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Abstract: Biochar has been shown to improve soil quality and crop yields. Furthermore, thanks to
its high carbon content (C) and stable chemical structure, biochar can sequester C in the soil for a
long time, mitigating climate change. However, the variability in published biochar stability in the
soil makes verifying this trait under different environmental and agricultural conditions necessary.
Moreover, most of the published literature refers to short-term incubation experiments, which are
considered to not adequately represent long-term dynamics under field conditions. This article
reports the results of a field experiment carried out in a vineyard near Merano, northern Italy, where
the stability of woodchips biochar in soil, its impact on the total soil C stocks as well as on the original
soil organic C (priming effect) were studied over two years. Vineyard soil (Dystric Eutrochrept) was
amended with biochar (25 and 50 t ha−1) alone or together with compost (45 t ha−1) and compared
with unamended control soil. Two methods assessed the stability of biochar in soil: the isotopic
mass balance approach and the quantification of Benzene PolyCarboxylic Acids (BPCAs), molecular
markers of biochar. The amount of C in the soil organic matter (SOM-C) was determined in the
amended plots by subtracting the amount of biochar-C from the total soil organic C stock, and the
occurrence of priming effect was verified by comparing SOM-C values at the beginning and at the
end of the experiment. Results did not show any significant biochar degradation for both application
rates, but results were characterized by a high variation. The application of 50 t ha−1 of biochar
significantly increased soil C stock while no effect of biochar on the degradation of SOM-C was
observed. Results were confirmed in the case of biochar application together with compost. It can be
concluded that the use of woodchips biochar as a soil amendment can increase soil C content in the
medium term. However, further analyses are recommended to evaluate the impact of biochar on
climate change mitigation in the long term.
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1. Introduction

Biochar has been studied by the scientific community for the past 20 years, owing to
its potential use as a soil conditioner in agriculture [1–3]). If added to the soil, biochar can
improve its chemical [4], physical [5], and biological [6,7] characteristics, contributing to
increasing agricultural yields [1,8] and reducing nutrient losses from soil.
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Another positive impact of biochar is its potential contribution to increasing the carbon
(C) sequestration capacity of the soil [2,9–11]. In fact, given its aromatic chemical structure,
biochar is difficult to degrade by soil microorganisms. However, biochar stability is affected
by several factors such as the feedstock used, the production conditions, the environmental
framework and the study design [12]. For these reasons, previous studies on biochar
stability have provided conflicting results [13]. Furthermore, most of these studies have
been performed in the laboratory, which are not representative of field conditions [14], and
field studies often have a limited duration, even though it is well-known that the estimation
of biochar stability is affected by experimental duration [11].

Furthermore, studies on perennial tree crops are still scarce [6,15] mainly because of
the long time needed to observe relevant effects in plants with a largely developed root
system and the difficulties in performing trials in controlled conditions [16]. However,
biochar has been shown to have potential advantages in terms of increased productivity
and an improved plant–water relation in vineyards [16,17].

Another key factor affecting biochar-C sequestration potential is its interaction with
soil organic matter (SOM) [18]. Biochar can stimulate SOM degradation (positive priming
effect), partially offsetting its C sequestration potential, or protect SOM from degradation
(negative priming effect), further increasing soil C sequestration after biochar applica-
tion [19,20]. Also, in this case, several factors such as the experimental duration can affect
the direction and the extent of the priming effect [21,22]. However, most of the studies on
the priming effect of biochar are short-term incubations, and the extrapolation of results
to predict long-term effects may be critical [22]. For all these reasons, there is the need to
evaluate biochar stability and its effect on SOM in field experiments over a sufficient time,
to evaluate the real efficacy of the biochar option to sequester soil C in the long term.

Co-application of compost and biochar can have several advantages in terms of plant
nutrition, soil biological activity, and degradation of toxic substances that could be con-
tained in biochar [15,23,24]. Composting is the biological decomposition and stabilization
of organic matter derived from plants, animals, or humans through the action of diverse
microorganisms under aerobic conditions. However, as compost has only a moderate C
sequestration potential, it is important to verify if the association with biochar could impact
the soil C sequestration potential and/or priming effect.

