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Abstract: Data-driven decision making is the key to providing effective and efficient wildfire protec-
tion and sustainable use of natural resources. Due to the complexity of natural systems, management
decision(s) require clear justification based on substantial amounts of information that are both
accurate and precise at various spatial scales. To build information and incorporate it into decision
making, new analytical frameworks are required that incorporate innovative computational, spatial,
statistical, and machine-learning concepts with field data and expert knowledge in a manner that is
easily digestible by natural resource managers and practitioners. We prototyped such an approach
using function modeling and batch processing to describe wildfire risk and the condition and costs
associated with implementing multiple prescriptions for risk mitigation in the Blue Mountains of
Oregon, USA. Three key aspects of our approach included: (1) spatially quantifying existing fuel
conditions using field plots and Sentinel 2 remotely sensed imagery; (2) spatially defining the desired
future conditions with regards to fuel objectives; and (3) developing a cost/revenue assessment
(CRA). Each of these components resulted in spatially explicit surfaces describing fuels, treatments,
wildfire risk, costs of implementation, projected revenues associated with the removal of tree volume
and biomass, and associated estimates of model error. From those spatially explicit surfaces, practi-
tioners gain unique insights into tradeoffs among various described prescriptions and can further
weigh those tradeoffs against financial and logistical constraints. These types of datasets, procedures,
and comparisons provide managers with the information needed to identify, optimize, and justify
prescriptions across the landscape.

Keywords: collaborative forest landscape restoration program; fuels; quantitative risk assessment;
remote sensing; cost revenue assessment; estimation error; fire mitigation; batch processing

1. Introduction

Wildfires are increasing in frequency [1], cost [2,3], and impact [4]. While this increase
can be attributed to many factors such as a warming climate [5], recreation [6], increased
number of severe events [7], and various anthropogenic-related activities [8], the focus,
with regards to the impact of fire, tends to revolve around anthropogenic impacts. Most
recently, we have witnessed those consequences in terms of life, property, and social
unrest [9], which in turn has helped to focus the wildfire discussions around efficient and
effective wildfire protection [10].

Novel approaches to framing wildfire protection (e.g., potential operational delin-
eations) [11] and advancements in physically based modeling tools [12] have been critical to
improving our understanding of fire and its potential impacts. Additionally, the successful
use of those tools requires data that are accurate at fine resolution, spatially explicit, and
current. However, such data often do not exist or are extremely time intensive and costly
to develop [13,14]. Moreover, much of the information generated from various existing fire
models can be difficult to translate to other metrics related to managing natural resources.
In large part, these two limitations, fine resolution, accurate data, and the ability to translate
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information across fields, significantly reduce wildfire suppression efficiencies and our
ability to effectively protect against the impact of wildfire.

Due to the catastrophic nature of some wildfires [9], fire is typically discussed within
a negative context as it relates to the impact on natural resources. While there are many
examples that highlight the negative impact of fire, the use of fire to manage forests
is natural, efficient, has a low cost of implementation, and can be used to control fuel
loads [15], all of which can be advantageously used in a controlled and timely manner to
meet various objectives across the landscape [16,17]. Here again, the ability to effectively
and efficiently use fire is predicated on the knowledge of key metrics such as fuel loads,
moisture content, winds, temperature, and topography at high fidelity in both space
and time.

This relationship between knowing information at fine resolution and informed deci-
sion making is an ever-evolving topic that has received increased attention due to the many
advancements in technology and computer science [18]. However, the practical application
of those advancements with regards to policy and moving data-driven decision making to
the forefront of wildfire management, appears to be lagging behind other fields such as
banking, information technology, and telecommunications [19,20]. The slow adoption of
data-driven decision making can be attributed, in part, to traditional mandates and classical
tactics within the wildfire management community [21]. However, an equally likely aspect
to limited adoption of data-driven decision making stems from the lack of computational
tools developed for managers that can be used to easily and quickly automate complex
modeling techniques and create the fundamental datasets needed to translate information
into decisions.

It is in this later context that we present a case study in the Blue Mountains of Oregon,
USA. Our case study highlights new and novel computational tools and techniques used
to create fine-grained timely information that accurately describes the existing condition of
forest lands and integrates seamlessly with wildfire risk, spread, and suppression analyses
to quantify prescription costs and anticipated revenues for forest plan implementation.
Case study objectives include: (1) to quantify the existing forest condition using remotely
sensed imagery, field data, the Rocky Mountain Research Station (RMRS) Raster Utility
spatial modeling tools [22], and ensemble of generalized additive models (EGAMs) [23]; (2)
to spatially define desired future condition and prescriptions that leverage the Potential Op-
erational Delineations (PODs) framework to both harden fire control boundaries and bring
POD interiors to a more fire-resilient condition; and (3) to spatially map a cost revenue
assessment (CRA) that quantifies the existing supply chain and delivered costs [24] associ-
ated with implementing desired future conditions (Figure 1). Using these spatially explicit
datasets, the RMRS Raster Utility spatial modeling tools, batch processing, and function
modeling [25], we then further demonstrate how managers can quickly and easily prioritize
treatments based on wildfire risk, budgetary constraints, and anticipated revenues.

While the objectives of reducing potential fuel loads and restoring the surround-
ing landscape to a more fire-resilient condition are fairly straightforward, the logistics,
planning, prioritizing, and optimization of future treatments are complex and require
substantial amounts of finely detailed information to efficiently and effectively allocate
limited resources. In large part, the lack of finely detailed information pertaining to the
existing condition of the vegetation, the economics associated with various prescriptions,
and the optimal spatial allocation of treatments used to reduce wildfire risk increases the
uncertainty associated with various prescriptions and outcomes and adds to the complexity
associated with planning and implementing effective and efficient management.

This is not to imply that little is known with regards to the grass, shrub, forested
vegetative communities [26], fuels [27], fire spread [12], fire risk [28–30], and the anthro-
pogenic infrastructure within the area. Instead, it highlights that while inventory efforts
such as Forest Inventory Analysis (FIA) [31], multiparty monitoring plots [32], Topolog-
ically Integrated Geographic Encoding and Referencing (TIGER) road inventories [33],
and derived products such as those produced by the Landfire project and Wildfire Risk
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Simulation Software (FSim) exist, these resources alone do not provide the wall-to-wall in-
formation needed, at the appropriate scales, to address the finely grained spatially explicit
questions or the justification for related prescriptions designed to restore the landscape to a
fire-resilient condition.

