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Abstract: The bamboo–wood composite container floor (BWCCF) has been wildly utilized in trans-
portation in recent years. However, most of the common approaches of mechanics detection are
conducted in a time-consuming and resource wasting way. Therefore, this paper aims to provide
a frugal and highly efficient method to predict the short-span shear stress, the modulus of rupture
(MOR) and the modulus of elasticity (MOE) of the BWCCF. Artificial neural network (ANN) mod-
els were developed and support vector machine (SVM) models were constructed for comparative
study by taking the characteristic parameters of image processing as input and the mechanical
properties as output. The results show that the SVM models can output better values than the ANN
models. In a prediction of the three mechanical properties by SVMs, the correlation coefficients (R)
were determined as 0.899, 0.926, and 0.949, and the mean absolute percentage errors (MAPE) were
obtained, 6.983%, 5.873%, and 4.474%, respectively. The performance measures show the strong
generalization of the SVM models. The discoveries in this work provide new perspectives on the
study of mechanical properties of the BWCCF combining machine learning and image processing.

Keywords: bamboo–wood composite container floor; mechanical property; image processing;
artificial neural network; support vector machine

1. Introduction

With the rapid development of international freight transport containerization, the
demand for container floors, as necessary parts of containers, developed synchronously,
but they were subsequently improved, from the solid wood floor made of hardwood from
a single tree species to plywood floors of hardwoods. Later, due to policy, the environment,
cost and other reasons, a worldwide upsurge of the research and development of container
floor replacement materials occurred. The mechanical properties of bamboo were explored
to assess its usage as a structural material in place of wood [1]. Comparisons of bamboo
lamina with woods indicate that the average strength of bamboo laminae obtained under
different loading conditions is better than softwoods and comparable with hardwoods [2].
A bamboo–wood composite is formed by gluing bamboo and wood in the same or different
structural unit forms [3]. The bamboo–wood composite container floor (BWCCF) is widely
used due to the advantages of abundance of resources, environmental characteristics, high
mechanical properties, low cost, etc. It can be used as an ideal substitute for plywood
floors of hardwood. As the main load-bearing part of container, the performance and
quality of a BWCCF need to be assured, so it is necessary to effectively detect and control
its mechanical properties.

A traditional test was used to investigate the mechanical properties of the materials.
This traditional test is a kind of destructive test; the test pieces were damaged after detection
and cannot be put into use, and the cost of the sample taken from the detection of the
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BWCCF was large, which resulted in waste. Instead, nondestructive testing offers rapid
and effective results, which is the science of identifying the physical and mechanical
properties of a piece of material without altering its end-use capabilities and then using
this information to make decisions regarding appropriate applications [4]. Therefore,
different methods for the nondestructive testing of bamboo–wood composites have been
studied. Francisco García Fernández [5] established the artificial neural network (ANN)
and regression models of the modulus of rupture (MOR) and the modulus of elasticity
(MOE) by studying the effects of board thickness, moisture content, and the specific gravity
of plywood boards; Fuming Chen et al. [6] used a finite element simulation to optimize the
design of laminated structures for bamboo bundle and wood veneer laminated composites
(BWLVLs); Mohammad Arabi et al. [7] used Buckingham’s p-theorem and predicted the
MOR and MOE based on a multiple regression of particleboard.

Meanwhile, image processing technology has been widely available in the field of
wood science due to its wide practicability, high flexibility and good reproducibility. Using
the image feature extraction methods of fast Fourier transform (FFT), Gabor transform
(GT), gray level co-occurrence matrix (GLCM), and wavelet transform (WT), several studies
were conducted to identify and detect defects in wood materials. In the case of FFT method,
a power spectrum is typically used to extract texture features and some works have used
wood images [8]. GT is mainly applied to achieve the frequency eigenvector of wood
material images, which can be used to describe the effect of recognizing wood surface
defects [9,10]. Regarding the application of GLCM, there are 14 texture characteristic
parameters in GLCM applications and some scholars screened for the best combination
of characteristic parameters by different methods to identify wood texture and wood
species [11,12]. In addition, others have also used different combinations of parameters
of GLCM to identify wood surface defects [11,13–15]. According to the WT method, most
studies [16–18] mainly used different wavelets to extract multiple characteristic parameters
and combined other methods to not only identify wood-based materials’ textures and bark,
but also nondestructively test the performance.