This paper reports the results of a two-year field experiment carried out in a vineyard,
in temperate climatic conditions, where biochar was applied alone or in combination
with compost. This work aims to evaluate the impact of biochar on the climate change
mitigation potential of agricultural soils, and more specifically to answer the following
scientific questions:

1. How stable is woodchips biochar if it is applied to agricultural soils in temperate
climatic conditions?

2. Can woodchips biochar increase the C stock of agricultural soils in temperate climatic
conditions?

3. Does compost application together with biochar affect the stability and C sequestra-
tion potential of biochar?

To answer these questions, biochar decay rate and the effect of biochar, alone or in
association with compost, on the soil C stock were estimated with two analytical methods:
an isotopic mass balance approach and the assessment of Benzene PolyCarboxylic Acids
(BPCAs), specific molecular markers for stable condensed aromatic C structures [25,26].

2. Material and Methods
2.1. Experimental Site and Treatments Application

The present work is the result of a field experiment carried out in a mature vineyard (cv.
Müller Thurgau, planted in 2007 and grafted onto SO4) located near Merano (BZ, Northern
Italy, 46◦40′2.374” N, 11◦11′43.476” E), at an altitude of about 600 m a.s.l., managed by the
Laimburg Research Center. The average annual temperature of the area, during the 2 years
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of experiment was 10.8 ◦C and the average annual rainfall 896.9 mm (Fragsburg weather
station, Merano).

The soil is sandy-loam, according to the USDA classification, with a content of 64%
sand, 24% silt, and 7% clay. It is a shallow, skeleton-rich, Dystric Eutrochrept (USDA,
1999). The soil organic C content is 24 ± 8 g kg−1, the pH is 6.4 ± 0.2, the bulk density
1.1 ± 0.1 g cm−3 and the isotopic signature (δ13C) − 27.78 ± 0.79‰. The field has a 10%
slope. During the experimental period, no fertilization was applied, and vines were
irrigated through drip irrigation only in the first year. More specifically, in 2017 vines were
irrigated 8 times between April and July with, on average, 18.7 L of water/vine each time.

On 2 May 2017, biochar was applied to the soil at two rates: 25 and 50 t ha−1, alone
or in combination with 45 t ha−1 of compost. A total of 6 treatments were compared:
non-amended control soil (N); 25 t ha−1 of biochar (B1); 50 t ha−1 of biochar (B2); 45 t ha−1

of compost (C); 25 t ha−1 of biochar + 45 t ha−1 of compost (B1C); 50 t ha−1 of biochar
+ 45 t ha−1 of compost (B2C). Soil amendments were incorporated into the top 15 cm
of soil through superficial soil tillage. The soil was also tilled in the control plots to
guarantee comparable conditions in all treatments. Four replicates were prepared for each
experimental treatment. The resulting 24 experimental plots were distributed according to
a randomized blocks design. Each plot had an area of approximately 80 m2 and hosted
20 vine plants, distributed in two parallel rows. In each plot, soil amendments were
distributed in the inter-row between the two plant rows, and half of the two adjacent
inter-rows.

The biochar used in the experiment consisted of small fragments (<5 mm) and was
produced from coniferous woodchips at a temperature of about 500 ◦C through fast
pyrolysis by Record Immobiliare Srl (Lunano, PU, Itlay). A detailed description of the
physicochemical characteristics of biochar is reported in Table 1. Before application to the
soil, biochar was moistened to reach a water content of 20% (w/w).

Table 1. Physicochemical characteristics of the biochar used in the present work.