However, coupled with finely grained remotely sensed information, such as Sentinel
2 imagery [34] and the National Elevation Dataset (NED) [35], data such as multiparty
monitoring plots and TIGER road networks and statistical and machine-learning relation-
ships can be leveraged to produce finely grained surfaces depicting the existing forest
condition [23] and the costs to move biomass from the forest to a given sawmill [24]. In
this study, we demonstrate how existing forest monitoring plots [32], TIGER line files [33],
Sentinel 2 imagery [34], and PODs derived from fire managers and common fire modeling
tools [11] were used to quantify various forest metrics and treatment costs which in turn
were used to inform, justify, and improve restoration decisions. Due to the variety of
data sources used, the methodological steps outlined, and the specialized language of the
fire, forest, geospatial, and statistical and machine-learning modeling communities, many
acronyms are presented in this study. To aid in reading, we provide a list of all acronyms
used in this study in Appendix A.
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Figure 1. Organizational diagram visually depicting the flow of analyses, various inputs, transformations, and outputs, and
the subsection within the article where descriptions of methods and results can be found.

2. Materials and Methods
2.1. Study Site & Primary Data

Our study site was located in eastern Oregon, USA and consists of both private and
public lands, covering approximately 1.2 million ha (Figure 2). The study area encompasses
1 of 23 high-priority landscapes managed by the Forest Service that receives augmented
funding from Congress to accelerate the pace and scale of restoration treatments under
the Collaborative Forest Landscape Restoration Program (CFLRP) [36]. Vegetation types
across this landscape include dry grasslands, shrubs, and pine and mixed conifer forest
types [37]. This research utilized data from a long-term multiparty monitoring program,
the Forest Vegetation and Fuels (FVF) program, led by Forest Service managers, Oregon
State University researchers, and the Blue Mountains Forest Partners, a stakeholder group
based in John Day, Oregon that convenes diverse stakeholders to help plan and implement
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restoration treatments on Forest Service lands [32]. The FVF program provides data that
informs accelerated restoration in an adaptive management framework [38].

Historically, chronic surface fire across the study area removed fine surface fuels and
promoted low-severity fire effects [39]. Fire exclusion policies have resulted in extremely
high wildfire fuel loads [40] that, along with a warming climate, drive large fast-moving
fires that threaten human communities and wildlife habitat [41–43]. Reducing forest density
to facilitate reintroduction of low-severity fire is a major goal of accelerated restoration
funded by the CFLRP [44].
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Figure 2. A map of the study site, Malheur Lumber Company in the Blue Mountains of Oregon (Facility), Sentinel 2
tiles, Sentinel 2a land cover (LC) surface [45] denoting the analysis extent of the study, monitoring plot locations, and the
boundary of the Collaborative Forest Landscape Restoration Program (CFLRP).

Primary raster datasets used in the case study included NED 30 m digital elevation
model [35] and Sentinel 2 satellite level 2a processed imagery [45] (Table 1). Sentinel 2
satellite images were acquired for a spring and fall season during 2019 and consist of a
total of eight tiles for spring and fall seasons (Figure 2, Table 1). Acquisition dates for
spring and fall tiles fell on the same day within each season, had minimal cloud cover
(<1%), and visually appeared to be at a common relative radiometric scale. As such,
level 2a bottom of atmosphere products were used without further relative or absolute
normalization. To address various grain sizes of the imagery and elevation datasets, all
raster surface metrics used as predictor variables for modeling were resampled to a 30 m
spatial resolution based on the environmental research institute’s (ESRI’s) nearest neighbor
algorithm [46]. Primary vector datasets used included 2019 TIGER/Line files acquired from
the US census bureau [33], Flowline and Waterbody line and polygon features from the
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National Hydrography Dataset (NHD) [47], FVF monitoring plots [32], POD polygons [11],
and the location of the Malheur Lumber Company (Table 1).

Table 1. A short list, description, and contribution of input datasets.

Name Description Contribution

Roads TIGER\Line road network Cost Revenue Assessment
Streams NHD Flowline Cost Revenue Assessment
Waterbodies NHD Waterbodies Cost Revenue Assessment
Plots FVF field plots Existing Condition

PODs Potential Operational Delineations Cost Revenue Assessment &
Desired Future Condition

Facilities Malheur Lumber Company Cost Revenue Assessment

CFLRP Collaborative Forest Landscape Restoration
Program Analysis extent

DEM Digital Elevation Model
Existing Condition, Cost
Revenue Assessment &
Desired Future Condition

Sentinel 2 Satellite Imagery Bands (2–8, 8b, 11, and 12) Existing Condition
TIGER = Topologically Integrated Geographic Encoding and Referencing, NHD = National Hydrograph Dataset,
FVF = Forest Vegetation and Fuels Monitoring Program, POD = Potential Operational Delineations, CFLRP =
Collaborative Forest Landscape, DEM = digital elevation model.

2.2. Existing Condition

To quantify the existing condition of the landscape within a classical forest manage-
ment perspective, at a fine spatial resolution, we employed an enhanced general additive
modeling approach (EGAM) [23] that related summarized plot data to texture metrics
derived from multitemporal Sentinel 2 level 2a processed satellite imagery [45] and to-
pographic metrics derived from the NED digital elevation model (DEM) dataset [35].
The EGAM procedure extends generalized additive modeling (GAM) [48] by incorporating
a Monte Carlo sampling scheme to create and independently test multiple GAM models
as an ensemble. The ensemble of GAMs was then aggregated to produce estimates of
response mean and standard error. As part of the EGAM procedure, predictor variables are
iteratively selected from all potential predictor variables using all sample observations [49].
After selecting predictor variables, datasets are internally partitioned into training and
test subsets to both build and independently test each model, respectively. For each re-
sponse metric, a total of 50 GAMs were created using random subsets of 80% of the data to
build the model and 20% of the data to independently test the model. To guard against
extremely poor predictive models becoming part of the EGAM, we assigned a k-factor
of 10 for regression-based models and an improvement factor of 0.02 for multinomial
models. K and improvement factors were conservatively assigned to identify extremely
poor performing models due to extreme samples. Once built, EGAMs were applied back
to predictor surface to create continuous estimates of response variable mean and standard
error. An implementation of the EGAM procedure can be found in [50].