However, there is very limited research on predicting the mechanical properties of
BWCCF using nondestructive testing. As a reliable substitute for hardwood floors, a
BWCCF is a kind of multilayer material generally assembled by wood veneers and bamboo
curtains or mats, which are interlaced and mixed, and bonded by pressing with structural
adhesives. Fortunately, the cross and longitudinal sections of BWCCF conveys plentiful
information, such as different positions, directions, layers, proportions of the wood and
bamboo. Meanwhile, in order to achieve the best performance of BWCCF, the mechanical
strength can be improved by an optimal design and changing the assembling pattern,
such as the position, number of layers and direction of the bamboo curtain, compression
ratio, species of raw materials and thickness of the veneer, etc. The mechanical properties
are determined by its end configuration formed by the assembling factors, which are
reflected in the end face. Consequently, the information on the cross and longitudinal
sections is closely related to the performance of the BWCCF. For practical applications, the
longitudinal mechanical strength of BWCCF is more stringent and can even be used to
predict the transverse strength by using the empirical formula.

The objective of this study is to design the models that are capable of predicting the
mechanics properties of BWCCF. In this study, four kinds of image processing methods,
including FFT, GT, GLCM and WT, are employed to extract the characteristic parameters
of the end face. Then, ANN and support vector machine (SVM) models are constructed
to explore the nonlinear mapping relationship between the characteristic parameters of
the section images and the mechanical properties (the short-span shear stress, MOR and
MOE), so as to realize the nondestructive test and evaluation of the mechanical properties
of BWCCF.
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2. Materials and Methods

Figure 1 shows the flow chart of this experiment. First, the short-span shear stress,
MOE and MOR of the BWCCF were tested and the test results served as the output of the
ANN and SVM models. Second, in image processing, FFT, GT, GLCM and WT analysis
were carried out and the results were taken as the input. Third, the models were trained
and the generalization performance was verified by the input-output sample sets. Finally,
the effective prediction models were obtained.

Figure 1. Flow chart of the experiments.

2.1. Materials

BWCCF is made by gluing 21 or 22 layers of raw materials together, including a
bamboo curtain, eucalyptus, rubber wood, pine and other miscellaneous woods. The
specifications were 1160 mm × 2400 mm × 28 mm, 1626 mm × 636 mm × 28 mm or
1160 mm × 1010 mm × 28 mm specimens. The first step was to treat raw materials.
Bamboo curtains were subjected to a dipping process with a low-molecular weight phenol
formaldehyde. The adhesive has a solid content of 48 ± 2%, a PH of 10 ± 1, a viscosity of
45–100 mPa·s, a specific gravity ≥1.18 and a moisture content ≤10%. During the process
of double face glue spreading for wood veneers, the adhesive amount was 380 ± 20% and
a phenolic aldehyde glue with a solid content of 48 ± 2%, a pH of 10 ± 1, viscosity of
50–180 mPa·s and specific gravity ≥1.18 was used as the glue. The second step was to
carry out the process, which is the most important part. Finally, the assembled veneers
were then compressed via cooling pressing for 20 min, with a pressure of 2.5–3.0 MPa and
a cooling time of 20 ± 10 min. Then, they were subjected to hot pressing for 45 min at a
temperature of 130 ± 5 ◦C and a glue spread of 320–360 g/m2.

2.2. Mechanical Property Test

The mechanical properties, such as the short-span shear stress, MOE and MOR,
of the BWCCF were determined according to the procedure specified in the plywood
standard of container floors (GB/T 19536-2015) and plywood performance standard of
international freight container floors (IICL TB 001-2014). The samples were trimmed to
dimensions of 305 mm × 50 mm × 28 mm for the short-span shear stress experiment and
610 mm × 50 mm × 28 mm for the MOR and MOE experiment. The mechanical properties
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were measured by using the universal wood-based panel tester (WDW-100E) controlled by
the Smart Text software. The final mechanical properties are the average value of the six
repetitions of the above measurement for further analysis.