Property Unit Value Uncertainty

pH - 12.4 ±0.5
Bulk density g cm−3 0.165 -

Sieve fraction < 5 mm % 100 ±10
Sieve fraction < 2 mm % 97 ±10

Sieve fraction < 0.5 mm % 70 ±7
Max. water retention % w/w 86 ±7

Ash (550 ◦C) % 31 ±3
Total C % 58.9 -

C from CaCO3 % 1.1 -
Organic C % 57 ±5

H:C molar ratio - 0.10 ±0.01
Total N % 0.39 ±0.04

C:N 151
Total P % 0.64
Total K % 3.5 ±0.5
PAHs 1 mg/kg <1
δ13C ‰ −24.81 ±0.01

1 Polycyclic aromatic hydrocarbon.

A detailed description of the physicochemical characteristics of compost used in the
experiment is reported in Table 2.
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Table 2. Physicochemical characteristics of the compost used in the present work.

Property Unit Value

pH - 8.2
Humidity % 21.1

Bulk density g cm−3 0.936
NO3-N * mg/L 94.4
NH4-N * mg/L 203.1
Total N * mg/L 297.5
P2O5 * mg/L 139
K2O * mg/L 3764
Mg * mg/L 394
Na * mg/L 190

Organic Matter % 16.5
Total N % 0.72

C:N 13
δ13C ‰ −27.2 ± 0.05

* CAT extraction method.

2.2. Biochar Stability in Soil

Biochar stability in soil was assessed with two distinct methods: an isotopic mass
balance and the quantification of Benzene PolyCarboxylic Acids (BPCA).

2.2.1. Isotopic Mass Balance

In May 2017, two weeks before the distribution of soil amendments (time t0), two soil
samples were collected from each experimental plot (48 samples in total), using a 48 mm
diameter split tube sampler (Eijkelkamp, Giesbeek, Holland), up to a depth of 20 cm. The
samplings were repeated three weeks (t1), 1 year (t2), and 2 years (t3) after the application
of the amendments to the soil. Samples were weighed and sieved at 2 mm to separate
stones and roots from the fine earth. For a limited number of samples, the stones extracted
were weighed and their volume was measured by water displacement, and the stone
density was determined. The stone volume was calculated for all the other samples by
dividing the stone weight -by the stone density. Soil organic C content (%) and the isotopic
signature (δ13C) were measured on dry sub-samples of fine earth (24 h at 105 ◦C) with a
continuous flow isotopic ratio mass spectrometer (CF-IRMS; Delta V Advantage, Thermo
Fisher Scientific, Bremen, Germany) coupled with a CHN elemental analyzer (Flash EA
2000 Thermo Fisher Scientific, Bremen, Germany). For each sample, soil bulk density (ρ,
g cm−3) was determined by dividing the dry weight of the fine earth by the volume of
sampled soil.

Because the difference between the isotopic signature of native soil organic matter
(SOM) and biochar was higher than 2‰ and the variability was low [27], an isotopic mass
balance was calculated, for each sampling time, using the following equation:

f =
δ13Ctot − δ13CSOM

δ13Cbiochar − δ13CSOM
(1)

where f is the fraction of biochar-derived organic C (Cbiochar/Ctot), δ13Ctot, δ13CSOM and
δ13Cbiochar are the C isotopic signatures of the amended soil, native soil organic matter
and biochar, respectively. The value of δ13CSOM was measured for soil samples before
the application of biochar (t0, − 27.78 ± 0.79‰). Since a single isotope, two end-member
isotopic mass balance can only be applied when two sources of C are present in the soil,
this method was used only for treatments B1 and B2 and not for treatments B1C and B2C.
In the latter in fact, the presence of compost represented a third C source, which could
have impaired the application of the method. The amount of biochar-derived C (biochar-
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C) contained in the first 20 cm of soil was therefore determined through the following
equation:

Biochar-C [t ha−1] = f × Corg[%]/100 × ρc [g cm−3] × 20 [cm] × 100 (2)

where Corg is the total soil organic C content and ρc is the soil bulk density corrected for the
presence of stones by subtracting the stone volume from the total volume of the sample.