Key response metrics derived from the monitoring plot data and used to describe the
landscape included: cover type (Pine, Fir, or Nonforest), tree basal area measured in m2 ha−1

(BAH), the number of trees ha−1 (TPH), bone dry tonnes (i.e., a metric ton or megagram) of stem
wood biomass ha−1 (SWBH), and bone dry tonnes of total above ground biomass ha−1 (AGBH).
BAH, TPH, SWBH, and AGBH were estimated for trees greater than 12.7 cm in diameter at
breast height based on commonly used equations (Table 2). Field plot data collection protocol is
described in [32], and expansion factors (EF) for plot estimates were used to bring BAH, TPH,
SWBH, and AGBH to the scale of a ha.
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Table 2. List of forest response metrics and calculations used to summarize tree data by species (i)
collected at each plot.

Metric Equation Source

DomType
Boolean logic selecting the species with the

greatest BAH. Class labels include Nonforest
(BAH = 0), Pine, and Fir.

NA

BAH EF ∗∑ πDBH2

40,000 [51]
TPH EF * tree count [51]

SWBH ∑
i

AGBH ∗ e(−0.3737+ −1.8055
DBH ) [52]

AGBH EF ∗ ∑
i

e(b1+b2∗ln (DBH)∗2.2046/2000) ∗ 2.2417 [52]

BAH = basal area ha−1 (m2), TPH = tree counts ha−1, SWBH = stem wood biomass ha−1, AGBH = above ground
biomass ha−1, EF = expansion factor for a given fixed plot radius, and b1 and b2 are species-specific coefficients
in [52].

Likewise, predictor metrics were created at approximately the same spatial resolution
as the extent of each monitoring plot and included mean and standard deviation derived
from a 3 by 3 cell neighborhood window passed through each cell, within each image band
of the Sentinel 2 imagery used in the analyses (Table 3). Sentinel 2 image bands acquired at
a spatial resolution of 20 m (i.e., 5–7, 8a, 11, and 12) were resampled to a spatial resolution of
10 m, using ESRI’s nearest neighbor algorithm, prior to performing neighborhood analyses.
After performing neighborhood analysis, all raster surfaces were resampled to a 30 m
spatial resolution to match the spatial resolution of topographic features and approximate
the spatial resolution of the monitoring plots. Topographic features created for the EGAM
included slope, northing, and easting and were created from the NED DEM and combined
with Sentinel 2 images as potential predictor variables (Table 3).

Table 3. List of raster metrics and calculation used to create predictor variable values collected at the
location of each plot [25].

Metric Description

Mean Band cell mean value within a 3 by 3 moving window
Standard Deviation Band cell standard deviation within a 3 by 3 moving window

Slope Percent slope calculated from a digital elevation model
Northing Northing calculation from azimuth
Easting Easting calculation from azimuth

FVF monitoring plots represent a collection of various systematically located field plots in
randomly selected treatments units and nearby untreated controls designed to track changes in
vegetation given different implemented treatments [32]. As such, when aggregated together
they represent a sample biased to the treatments monitored across the landscape. To address
this sampling bias and attempt to center our estimates to the population of pixels that make up
our study site while also spreading our dataset across predictor variable space, we implemented
a Generalized Random Tessellation Stratified (GRTS) [53] strategy to develop a comparison sam-
ple (CS). Our GRTS strategy uses the first two component scores of a correlation-based principal
component analysis (PCA) [25,54–56] resulting from predictor variable values found at 100,000
randomly selected locations across the study area to create a sample of observations spread and
balanced across predictor variable space [57–59]. Using the CS and the predictor variable values
found at those locations, we then performed an unsupervised K-means clustering [25,54,60]
of the observations, splitting the sample into 100 different K-mean classes. Next, we applied
the same K-means algorithm [25,54] to our monitoring sample and compared the proportion
of K-mean class counts found within the monitoring plot sample to the CS. K-mean classes
that were over- or under-represented in the monitoring plots were then identified and labeled.
Observations falling within K-mean classes labeled as over-represented in the monitoring plot
sample were then randomly selected until class count proportions matched those of the CS.
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K-mean classes identified as being under-represented were then supplemented with additional
monitoring plot locations randomly chosen across the study area, which met K-mean class
criterion, until class count proportions matched. Newly assigned plots were spatially identified
and scheduled to be collected during future field data collection campaigns.

2.3. Desired Future Condition (DFC) & Biomass Removal

The ideal or desired condition of the landscape can vary based on management
objectives. For this study we narrowed the management objectives to bring Pine dominant
forest cover types (DomType, Table 2) to BAH densities that generally resulted in reduced
flame lengths (fire-resilient condition) and spread across POD containment zones. POD
containment zones were previously delineated for the study area [11] and were prioritized
into strategic response zones with the following labels: Protect, Restore, Maintain, Exclude,
and High complexity (Appendix B). PODs serve as a natural mechanism to spatially
compartmentalize the landscape and build prescriptions designed to generally reduce
tree BAH within POD boundaries and further reduce tree densities at and around those
boundaries. Using the results of [61] that describe the impacts to flame length based on
basal area variable density thinning prescription across similar landscapes, we generated
a series of rules that spatially identify desired future BAH, for each 30 m cell within the
study area (Table 4).

Primarily Pine dominant forest cover types (DomType, Table 2) were selected for
potential treatment. However, next to POD boundaries, cells classified as Fir dominant
cover types were also treated. Generally, variable density BAH thresholds for north facing
slopes were 27 m2 ha−1, while south facing slope thresholds were 20 m2 ha−1. For areas
within 0.4 km of a POD boundary, BAH thresholds were 15 m2 ha−1 and prescriptions
were designed to harden POD boundaries and reduce the ability of fire to move across
those boundaries. All perennial stream side management zones (SMZs, 30 m from a stream)
were excluded from mechanical treatment (deferred). Likewise, areas with a slope greater
than 50% were deferred due to operational constraints. To be relatively sure that modeled
estimates of BAH were accurate, we excluded all cells that had BAH mean estimate that
were not statistically different than zero at the 95% confidence level.

