field, equipped farmland, orchard, nursery garden, planted area, cemetery, golf 

course, botanical garden, ancient palace, historical remain, and small-scale sports facility. 

 Residential area: Detached house and apartment house. 

 Commercial area: Commercial area and business area. 

 Transportation facilities area: Railroad, road, and airport area. 

*: p ≤ 0.05, **: p ≤ 0.01. a: Mean land surface temperature (LST) of urban forests in this study. b,c,d: Mean urban forest size, green patch size, and NDVI of the urban 

forest. e,f,g,h: Proportion of green patch, residential area, commercial area, transportation facilities area less than 100 m from the urban forest boundary (Buffer100). i,j,k,l: 

Proportion of green patch, residential area, commercial area, transportation facilities area between 100 m and 300 m out of the urban forest boundary (Buffer300). 
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4.3. Verification Case Analysis  

Based upon this finding with regards to the condition of vegetation cover, a case study was 

conducted on Seoul Forest, which has experienced a major shift in its surface condition from a barren 

to a vegetated setting. Prior to the completion of redevelopment into the large city park in 2005, Seoul 

Forest showed higher LST than the average of the other urban forests while its NDVI was below 0.2 

which indicates that there was no vegetation or was the lowest possible density of green leaves on-site 

[35]. However, after the completion of redevelopment, the LST decreased as NDVI of Seoul Forest 

increased. Considering that NDVI is an amenable tool used for estimating vegetation greenness, 

healthiness, and/or density [36], such a tendency at the Seoul Forest could attribute to the improved 

condition of vegetation cover over time. In addition, as the LST models in this study were developed 

solely relying on remotely sensed data rather than the field measurement, further validation is 

needed for a more reliable outcome [55–57]. 

5. Conclusions 

This study investigated the cooling effect of the urban forest on its surrounding areas and the 

effective vegetation characteristics of urban forest for cooling the environment. By examining 

spatiotemporal changes in the urban thermal environment with different vegetation characteristics of 

urban forests, this study led to the conclusions as follows: (i) urban forest is cooler than surrounding 

areas, and in general cools down the LST of its surrounding areas, (ii) the size of the urban forest is 

not the prime factor for the cooling effect, but the vegetation greenness can be more related to the 

effect, and therefore (iii) NDVI could be a reliable manner to estimate the cooling capacity that urban 

forest contains. This study proceeded mainly in the use of the estimates of LST of the study area, not 

the measurements obtained on-site. Nevertheless, due to the correspondence of the findings in this 

study to previous studies, it is expected that our findings here could be useful for effectively 

developing urban forest plan and/or management.  
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