The % of biochar-C remaining at each sampling time, as compared to the amount
initially applied, was calculated by dividing the amount of biochar-C obtained from
equation [2] by the amount of biochar-C initially applied to the soil. The remaining biochar
amounts were then interpolated with an exponential decay model for both treatments:

Ct = a e−kt (3)

where Ct is the percentage of biochar-C remaining in the soil at time t, a is the modeled
initial amount of biochar-C in soil, and k is the daily decomposition constant of biochar.
According to this model, the Mean Residence Time of biochar in the soil (MRT, years) was
calculated as 1/(k × 365).

2.2.2. Assessment of BPCA

The biochar-derived C (biochar-C) was also quantified through the analysis of specific
molecular markers for black carbon (Benzene PolyCarboxylic Acids, BPCAs), according
to the method proposed by [26]. The analyses were done in the laboratories of the Martin
Luther University of Halle-Wittenberg (Germany), on soil samples collected before the
beginning of the experiment (t0), 3 weeks after biochar distribution (t1), and 2 years later
(t3). After quantifying the BPCA content of soil samples, the soil black C content was
calculated by multiplying the BPCA content by (biochar BPCA concentration/biochar
organic C).

Results were then expressed in tons per hectare (biochar-C, t ha−1) using the following
equation:

Biochar-C = CBPCA [g kg−1] × ρ [g cm−3] × 20 [cm] × 10 (4)

where CBPCA is the soil black C content (g kg−1) quantified through the analysis of BPCAs.
To evaluate biochar stability in the soil, the amount of biochar-C estimated at each

sampling time through BPCAs was corrected by subtracting the black C content naturally
present in the soil before the distribution of biochar (t0 samples). Since BPCA analyses
were made on samples collected from all treatments at only two sampling times (3 weeks
after biochar distribution, t1 and 2 years later, t3), it was not possible to calculate biochar
decomposition rate using an exponential model, as in the case of the isotopic mass balance.

2.3. Priming Effect of Biochar on SOM

The priming effect was determined based on the results of the isotopic mass balance
for N, B1 and B2 treatments, and the results of BPCA analysis for all treatments. At each
sampling time, the amount of C in soil organic matter (SOM-C) was determined in the
amended plots by subtracting the amount of biochar-C from the total soil organic C stock.
The occurrence of the priming effect of biochar on SOM was assessed by comparing the
amount of SOM-C in the control soil with the SOM-C content in the biochar-treated plots.
The occurrence of the priming effect of biochar on SOM in the case of the presence of
compost was instead assessed by comparing the amount of SOM-C in the compost-treated
plots with the SOM-C content in the biochar + compost-treated plots.

2.4. Statistical Analysis

Results for all measured properties are presented as the average of 4 replicates for
each treatment ± standard error. To identify significant differences in soil C stock, biochar-
C concentration, biochar-C stock, and SOM-C stock between treatments or sampling
times, statistical comparisons were based on linear models using the nlme package in R
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software [28]. Multiple comparisons were performed with the Student–Newman–Keuls
test (SNK).

No data autocorrelation structure was imposed in the model between the different
sampling times, as the introduction of an autocorrelation structure did not result in a de-
crease of the Akaike Information Criterion (AIC). As a significant interaction was detected
between time and treatment, the effect of biochar and compost on total C at each sampling
time was detected by linear models, using a factorial design with interaction.

Homogeneity of variances was checked before ANOVA by plotting standardized
residuals against fitted values. When this condition was not fulfilled, the variance structure
was selected by specifying the weights argument in the model [29].

Biochar-C values measured with the isotopic mass balance were interpolated with an
exponential model through a non-linear regression analysis, using the STATA 16 software
(StataCorp LLC, College Station, TX, USA).

A confidence level of 95% was used for all the analyses.