Using these rules, Batch Processing [25,62], elevation, slope, the results from the EGAM
surfaces, and raster map algebra [63], we quantified how much biomass would need to be
removed from each 30 m cell to meet the desired future condition (DFC, Figure 3). Removal
values were calculated on a cell basis by subtracting the existing BAH from the DFC BAH
(∆BAH). The proportion of DFC BAH removed from the existing condition was then used to
estimate the amount of SWBH (∆SWBH) and AGBH (∆AGBH) removed from the landscape
as follows:

∆SWBH =
∆BAH
BAH

∗SWBH ∗ (1−% leakage) (1)

∆AGBH =
∆BAH
BAH

∗AGBH∗ (1−% leakage) (2)

∆SWBH and ∆AGBH were converted into sawlog (ST) and biomass (BT) tonne prod-
ucts removed from the landscape by incorporating leakage and cell area as follows:

ST = ∆SWBH ∗ (1−% leakage) ∗ 0.09 (3)

BT = ( ∆AGBH− ∆SWBH) ∗ (1−% leakage) ∗ 0.09 (4)

In Equations (3) and (4), % leakage represents the amount of woody biomass left on
the landscape due to felling and processing and the constant 0.09 was used to convert
ha−1 estimates to cell area estimates. For ST, leakage was held constant at 5%. For BT,
leakage was held constant at 50%. Cells with negative ∆SWBH and ∆AGBH that did not
meet topographic or SMZ thresholds, or that had BAH estimates that were not statistically
different than zero, were assigned ∆SWBH and ∆AGBH values of 0.
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A digital elevation model (DEM), potential operational delineations (PODs), stream side management zones, and the
dominant forest classification were used as inputs within a batch processing spatial modeling framework [25,62] to identify
cells meeting Table 4 criterion. Raster surface cells meeting specified criterion were populated with the corresponding
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Table 4. Desired basal area ha−1 (BAH) for the Pine and Fir * dominant forest cover types. Processing
order identifies the priority of desired BAH threshold, in shared areas, given the selection rule.

Description Rule Order Desired BAH

Slope >50% 1 Existing
SMZ Within 30 m 2 Existing

POD Boundary Within 0.4 km 3 15 BAH
North Aspect 270–90◦ Azimuth 4 27 BAH
South Aspect 90–270◦ Azimuth 5 20 BAH

* Desired ∆BAH for Fir cover types were only different than 0 when cells were within 0.4 km of a POD boundary.

To address estimation variation in the decision-making process for existing condition
continuous EGAMs (Section 3.1), raster surface cell standard error values were used to
create a binary mask of estimates that were statistically different than zero. Using cell mean
estimates, standard error estimates, and a z-score for two standard deviations from the
mean (1.96), we created a binary mask identifying raster cells in which the 95% confidence
interval of the mean included an estimate of zero. Cell values with estimated mean values
including zero were remapped to a value of zero while cells with mean estimates statistically
greater than zero (95% confidence interval) were given a value of one. Continuous response
variable masks were then multiplied by EGAM estimates in Sections 3.2 and 3.3 to zero out
mean estimates and increase the confidence that the existing condition did not include a
value of zero or below.

2.4. Cost Revenue Assessment (CRA)

Delivered cost was calculated using the model described in [24]. Cost in this context
referred to all costs associated with felling, processing, and moving woody biomass from
the forest to the Malheur Lumber Company conversion facility (Figure 2). The delivered
cost model in [24] uses a least-cost path algorithm [64] to transform surface distances, both
on- and off-road, into travel times based on specified harvesting systems and associated
machine and operation rates (Table 5). For our study, rubber-tire-skidder-based systems
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were only considered for the implementation of mechanically based prescriptions. Of note,
the delivered cost model can include barriers to motion for off-road travel. We used NHD
perennial streams and waterbodies and TIGER\line U.S. interstate and state highways as
barriers to motion for off-road travel.

Travel time was then converted to dollars tonne−1 (bone dry) using cost hr−1 operation
rates (Table 5). Outputs from the delivered cost model included medium- to fine-grained
raster surfaces that estimate total round-trip travel costs of off-road skidding and on-
road transportation for each cell across the landscape. Inputs for this model included a
TIGER\linear road network with rates of speed defined for each road segment (Table 6),
the NED DEM, and cost components depicting the rates of speed

Table 5. Cost components used to convert travel time into cost. Tonne mass units are presented as
bone dry.

Component Type Value Units

On-road
Machine Rate 90 USD h−1

Speed Table 6 km h−1

Payload 25.40 tonne

Off-road
Machine Rate 80 USD h−1

Speed 4.83 km h−1

Payload 3.63 tonne

Operations Harvesting & Processing 65 USD tonne−1

Other Administrative 0 USD tonne−1

For moving biomass from the site of harvest to the roadside, hourly rates for machines
use an average payload (tonnes trip−1) for different types of equipment, fixed operations,
administration cost (as a dollar tonne−1 constant), and a vector layer of off-road barriers.

Table 6. Queries used to allocate the average speed to each road segment and its derived raster cells,
considering the Master Address File (MAF) TIGER\Line Feature Class Code (MTFCC) 1.

Query Speed
km h−1

MTFCC = “S1400”: Local Road, Rural Road, City Street 88
MTFCC = “S1200”: Secondary road 56
MTFCC = “S1100”: Primary road 40
NOT (MTFCC = “S1400” OR MTFCC = “S1200” OR MTFCC = “S1100”) 40

1 MTFCC codes and definitions can be found at: https://www.census.gov/geo/reference/mtfcc.html (accessed
on 12 May 2021).