2.3. Characteristic Parameter Extraction

Both longitudinal and cross section images of the BWCCF specimens were acquired
by the flat-panel color scanner(Epson Expression 10000XL manufacted by Epson (China)
Co Ltd. made in Beijing, China with a 600 dpi image resolution. By using the FFT [19],
GT [20], GLCM [14] and WT [16] functions in MATLAB, the characteristic parameters
of end face images were extracted. The features consist of the following four elements:
(1) circular spectrum energy S(r) and radial spectrum energy S(θ), from FFT; (2) mean,
contrast and entropy, from GT; (3) energy, contrast, correlation, entropy and homogeneity,
from GLCM; and (4) eight parameters (low-frequency coefficient on scale 1 (ca1), horizontal
high-frequency coefficient on scale 1 (h1), longitudinal high-frequency coefficient on scale
1 (v1), diagonal high-frequency coefficient on scale 1 (d1), low-frequency coefficient on scale
2 (ca2), horizontal high-frequency coefficient on scale 2 (h2), longitudinal high -frequency
coefficient on scale 2 (v2), and diagonal high-frequency coefficient on scale 2 (d2)) from
WT, which were collected from the two-layer decomposition of the specimen image.

In image processing, the fast-changing fine texture corresponds to the high-frequency
component in the frequency domain in an image, while the slow-changing coarse texture
corresponds to the low-frequency component [21]. Therefore, the frequency component and
frequency direction of the image frequency domain can reflect the roughness of the image
texture and the change in texture density and direction. As a result, the frequency is also a
measure of the image texture [22]. FFT and GT extract the image frequency as the processing
object and quantify the image features by taking the characteristic parameters. FFT is widely
applied to signal analysis in industry [23], which is a method of transforming images from
the spatial domain to the frequency domain. It describes an accurate quantification of
the signal through spectrum, including the amplitude spectrum, phase spectrum and
power spectrum (also known as the energy spectrum) [21]. Among these spectrums, the
power spectrum is most often used to extract texture features. GT is formed by adding
a window of a Gaussian function to a window of Fourier transform [20] by introducing
spatial parameters into a Fourier analysis. Texture analysis is used to locate the local space
and analyze the specific texture details of images, while GT is used to analyze the global
frequency contents of signals. A wavelet transform is also developed on the basis of Fourier
transforms. Caselles [24], Cohen [25] and Daubechies [26] studied the theory of wavelet
analysis. They agreed that a Fourier transform does not have the ability to perform local
analysis. Wavelet analysis theory is a multi-resolution analysis tool, which is widely used in
nonlinear analysis, quantum mechanics, mechanical fault diagnosis, operator theory, signal
analysis, computer recognition and other fields [21]. In order to analyze wood texture
characteristics, the characteristic parameters of wavelet energy values and the wavelet
energy distribution proportion at different scales, frequencies and texture directions are
obtained by decomposing wood texture images at multiple scales. Meanwhile, GLCM is a
second-order statistical analysis method to assess texture, with a certain frequency of gray-
level pairs of pixels with certain positional relationships in a statistical space [27]. Different
GLCM statistical characteristic parameters are used to describe the texture in detail from a
number of perspectives. The pixels’ intervals, growth direction and gray level are the three
elements that constitute GLCM, which affect the ability of feature parameters to describe
texture [21]. Among these different characteristics, the energy reflects the uniformity of
the gray-scale distribution and texture thickness of the image; the contrast measures the
distribution of the matrix values and local changes of images; the correlation describes the
similarity of all elements in both horizontal and vertical directions and reflects the relevance
and similarity of the image texture; the entropy represents the amount of information of
the image and can represent the complexity of the texture; homogeneity is a measure of the
local change of the image texture. When the whole texture of an image appears in a certain
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direction, the energy must also be concentrated in the same direction. From the energy
point of view, the texture energy is concentrated in this direction. When texture does not
have obvious directional features, the energy value is roughness in different directions, so
the energy values of different levels and the frequency components obtained by wavelet
decomposition can be used to analyze texture characteristics [28].

2.4. Artificial Neural Network (ANN)

In this study, the proposed ANN models were designed using MATLAB (the MATLAB
function of ANN). An ANN, simulating the functioning of the human brain, is a tool of
great importance in forecasting and is made up of a combination of layers made of neurons.
The most widely used type of ANN for forecasting is the multi-layer perceptron (MLP) [29].
This method is particularly useful for dealing with nonlinearities and complexities, even
if all mechanisms and principles are not clarified. Further, the network can be built
directly from experimental data by using self-organizing capabilities without any prior
assumptions [30]. The training of an MLP usually adopts a backpropagation algorithm,
which was first proposed by Rinehart and McClelland in 1986 [31]. The neurons are the
basic information-processing elements of the backpropagation artificial neural network
(BP ANN) operation [32], which interface with the outside world to receive information,
called the input layer, and others communicate the prediction to the outside world, called
the output layer. All the rest of the neurons connect the input layer to the output layer,
called the hidden layers. The network function depends very much on the interconnections
between neurons, which are nonlinear functions [31]. There is no scientific and explicit
method for determining the number of nodes, and thus the number of nodes in the hidden
layer could be determined through experience and multiple periods of training [33].