3. Results
3.1. Biochar Stability in the Soil

According to the isotopic mass balance three weeks after biochar application, in the B1
treatment we found, on average, 13 ± 2 t ha−1 of biochar-C corresponding to 80 ± 9% of
the applied biochar-C, while in the B2 treatment we found 31 ± 6 t ha−1 corresponding to
95 ± 18% of the applied amount (Figure 1). After about one year (385 days), the amount of
biochar-C found in soil was 11± 2 t ha−1 in treatment B1 and 29± 5 t ha−1 in treatment B2,
corresponding to 70 ± 14% and 91 ± 16% of the applied amount, respectively (Figure 1).
Finally, after about two years (745 days), 6.5 ± 2.7 t ha−1 and 22.3 ± 10.0 t ha−1 of biochar
were found in soil in treatments B1 and B2, respectively, corresponding to 40 ± 17% and
69 ± 31% of the distributed biochar-C, respectively (Figure 1).
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Figure 1. Biochar-C in soil (% of the applied amount) at 21 (t1), 385 (t2), and 745 (t3) days after application of biochar in
treatments B1 (25 t ha−1 of biochar) and B2 (50 t ha−1 biochar). Values shown in the graph are the results of the isotopic
mass balance approach. The vertical bars represent the standard error of the mean.
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In both B1 and B2 treatments the daily decay rate parameter (k), estimated through
the negative exponential model, was not statistically significant (p-values were 0.087 and
0.214 for B1 and B2 treatments, respectively) (Figure 1, Table 3). For this reason, no biochar
MRT was estimated and reported in this work.

Table 3. Exponential decay model parameters and model statistical significance.

Soil Treatments Model Parameters p-Value

a k

B1 87.95 0.0004 0.087
B2 100.56 0.0009 0.214

According to the BPCA analysis, before the distribution of soil amendments,
7.5 ± 0.1 g kg−1 of black C were already present in the soil (Figure 2). Three weeks
after the distribution of soil amendments (t1) in all treatments with biochar and biochar
+ compost a significant increase in biochar-C content was observed (Figure 2). In the
same treatments, no significant variations were observed in the biochar-C content between
sampling times t1 and t3 (two years after biochar application to soil) (Figure 2).
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t1) and 2 years later (gray bars, t3). Different letters above the bars indicate statistically significant differences between the
sampling times within the same treatment (p ≤ 0.05). Vertical bars represent the standard error of the mean.

The amount of biochar-C found in the soil three weeks after biochar application
(t1) was 8.4 ± 3.8 t ha−1 in the B1 treatment, 12.5 ± 3.7 t ha−1 in the B1C treatment,
20.5 ± 5.7 t ha−1 in the B2 treatment and 24.2 ± 6.2 t ha−1 in the B2C treatment (Figure 3).
These quantities represent 52% and 78% of the amounts applied at the beginning of the
experiment (15.9 t biochar-C ha−1) in treatments B1 and B1C, respectively, and 64% and
75% of the dose applied in treatments B2 and B2C (31.9 t biochar-C ha−1), respectively
(Figure 3). Two years after biochar application (t3), the BPCA method overestimated the
biochar-C content of the soil for B1 and B2 treatments compared to the amount applied
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(Figure 3). At the same sampling time, in treatments B1C and B2C, 16.2 ± 4.4 t ha−1

and 22.7 ± 3.4 t ha−1 of biochar-C were estimated, respectively (Figure 3). The values of
biochar-C estimated at the two sampling times did not differ significantly for any of the
experimental treatments (Figure 3).
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Figure 3. Biochar-C content in soil (t ha−1) according to BPCA analysis in the experimental treatments B1 (25 t ha−1 biochar),
B2 (50 t ha−1 biochar), B1C (25 t ha−1 biochar + 45 t ha−1 compost), and B2C (50 t ha−1 biochar + 45 t ha−1 compost)
3 weeks after the application of soil amendments (black bars in the graph, t1) and 2 years later (gray bars, t3). The amount
of biochar-C naturally present in the soil before the distribution of amendments (t0) was subtracted from the quantity
measured in the soil samples at t1 and t3. The horizontal lines represent the doses of biochar-C applied (B1, continuous line
and B2, dashed line). No significant differences were found between the time t1 and t3 (p ≤ 0.05). Vertical bars represent the
standard error of the mean.