Operation costs of USD 65 tonne−1 included felling (USD 15) and processing (USD 50),
but not skidding, which is included in off-road travel cost accounting. The administrative
costs were assumed to be zero to provide a normalized comparison across all forest
ownerships. Together, on-road, off-road, and operation costs constituted the optimal
potential total cost (OPTC) of moving biomass, measured in dollars tonne−1, to Malheur
Lumber Company in a spatially explicit manner, at the spatial resolution of 30 m2 across
the study site. The estimated actual cost of prescription implementation (ACPI) was then
calculated by multiplying OPTC by the amount of biomass removed at each cell, where
0.09 converts ∆AGBH estimates to cell area estimates as follows:

ACPI = ∆AGBH ∗ 0.09 ∗ OPTC (5)

Like ACPI, estimated revenue is dependent on ∆AGBH. However, estimated revenue
(ER) also depends on gate prices for various products removed from forests as follows:

ERsaw = ST ∗ Gate Pricesaw (6)

https://www.census.gov/geo/reference/mtfcc.html
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ERbiomass = BT ∗ Gate Pricebiomass (7)

We fixed gate prices for sawlogs at USD 55 green tonne−1 and USD 28 green tonne−1

for biomass products [65]. Assuming an average green moisture content of 94% [66],
dry tonne gate price equivalents were estimated at USD 106.70 tonne−1 for sawlogs and
USD 54.32 tonne−1 for biomass products. Using map algebra, function modeling, and
Equations (6) and (7), we calculated saw and biomass ER for each 30 m cell and created
spatially explicit raster surfaces. Adding saw and biomass ERs together, we calculated total
ER. Finally, we subtracted ACPI from total ER for overlapping raster cells to create a raster
surface of estimated anticipated income (EAI) of implementing a prescription as follows:

EAI = (ERsaw + ERbiomass)−ACPI (8)

3. Results
3.1. Quantifying Existing Condition

Our GRTS selection strategy selected 429 plots balanced and spread across the first
two principal components of transformed predictor variable space. The first two principal
components of our GRTS selection strategy accounted for 45% of the correlation within data.
Of the 429 selected plots, 301 plots had been visited and were used to calibrate EGAMs. In
total, 128 plots were identified for future field data collection campaigns. Ideally, EGAMs
would be created after collecting the additional 128 plots. However, given the spread and
approximate balance of this sample (Figure 4), we chose to use these plots to calibrate our
EGAMs. From this sample, we expect global model bias, due to sampling, to be minimal
and that interpolated model estimates across predictor variable space will approximate
the relationship occurring within unsampled K-mean classes. Of importance with regards
to estimation error in under-sampled regions of predictor variable space is the variability
across GAMs within our EGAMs. To spatially identify those regions of predictor variable
space we projected K-mean class into coordinate space and provided that binary map as a
band within each of the raster surfaces.
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Using our sample of 301 observations, we created 50 GAMs from random subsets of
the data and combined them together as an ensemble for each of our response variables.
Statistically selected predictor variables identified in the selection process are presented
in Table 7. On average the selection process reduced the potential number of predictor
variables from 44 to 8.4 for each EGAM. The mean and standard deviation of estimates
from all GAMs within each EGAM were used to populate raster surface band cell mean
and standard error values (Figures 5 and 6). EGAM fit statistics are presented in Table 7
and Figure 7 and on average explain 55.99% of the variation in the data for continuous
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responses and had an average map accuracy of 83.38% for the dominant forest classification.
Of particular interest in Figure 7 is the overall strength of the relationship between observed
and predicted values and the nonconstant variation in estimated values.

Forests 2021, 12, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 4. Distribution of field plots in predictor variables space. The proportion of observations within each K-mean class 
is displayed for the spatially balanced (blue) and field samples (orange) in the left graphic while the mean (dashed lines) 
and location of field plots (grey points) in projected principal component space are displayed in the right graphic. 

Using our sample of 301 observations, we created 50 GAMs from random subsets of 
the data and combined them together as an ensemble for each of our response variables. 
Statistically selected predictor variables identified in the selection process are presented 
in Table 7. On average the selection process reduced the potential number of predictor 
variables from 44 to 8.4 for each EGAM. The mean and standard deviation of estimates 
from all GAMs within each EGAM were used to populate raster surface band cell mean 
and standard error values (Figures 5 and 6). EGAM fit statistics are presented in Table 7 
and Figure 7 and on average explain 55.99% of the variation in the data for continuous 
responses and had an average map accuracy of 83.38% for the dominant forest classifica-
tion. Of particular interest in Figure 7 is the overall strength of the relationship between 
observed and predicted values and the nonconstant variation in estimated values. 

 
Figure 5. Zoomed-in region (red box) of raster surface depicting the spatial distribution of DomType class probability, 
standard errors, and the most likely class (MLC). The MLC cell value was determined by the largest cell probability for a 
given class. The range of color ramp values for class probabilities and standard errors is displayed within the parentheses 
of each graphic label. A True Color sentinel 2 image composite of the zoomed-in area is provided for reference and 
comparison. 
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Figure 6. Raster surfaces depicting the spatial distribution of basal area ha−1 BAH, tees ha−1 (TPH), stem wood biomass
ha−1 (SWBH), and above ground biomass ha−1 (AGBH) cell mean and standard error estimates for the same region
identified in Figure 5. Low to high values for each graphic color ramp are displayed within the parentheses in the top left
corner of each graphic.
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Table 7. Ensemble of generalized additive models (EGAM) predictor variables and fit statistics using
all observations. Root mean squared error and overall map accuracy are reported for continuous (a)
and categorical (b) response variables.