Two BP artificial neural network models are designed in this study, as shown in
Figure 2. The parameters, including 10 iterations, the log-sigmoid transfer function “logsig”,
which is adopted between the input and hidden layer, the linear transfer function “purelin”,
which is adopted between the hidden layer and the output layer, the Levenberg–Marquardt
back propagation “trainlm”, which is considered as the training algorithm, are employed
in both of the models. In the first model, the 36 characteristic parameters are considered
as input variables and the short-span shear stress is used for the outputs, and the 36-7-
1 neuron configuration is employed. The 241 groups of data are divided randomly into
two parts during model construction: 193 groups of training sets (80% of the total) and
48 groups of test data (20%). In the other model, the MOR and MOE are used as outputs,
and the 36-7-2 neuron configuration is designed. The 118 groups of data are divided
randomly into two parts during model construction: 94 groups of training set (80%) and
24 groups of test data (20%).

Figure 2. Schematic diagram of the ANN model for the mechanical properties of (a) short-span shear stress; (b) MOR
and MOE.
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2.5. Support Vector Machine (SVM)

As a supervised learning method, support vector machines (SVM) are often used
for classification and regression [34]. The basic idea of SVM application in regression
analysis is to find an optimal classification surface so that all training samples have the
minimum error from the optimal classification surface. Mathematically, it can be described
as follows [19]:

f (x) = w·∅(x) + b (1)

where w and b are the parameters of the linear support vector regression function and (x
is the nonlinear mapping function. In order to simply calculate the nonlinear mapping
function, the kernel function K(xi, xj) = {∅(xi)·∅(xj)}would be applied to make the inner
products, analyze the space, and evaluate the feature-separating space as the mathematical
functions.

The coefficients w and b were estimated by minimizing the following function:

min
w,b,ε,ε∗

[
1
2

w2 + c + c
N

∑
i=1

εi
∗
]

(2)

ε is the parameter prescribed, whereas c is the regularization constant. Thus, the
approximate function was transformed into the equation below:

f (x) =
l

∑
i=1

(αi − α∗i )K
(
xi, xj

)
+ b (3)

where αi and α∗i are Lagrange multipliers.
In this study, using MATLAB, three SVM models were established by the 36 character-

istic parameters to predict the short-span shear stress, MOR and MOE, where the kernel
function is the radial basis function (RBF).

2.6. Performance Measure

The error, mean absolute percent error (MAPE), root mean square error (RMSE),
correlation coefficient (R) and determination coefficient (R2) were used to evaluate the
performance of the ANN. The equations of these performance criteria are given below:

MAPE =
1
n

n

∑
i=1

(
|ti − tdi|

ti

)
× 100 (4)

RMSE =

√
1
n

n

∑
i=1

(ti − tdi)
2 (5)

R =
∑N

i=1
(
ti − ti

)(
tdi − tdi

)
√

∑N
i=1
(
ti − ti

)2
∑N

i=1

(
tdi − tdi

)2
(6)

R2 = 1− ∑n
i=1 (ti − tdi)

2

∑n
i=1 (ti − t)2 (7)

where ti shows the measured (actual) values, tdi represents the predicted values, n is the
total number of data and t is the average of the predicted values.

RMSE can amplify the value with a large prediction deviation and compare the stabil-
ity of different prediction models. MAPE considers the error between the predicted and
actual values and the ratio between the error and the actual value. The lower RMSE and
MAPE values represent the more accurate prediction results. R is used to describe the
degree of linear correlation between the predicted and actual values, which can reflect the
positive or negative correlation between them. R2 means the correctness of model fitting.
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The higher values of R and R2 present greater similarities between the measured and pre-
dicted values. Combining these indicators to describe the model can more comprehensively
analyze the model performance.