Three weeks after biochar application to the soil (t1), the estimates of biochar-C
obtained with the two analytical methods did not differ significantly (Figure 4). At this
sampling time, the estimates obtained with the isotopic mass balance (13 ± 2 t ha−1 and
31 ± 6 t ha−1 of biochar-C for B1 and B2, respectively) were closer to the actual amount of
biochar-C distributed (16 t ha−1 and 32 t ha−1 in B1 and B2 treatments, respectively), while
the BPCA method provided lower estimates (8 ± 4 t ha−1 and 21 ± 6 t ha−1 of biochar-C in
B1 and B2, respectively). Two years after biochar application (t3), the estimate of biochar-C
obtained with the BPCA method, in the B1 treatment, was significantly higher (+63.3%)
than the estimate obtained with the isotopic mass balance, while in the B2 treatment no
significant difference between the two methods was observed (Figure 4).
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 Figure 4. Comparison of soil biochar-C estimates (t ha−1) obtained using the isotopic mass balance method (Y-axis) and
the BPCA analysis (X-axis) in treatments B1 and B2, three weeks after biochar application to soil (t1) and two years later
(t3). The error bars represent the standard error of the mean and the asterisk indicates a significant difference between the
estimates obtained with the two analytical methods.

3.2. Effect of Biochar on Soil C Stock

Three weeks after the application of soil amendments (t1), the total soil organic C
stock in biochar treatments, either alone or in association with compost, was higher than
in the control, with an average increase of 144 ± 22% (Figure 5). However, no significant
differences were found between the two application amounts. The application of compost
alone did not result in any significant increase in soil C stock in comparison to the control,
and no interaction effect was observed between biochar and compost treatments (Figure 5).
Similar results were found after one year (t2) and two years (t3) (Figure 5), when the
average C stock increases consequent to biochar application were 66 ± 10% and 72 ± 13%,
respectively (Figure 5).

3.3. Priming Effect of Biochar on SOM

According to the results of both analytical methods (isotopic mass balance and analysis
of BPCA), no significant differences were observed two years after biochar application (t3)
between the SOM-C content in the biochar-treated soils compared to the control soils and in
the biochar + compost treatments compared to the compost-treated soils (Figures 6 and 7).
Therefore, we can conclude that no significant priming effect of biochar on the degradation
of SOM was observed.
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Figure 5. Soil C stock (t ha−1) in the six experimental treatments: N (control), B1 (25 t ha−1 biochar), B2 (50 t ha−1 biochar),
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2 years later (t3, black bars). Letters above the bars indicate, if different, a statistically significant difference among the
six soil treatments within the same sampling time (p ≤ 0.05). Vertical bars represent the standard error of the mean.
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Figure 6. Soil C stock (t ha−1) divided into biochar-C (black bars) and SOM-C (gray bars) as assessed with the isotopic
mass balance method. C stocks are reported for three experimental treatments: N (control), B1 (25 t ha−1 biochar), B2
(50 t ha−1 biochar) before the application of soil amendments (t0), 3 weeks later (t1), 1 year later (t2) and 2 years later (t3).
No statistically significant differences were observed (p ≤ 0.05). Vertical bars represent the standard error of the mean.
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Figure 7. Soil C stock (t ha−1) divided into biochar-C (black bars) and SOM-C (gray bars) as assessed with the BPCA
method. C stocks are reported for six experimental treatments: N (control), B1 (25 t ha−1 biochar), B2 (50 t ha−1 biochar), C
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4. Discussion