EGAM Source Predictors Fit

BAH (a)
Sentinel Mean summer bands—7, 11, and 12

fall bands—6, 8b, and 12 8.36
DEM elevation and slope

TPH (a)
Sentinel Mean summer band—12

fall bands—2, 11, and 12
176.06Sentinel Standard Deviation summer band—5

DEM elevation and easting

SWBH (a)
Sentinel Mean summer band—7, 11, and 12

fall bands—6, 8b, 12
32.44Sentinel Standard Deviation fall band—6

DEM elevation and slope

AGBH (a)
Sentinel Mean summer band—7, 11, and 12

fall bands—6, 8b, 12
48.81Sentinel Standard Deviation fall band—6

DEM elevation and slope

DomType (b)
Sentinel Mean

summer band—4, 6, 7, 8, 11,
and 12
fall bands—2 83.38%

Sentinel Standard Deviation fall band—2
DEM elevationForests 2021, 12, x FOR PEER REVIEW 13 of 24 

 

 

 
Figure 7. Accuracy assessment with user, producer, and overall accuracies, chi-squared (X2) statistics, and Cohen’s Kappa 
statistics for the most likely DomType class (left) and general trends between observed and predicted values for basal 
area ha−1 (BAH), trees ha−1 (TPA), stem woody biomass ha−1 (SWBH), and above ground biomass ha−1 (AGBH). For BAH, 
TPH, SWBH, and AGBH graphics, a loess trend line (black dashed) and corresponding 99% confidence region (grey re-
gion) around that line were overlaid with a linear 1 to 1 trend line (red line) to visually aid in evaluating model fit. Ad-
ditionally, the mean (�̅�) and standard deviation (σ) of observed values and Pearson’s correlation coefficient (r) comparing 
observed and predicted values are reported in the bottom right corner of BAH, TPH, SWBH, and AGBH graphics. 

3.2. Desired Future Condition & Biomass Removals 
Using the Pine dominant forest type class, the DEM, stream networks, POD bound-

aries, batch processing, function modeling, and the rules described in Table 4, we were 
able to create a raster surface that spatially defined the DFC of a landscape in terms of 
BAH (Figure 3). Subtracting DFC from the existing BAH raster surfaces, we spatially 
quantified the reduction in BAH needed to meet DFC. Applying the proportion change in 
BAH to existing SWBH and AGBH surfaces and incorporating leakage (Equations (3) and 
(4)), we created two raster surfaces depicting the ST and BT removed from the landscape 
to meet DFC (Figure 8). 

Figure 7. Accuracy assessment with user, producer, and overall accuracies, chi-squared (X2) statistics, and Cohen’s Kappa
statistics for the most likely DomType class (left) and general trends between observed and predicted values for basal area
ha−1 (BAH), trees ha−1 (TPA), stem woody biomass ha−1 (SWBH), and above ground biomass ha−1 (AGBH). For BAH,
TPH, SWBH, and AGBH graphics, a loess trend line (black dashed) and corresponding 99% confidence region (grey region)
around that line were overlaid with a linear 1 to 1 trend line (red line) to visually aid in evaluating model fit. Additionally,
the mean (x) and standard deviation (σ) of observed values and Pearson’s correlation coefficient (r) comparing observed
and predicted values are reported in the bottom right corner of BAH, TPH, SWBH, and AGBH graphics.
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3.2. Desired Future Condition & Biomass Removals

Using the Pine dominant forest type class, the DEM, stream networks, POD bound-
aries, batch processing, function modeling, and the rules described in Table 4, we were able
to create a raster surface that spatially defined the DFC of a landscape in terms of BAH
(Figure 3). Subtracting DFC from the existing BAH raster surfaces, we spatially quantified
the reduction in BAH needed to meet DFC. Applying the proportion change in BAH to
existing SWBH and AGBH surfaces and incorporating leakage (Equations (3) and (4)), we
created two raster surfaces depicting the ST and BT removed from the landscape to meet
DFC (Figure 8).
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basal area ha−1 reductions required to meet desired future condition thresholds. The range of cell values within each
graphic are displayed within graphic title parentheses. Orange collaborative forest landscape restoration program polygons
are displayed for reference in the various graphics.

Approximately 527,000 ha across the study area had negative ∆BAH. Those cells
represented areas in which the existing BAH was less than the DFC and as such were
remapped to zero tonnes removed. Conversely, there were approximately 236,000 ha
identified across the study area as having more BAH than desired. In many locations
(approximately 86,000 ha) ∆BAH was relatively small (<4 m2 ha−1), suggesting minimal
deviation from the desired future condition that may be of less importance to treat than
cells with larger ∆BAH.

To meet DFC, approximately 6.5 and 0.9 million tonnes of sawlog and biomass prod-
ucts, respectively, will need to be removed from the landscape. Interestingly, while POD
hardening zones account for only 22.66% of the total study area, the majority of tonnes re-
moved to meet DFC came from those zones (approximately 54%). Fortunately, many of the
POD boundaries were drawn along road networks, potentially reducing implementation
costs associated with meeting wildfire objectives.
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3.3. Cost Revenue Assessment

We spatially quantified OPTC and travel time for on- and off-road costs (Figure 9).
Using batch processing, function modeling, machine rates, and payloads (Table 5), and the
outputs from the delivered cost tool, we transformed travel times into dollars tonne−1 raster
surfaces that can be easily manipulated within batch processing and function modeling.
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Figure 9. Geospatial processes and outputs from the delivered optimum potential total cost (OPTC) model [24]. Raster
cell values depicting travel times and delivered costs spatially quantify the potential time and corresponding cost using
machine rates and payloads (Table 5) to move woody biomass from a given location on the landscape to the Malheur
Lumber Company (yellow point within each graphic). Linear road network (black lines) is displayed for reference in the
various graphics.

Approximately, 77% of the study area had a delivered OPTC between USD 60 and
USD 70 tonne−1. Only 6% of the landscape had a delivered OPTC less than USD 60 tonne−1

and 17% of the study area had a delivered OPTC more than USD 70 tonne−1. Moreover,
there were no locations across our study area that had an estimated delivered OPTC less
than USD 54.32, suggesting biomass products alone will produce negative profits.

While the delivered OPTC identified costs on a tonne basis, the ACPI was dependent
on the amount of total biomass tonne removed. On a cell basis we used map algebra and
Equation (6) to spatially quantify ACPI (Figure 10). To meet DFC across the landscape
would cost approximately USD 648 million. However, only 52% of that total cost was
attributed to hardening POD boundaries. Moreover, 94% of the total ACPI area occurred
within cells having an OPTC less than USD 70 tonne−1, suggesting that restoring the
landscape to DFCs would result in positive profits if a component of the prescription
produced sawlog products (i.e., sawlog gate prices will offset delivered costs).