3. Results and Discussion

The mean and standard deviation of the measured mechanical properties of all datasets
are depicted in Table 1. As can be seen, the gap of the average and standard deviation
between the training set and the testing one is negligible, which shows that the distributions
of training sets and testing sets of all models are almost identical.

Table 1. Statistical analysis of mechanical properties.

ANN SVM

Short-Span
Shear Stress (N)

MOR
(MPa)

MOE
(MPa)

Short-Span
Shear Stress (N)

MOR
(MPa)

MOE
(MPa)

Mean
Training 9227 97.15 10,567 9284 96.01 10,545
Testing 9283 89.90 10,238 9054 94.37 10,323

Standard
Deviation

Training 1456 15.6 1208 1441 15.77 1261
Testing 1492 14.32 1375 1539 14.82 1194

Coefficient of
Variation (%)

Training 15.78 16.02 11.44 15.52 16.42 11.96
Testing 16.08 15.93 13.43 17.00 15.71 11.57

A BP artificial neural network is designed in this study. It makes use of the error
gradient descent algorithm to minimize the mean square error between the output value of
the network and the actual output value [32], which can easily fall into the local optimum.
SVM has a strict theoretical and mathematical foundation, based on the principle of
structural risk minimization, and the algorithm has global optimality. In the application
of predicting BWCCF mechanical properties, the training and generalization ability of
SVM is better than the former. The MAPE, RMSE, R and R2 values used to evaluate the
performance of the ANN and SVM models constructed in this study are given in Table 2.
As seen from results, the R and R2 of SVMs of training sets are greater than those of ANN,
and the MAPE and RMSE of SVM are below those of ANNs. The resulting trend of the
testing set is the same, which indicates that the SVM could be able to output more satisfying
values than the ANNs when applied to unknown samples. Thus, the SVM model is more
accurate than the ANN model at making predictions. Comparing the training and testing
sets, the results are in similar range, indicating that the ANN and SVM models showed no
tendency toward underfitting or overfitting.

Table 2. Performance measure used for predicting the short-span shear stress, MOR and MOE by ANN and SVM.

Performance
Measure

ANN SVM

Short-Span
Shear Stress (N)

MOR
(MPa)

MOE
(MPa)

Short-Span
Shear Stress (N)

MOR
(MPa)

MOE
(MPa)

MAPE (%)
Training 7.737 6.980 4.609 2.997 4.192 0.343
Testing 8.949 9.425 5.494 6.983 5.873 4.474

RMSE
Training 955.2 8.51 659.4 519.0 6.80 59.42
Testing 985.4 11.63 743.7 712.1 6.56 549.6

R
Training 0.782 0.845 0.839 0.936 0.916 0.999
Testing 0.842 0.848 0.868 0.899 0.926 0.949

R2 Training 0.612 0.714 0.703 0.876 0.839 0.998
Testing 0.708 0.719 0.753 0.808 0.858 0.900
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The goodness of fit values of all sets are discussed and compared. Figure 3 illustrates
the graphical presentation of all models found for each mechanical property, with the fit
between the actual and predicted values of the short-span shear stress, MOR and MOE,
and those calculated by the respective datasets for the training and testing sets. The actual
values are plotted versus the predicted values as open circles. The best linear fit is indicated
by a dashed line, whereas the blue solid line shows the linear fit of current models between
the predicted values and actual values. The accuracy of the prediction models is proven
with increasing the R values. As shown, there were significant correlations between the
actual and predicted values in all datasets, which indicates that the models in both methods
can be considered for predicting the mechanical properties of BWCCF. However, the SVM
prediction models have better reliability than ANNs, since they have higher explanatory
values. The R values of testing sets for the short-span shear stress, MOR and MOE were
0.899, 0.926, and 0.949, respectively.
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The comparison of actual and predicted values of testing sets for the short-span shear
stress, MOR and MOE using SVM are illustrated in Figure 4. As shown by the graphics
presented in Figure 4, it means that the predicted values are very close to the actual values.
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Figure 4. Comparison of the actual and predicted values of testing sets of the SVM models for mechanical properties:
(a) short-span shear stress, (b) MOR, and (c) MOE.