The estimation of biochar amounts remaining in the soil over time obtained with the
isotopic mass balance and the analysis of BPCAs, did not show any significant degradation
of biochar in soil for both applied amounts. These results highlighted a substantial biochar
stability over the two years of experiment duration and were in line with most of the
literature reporting a long biochar MRT in the soil. Wang et al. (2016) [11], in a meta-
analysis, which summarizes the results of 24 scientific articles, authors reported an average
MRT of 556 ± 483 years, for the most stable fraction of biochar, which, according to the
authors, represented 97% of the total biochar-C. However, the results of [11] were associated
with high uncertainty. Also in the meta-analysis of Singh et al. (2012) [30], the authors
report a high variability in the biochar MRT, with values ranging from 1 to 750 years.
This high variability can be explained by the variability of biochar chemical and physical
characteristics, as well as the difference in experimental conditions and duration [11]. In
particular, laboratory incubations, which represent so far the majority of the studies on
biochar stability in the literature, may not adequately represent open field conditions
because they exclude meteorological events, exposure to ozone and UV rays, freeze-thaw
cycles, and the presence of roots, factors that may accelerate the physical degradation and
chemical oxidation of biochar [10,31–33]. For example, in Ventura et al. (2018) [14], the
authors observed a fast decomposition rate for biochar in the field (MRT: 24.3 years for the
more recalcitrant part of biochar, in cases of the absence of roots). Instead, on average, field
mid-term studies showed a slower, even if not significantly, decomposition rate compared
to incubation studies. The general short-term duration of laboratory experiments leads to
estimating a biochar decay rate based on the decomposition observed mainly on the labile
C pool of biochar, therefore causing an underestimation of biochar stability in soil [11].

The stability of biochar is not only influenced by the experimental method, but also by
the feedstock used for biochar production [11]. For instance, the biochar used in Ventura
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et al. (2018) [14] was produced with maize silage, while biochar produced from woody
material is generally more stable than crop- or grass-derived biochar [11]. This could
explain why the biochar used in the present study, which was produced from wood chips,
did not show any significant decomposition in the experimental period, even if it was
distributed in the field.

In our experiment, after three weeks from the application of 25 t ha−1 of biochar
(B1 treatment), around 20% of the biochar was lost. This result may have been affected
by operational inaccuracies (i.e., possible heterogeneous distribution of biochar in the
field) but another hypothesis is that biochar losses occurred during biochar unloading and
distribution operations because the biochar used in the experiment was made of very fine
particles and characterized by a very low density. Biochar may have been carried by the
wind outside the experimental field, as it was shown that the wind can cause losses of up
to 28% of the applied biochar [34]. To limit these losses, biochar was moistened to reach a
water content of 20% (w/w) before its application to the soil and was incorporated in the
soil immediately after its distribution. However, we cannot exclude that some losses by
wind transport occurred. Part of the biochar may also have been transported away by water
runoff, given the slope of the site (10%), or to the deeper soil layers by percolation because
of the coarse soil texture and the high content of stones. It was shown that runoff may
transport more than 50% of the distributed biochar outside the experimental field [34,35]
and percolation between 1.2% and 15.7% within one year from application [36].

For all of these reasons, field investigations appear to be fundamental, and the present
study is one of the few works performed in field conditions with more than two years of
observations.

Another important factor affecting biochar stability in the soil is the production
process. We can hypothesize that if the biochar used in the present experiment was
produced at a higher temperature (>500 ◦C), the overall stability shown in this article
would have been confirmed. Temperatures higher than 500 ◦C generally lead to longer
half-lives by promoting more stable C structures in the biochar, causing a reduction of
biochar-C bioavailability and lower O/C ratios [37]. More specifically, it was shown that
fast pyrolysis at low temperatures may result in the incomplete conversion of cellulosic
and hemicellulosic fractions of biomass owing to the short residence time of the biomass in
the pyrolysis reactor [38].