Like ACPI, ER for sawlog and biomass products was dependent on the amount of total
biomass tonne removed from the landscape. Unlike ACPI, though, leakage and product
type were factored into the estimated amount of ST and BT delivered to Malheur Lumber
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Company (Equations (3) and (4)). On a cell basis, we accurately estimated ERsaw and
ERbiomass using Equations (6) and (7) (Figure 10). Profit margins were then calculated and
spatially depicted by subtracting ACPI from total ER (ERsaw + ERbiomass) on a cell basis
(Figure 10).
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Figure 10. An illustration of anticipated cost of implementation (ACPI), total expected revenue (ER), and profit margins
(Profit) raster surfaces. The range of dollar values for each graphic is displayed within the parentheses of the graphic
title. Malheur Lumber Company (yellow point), linear road network (black lines), and the collaborative forest landscape
restoration program polygons (orange polygons) are displayed for reference in the various graphics. The red bounding box
within the top graphics and around the bottom graphic provides a zoomed-in representation of the profit margins.

Approximately 99% of the area identified as needing treatment had a positive profit
margin, suggesting that most of the landscape that departed from DFC had enough sawlog
products to compensate for delivered costs. If all prescriptions were implemented across
the landscape, we estimated a net positive profit of USD 121 million with an average
positive return of USD 513 ha−1. However, more than 80% of all Profit cell values had
dollar ha−1 estimates less than USD 513, suggesting marginal returns for most operational
units. Relatively speaking, hardening POD boundaries returned larger net profits than
prescriptions designed to increase fire resilience (Figure 11).
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4. Discussion

Optimal decision making requires detailed and accurate information. We present a
methodology that uses function modeling [25], batch processing [62], field plot data, and
readily available information to create spatially explicit metrics used within the field of
forestry to manage forests and fuels. Our approach builds on the outputs of common
fire risk and simulation models by converting field plots and passively acquired remotely
sensed data into raster surfaces that contain values of commonly used and well-known
forest management metrics, spatially tied to fire risk and spread through PODs. Addi-
tionally, using a spatially explicit modeling approach we quantified the cost of delivering
wood products to a specified processing location [24]. Moreover, using batch processing
and map algebra, we transformed prescriptions designed to increase fire resilience and
harden POD permitters into spatially explicit representations of DFC and further used
those DFCs to quantify tree biomass removal. Finally, we combined each of those products
at the cell level (spatial resolution of 30 m) to spatially identify and quantify various aspects
of implementing treatments to meet DFCs.

Our analyses provide unique insights into both scale and application. Of note, the
process of linking field plot data with Sentinel 2 multitemporal imagery using EGAMs
allowed us to quickly and easily create 30 m raster surfaces depicting various mean metrics
and estimates of standard error that can be used to manage forests at various spatial
scales. These mean metrics and estimates of mean error provide practitioners with accurate,
spatially explicit information pertaining to the forested condition at a spatial resolution
that can be easily evaluated based on known forest practices and can be used to inform
decision making. In our study, we demonstrated how these estimates (Section 3.1) coupled
with DFCs (Section 3.2) can be used to quantify the amount of biomass removed from
the landscape to both harden POD boundaries and restore forests to a more fire-resilient
condition. Moreover, we demonstrated how estimates of mean error can be used to focus
our restoration efforts on locations that have mean BAH estimates different than zero (95%
confidence limits).

While our EGAMs accounted for much of the variation in the data (Section 3.1),
improvements in model estimation error can be made by collecting additional field plots
within under-represented portions of predictor variable space and portions of predictor
variable space with large standard error estimates. Moreover, mean and standard error
estimates can further be used with additional sampling and design-based estimators
(e.g., ratio estimation [67]) to improve mean and total basal area, tree count, and biomass
estimates for subregions (stands) within the study area. However, given the spread and
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balance of our sample and the fit of our existing condition models, we feel confident that
our estimates can be used to help inform and prioritize prescriptions across the study area
to reduce wildfire risk and increase resilience to wildfire.

Coupled with known information related to variable density treatments [61], fire
severity [68], wildfire risk [29,30], and the conceptual idea behind PODs [11], these types
of spatially explicit raster surfaces provide information that can be easily manipulated
within a geographic information system (GIS) to prioritize multiple objectives and compare
and contrast alternatives [69]. For example, with these types of datasets we can prioritize
and summarize biomass removal and retention, cost and revenue of implementation, and
profit using POD boundaries. We can further use these datasets to develop and summarize
quality risk assessment metrics and a series of spatial filters that take into consideration
contiguous areas with enough biomass to justify operations (Figure 12). Moreover, we can
compare coarse wildfire restoration strategies such as Maintain, Protect, and Restore, across
strategies and among PODs at fine spatial scales. Additionally, using spatial adjacency
rules and estimates of standard errors, we can filter and define operational treatment units
that are at least 5 ha in size and that have at least three tonne of biomass on a cell basis (95%
confidence interval threshold). Finally, treatment unit geometry can be used to summarize
removals, costs, revenues, and profits at the treatment unit level.
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Figure 12. Example of using potential operational delineations (PODs) to perform a coarse scale prioritization (Maintain,
Protect, Restore) combined with fine scale thresholding (Criterion) to identify contiguous regions that have cell removal
values statistically greater than three tonne (95% confidence level threshold) and that are at least five ha in size. These
regions, within and along a given POD, represent operational treatment units for which tonne, cost, revenue, and profit can
be quickly summarized and reported. Restoration PODs A and B in the right graphic identify two units with restoration
foci that emphasize within-unit concerns (A) versus controlling spread into neighboring protected regions (B).
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Although Section 3.2 provides estimates of woody biomass removed to meet DFC,
implementation costs often constrain where and the types of treatments that can occur.
Our CRA estimates spatially quantify those costs and revenues for a snapshot in time
given described machine rates and gate prices. As such, these estimates are dependent
on the systems specified and can vary by operation. However, using batch processing,
function modeling, and the delivered cost model, machine rates and gate prices can be
adjusted quickly and easily. Additionally, these rates can be spatially allocated as raster
surfaces within the delivered cost model to specify unique cost structures given various
conditions [69]. Moreover, because CRA surfaces are spatially defined, additional costs
not defined in our analyses can easily be incorporated into the CRA analysis on a ha−1,
tonne−1, and spatially explicit basis. For example, both the cost of prescribed burning and
road maintenance were not defined within our CRA. These costs can easily be added to
the overall cost associated with implementation in a spatially explicit manner using batch
processing and map algebra. Likewise, gate prices can vary from one sawmill to another
and can be modified easily within the batch processing modeling framework. Because
estimates of removed biomass are spatially identified, gate prices can also be allocated in a
spatially explicit manner, providing flexibility in quantifying various prescriptions.