The assessment of biochar amount in the soil with BPCAs analysis showed that biochar
stability is confirmed also when it is applied in combination with compost. Similar results
were found in other field experiments with similar duration [26,39]. Analysis of BPCAs
also showed an apparent increase, although not significant, in biochar-C content in the soil
between sampling time t1 (three weeks after biochar application) and t3 (two years later)
(Figure 3), especially in treatments B1 and B2. A similar increase has been observed in
previous studies [26,40]. For example, Glaser and Knorr (2008) [40] observed a 25% increase
in soil black C contentthat was not attributable to biochar amendment. The increase in
BPCA concentration in the soil has been associated with multiple factors. On the one
hand, the analytical results may have been affected by analytical inaccuracies, given the
complexity of the laboratory protocols [41]. On the other hand, black pigments can be
produced in-situ by various species of fungi, such as Aspergillus niger and Cercosporina
Kikuchii (Matsumoto-et-Tomoyasu) [40,41].

It should be noticed that the estimates of biochar stability in the soil obtained in this
study with both analytical methods are characterized by high uncertainty, because of the
high natural heterogeneity and spatial variability observed in soil. On the other hand,
as already mentioned above, there is a need for field trials to assess the absolute biochar
stability in soil, and the present study is one of the few works performed in field conditions
with more than two years of observations.

It is also important to highlight that the total C content in the soil significantly in-
creased in the treatments with biochar (Figure 5) and the increase in soil C stock was
detected also when biochar was associated with compost, indicating that the application
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of compost does not affect the potential of biochar to store C in the soil in the medium
term (Figure 5). Similar results were reported in previous studies in an Oxisol soil of the
Colombian savannah [42], where the total C content of the soil doubled after the application
of 23.3 t ha−1 of biochar, and by Busch and Glaser (2015) [26], who reported a 1.7-factor
increase in soil C content after one year from the application of 25 t ha−1 of co-composted
biochar, as well as by Liu et al. (2012) [43], who observed an increase in total C in the soil
by a factor of 2.5 after the application of 20 t ha−1 of biochar and 32.5 t ha−1 of compost.

The present study did not show the occurrence of any positive priming effect of biochar
on soil organic matter, indicating that woodchips biochar can be applied in similar soil and
climatic conditions without concerns about the stability of the native soil organic matter.
The absence of a significant priming effect induced by biochar has been shown in previous
studies [44,45] and also in the meta-analysis by Wang et al. (2016) [11]. However, many
other studies have shown that biochar can induce either a positive or negative priming
effect, i.e., stimulate or reduce the decomposition of soil organic matter [14,19,22,46,47]. It
is interesting to notice that, in the literature, positive priming has usually been observed in
the first experimental period, while negative priming has been observed in the longer term.
More specifically, in a mata-analysis Maestrini et al. (2015) [22] calculated the cumulated
effect of these two conditions over time, highlighting that the initial positive priming is
counterbalanced by negative priming occurring at a time of approximately 600 days, which
is close to the experimental length of the present study (745 days). However, we did not
observe a priming effect at any of the sampling times. On the other hand, considering the
soil texture in the experimental site, we could have expected a higher stimulation of SOM
degradation, as highlighted for sandy soils in the meta-analysis of Wang et al. (2016) [11].
However, also in this case it should be considered that most of the studies on the biochar
priming effect were short-term laboratory incubations [22], while there is a lack of data
from longer experiments and field research.

5. Conclusions

The experimental results of the present field study indicated that woodchips biochar is
stable in the soil, over a time of two years if applied alone or in combination with compost.
However, considering that the estimate of the biochar amount in the soil showed a high
uncertainty, it is not possible to draw firm conclusions on this aspect. However, the study
showed that the application of biochar led to a significant increase in the total soil C stock
and did not affect the stability of the native soil organic matter. These results were also
confirmed when biochar was applied together with compost, showing the compatibility of
these two amendments in terms of soil C sequestration. For these reasons, we can conclude
that the application of biochar in the soils of alpine regions may be a strategy for the
agricultural sector to increase C storage in soil, contributing to climate change mitigation
in the medium term.
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