While changes to machine rates and gate prices and additional costs will change the
overall cost, revenue, and profit surfaces, the spatial nature of these estimates provides
flexibility in determining actual treatment costs and revenues. Moreover, these surfaces
can be used to identify areas with limited access and financially justify treatments.

Generally, we recommend using the CRA surfaces to quantify the costs and revenue
of prescriptions designed to meet forest objectives. However, cost and revenue surfaces
could also be used for treatment optimization. Regardless of how they are used, it is
important to recognize that machine rates and gate prices vary based on markets, and as
such, the variability of markets, machine rates, and assumed prices should be factored into
the planning and decision-making process.

In our CRA, the cost of felling and processing non-sawlog biomass was greater than
gate prices. This suggests that to have positive net profits, sawlog biomass must be a
component of the treatment. All prescriptions in our study included sawlog biomass
products, so net positive profits were realized for approximately 99% of the landscape
identified with more BAH than DFC thresholds. However, this does not mean that all cells
with a net positive profit are practical to treat. Further thresholding, such as is depicted
in Figure 12, may need to be employed to help identify operational treatment units that
are practical.

Likewise, delivered cost for our CRA represents an optimal cost. That is, landings to
which biomass are skidded are identified based on the least cost path to each individual
30 m road cell. Thus, the true cost associated with skidding material to a given landing
will be more for all cells that are not defined as the least cost path. If landing locations
are known prior to performing the delivered cost model, they can be incorporated into
the analyses.

Finally, our data-driven approach to identifying, describing, and quantifying existing
conditions, desired future conditions, and costs and revenues in a finely grained, spatially
explicit manner across broad landscapes necessitates the use of spatial modeling, remote
sensing, machine learning, and statistics. In many instances, this dependency will require
translating GIS analyses into actionable information that practitioners can use to inform
decision making [70]. While we recognize this to be a substantial hurdle to adoption, we
argue that a larger emphasis must be placed on building those skillsets and integrating
them within natural resource management.

5. Conclusions

We present an accurate, finely grained, spatially explicit approach to quantifying
forest characteristics, desired future conditions, and the expected cost and revenues of
implementing prescriptions designed to reduce wildfire risk and increase forest resistance
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to wildfire. Our approach leverages field plots, spatial, statistical, and machine-learning
tools, and readily available datasets such as remotely sensed imagery, existing road and
water networks, and elevation models to accurately quantify various aspects of restoring the
forest landscape to a more fire-resilient condition. These spatially explicit datasets provide
the types of information needed to meaningfully inform data-driven decision making.
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Appendix A. List of Acronyms
BAH = Basal Area Per Hectare
CRA = Cost Revenue Analysis
POD = Potential Operational Delineations
TPH = Trees Per Hectare
AGBH = Above Ground Biomass Per Hectare (tonne)
SWBH = Sawlog Biomass Per Hectare (tonne)
EF = Expansion Factor
m = meters
x = mean
σ = standard deviation
ha = hectares
LC = Land Cover
CFLRP = Collaborative Forest Landscape Restoration Program
NED = National Elevation Dataset
DEM = Digital Elevation Model
TIGER = Topologically Integrated Geographic Encoding and Referencing
FVF = Forest Vegetation and Fuels
ESRI = Environmental Systems Research Institute
NHD = National Hydrography Dataset
EGAM = ensemble generalized additive models
GAM = generalized additive models
GRTS = generalized random tessellations stratification
CS = comparative surface
PCA = principal component analysis
SMZ = stream side management zone
DFC = desired future condition
ST = Sawlog tonne
BT = Biomass tonne
OPTC = optimal potential total cost
ACPI = actual cost of prescription implementation
ER = expected revenue
EAI = estimated anticipated income
MLC = Most likely Class
r = Person’s correlation coefficient
USDA = United States Department of Agriculture
SDI = Suppression Difficulty Index
PCL = Potential Control Locations
GIS = Geographic Information System
HVRAs = High Value Resources and assets
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Appendix B. Strategic Response Zones

Protect: High value resources and assets (HVRAs) are at high risk of loss from wildfire.
Mechanical fuel treatments would be used to produce more effective fire response and/or
the retention of desired conditions for natural resources. Prescribed burning would be
used to maintain previously treated areas [71].

Restore: HVRAs are at moderate risk of loss from wildfire. Wildfire should be used to
increase resilience and provide benefits to the forested ecosystem when conditions allow.
Strategically located mechanical treatments and prescribed burning, where feasible, may
support the reintroduction of wildfire to achieve desired conditions [71].

Maintain: HVRAs are at low risk of loss from wildfire and many resources may benefit
from fire. Due to low risk, wildfires are expected to be used to maintain fire resilience
and provide ecosystem benefits when conditions allow. Mechanical treatments and/or
prescribed burning are used to complement wildfire to achieve desired conditions [71].

Exclude: HVRAs are at high risk of loss from wildfire. Historically, fires that ignited here
did not spread. Current conditions, due to invasive grasses, have created an extremely
vulnerable system where fire causes ecosystem conversion. Primary protection objective is
to minimize both suppression and fire damage to the ecosystem [71].

High complexity: HVRAs are at high risk of loss from wildfire, depending on ignition
location and weather conditions. Steep terrain, lack of roads or trails, and dense understory
make mechanical fuel treatments and prescribed burning difficult. Fire-sensitive HVRAs
are intermixed with fire-tolerant HVRAs, often with mixed land ownership. Mitigation
action and clear communication with POD stakeholders will be necessary to address
current fire hazards. This should be a transitional classification that moves the area of
concern into a different strategic response once mitigation actions are taken [71].
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