According to the results of the testing sets (shown in Table 2), the R2 values of the
short-span shear stress, MOR and MOE are 0.808, 0.858, and 0.900, respectively. Thus, the
R2 values with the SVM modeling approach are all greater than 0.800 in three datasets.
This result implies that it is capable of explaining at least 80.8% of the measured values
of the short-span shear stress. Additionally, for the prediction model of MOR and MOE,
the results demonstrated that the prediction model achieved more than 85.8% and 90.0%
success, respectively. Otherwise, the accuracy of the SVM prediction models for the short-
span shear stress, MOR, and MOE is proven, with decreasing MAPE values, which are
6.983%, 5.873% and 4.474%.

The results obtained by the SVMs are satisfactory compared to those obtained by other
authors upon applying machine learning to predict a variety of properties of wood and
wood-based products. Sandhya Samarasinghe et al. [35] acheieved an R2 value of 0.62 in
the determination of fracture toughness of Pinus radiata D. Don solid wood test pieces.
Shawn D. Mansfield et al. [36] obtained R2 values from 0.45 to 0.76 when modeling the
strength of Populus spp. clones, and the minimum MAPE was equal to 12.5%. Tat Thang
Nguyen et al. [37] constructed the model to predict the color change of heat-treated wood
during artificial weathering and obtained a MAPE value of 9.85%. The generalization
ability of the model in the study for the prediction of the mechanical properties of BWCCF
is similar to some other models. In Zongying Fu et al.’s study [38], the R2 values for MOE
and MOR of heat treatment radiata pine wood models were 0.904 and 0.783, respectively.
Jiawei Zhang et al. [39] obtained an R2 value of 0.921 in the prediction of the lumber
moisture content of cottonwood.

The predicted error of the model is not small, and the error may be due, firstly, to
inevitable error limits in detection, and secondly, to the fact that the BWCCF is extremely
sophisticated. According to Table 1, the values of the standard deviation and coefficient
of variation are large, which illustrates that the data of mechanical properties have great
discreteness. The slightly insufficient generalization ability of the models is affected by
the properties of the BWCCF itself. Compared with other studies, the BWCCF is more
homogeneous. The BWCCF is a multi-layer composite material with a complex structure.
On the other hand, there are many kinds of assembling patterns and raw materials. The
extreme heterogeneity and uncontrollability of materials have a great influence on the
generalization test of the models. In view of this, it provided a new approach to investigate
the mechanical properties of BWCCF. It can also be clearly seen that a well-trained SVM
model can be used to predict the mechanical properties of BWCCF accurately.

4. Conclusions

The characteristic parameters of the longitudinal section and the cross section of
BWCCF were extracted by image processing, including a Fourier transform (S(r), S(θ)),
Gabor transform (mean, contrast, entropy), GLCM (energy, contrast, correlation, entropy,
homogeneity), and wavelet transform (ca1, h1, v1, d1, ca2, h2, v2 and d2), 36 characteristic
parameters in total. In this study, the short-span shear stress, MOR, and MOE of BWCCF
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were predicted by ANNs and SVMs using characteristic parameters. Compared to the
BP ANN models, the SVM models can obtain a higher accuracy in the prediction of the
three mechanical properties (R = 0.899, 0.926, 0.949, and MAPE = 6.983%, 5.873%, 4.474%).
The results can be regarded as good and demonstrate that the predicted outputs of SVMs
are better fitted with the actual outputs than ANNs. The SVM model can satisfy values
when being applied to unknown samples and is more suitable to assess the mechanical
properties of the BWCCF. This study also opens up a new area of application for the
prediction of mechanical properties of extremely heterogeneous wood composites by SVM.
The developed methodology can be improved in several ways by future research. The
algorithm can be optimized to adapt to wooden composites with complex structures, so
as to improve the prediction accuracy. In addition to the BP ANN and SVM, there are
other machine learning methods that can be explored and applied in the prediction of
BWCCF’s mechanical properties. Furthermore, the image progressing can be applied to the
real-time quality monitoring of production in order to realize the nondestructive testing of
the BWCCF.

Author Contributions: Z.J.: conceptualization, methodology, writing—original draft, validation, and
investigation; Y.L.: methodology, validation, and investigation; Z.S.: methodology and investigation;
A.C.: methodology; J.S.: conceptualization, writing—origin draft, writing—review and editing,
supervision, and funding acquisition. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(Project no. 31660174), Guangxi Innovation-Driven Development Special Fund Project of China
(Project no. AA17204087-16).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Conflicts of Interest: The authors declare that they do not have any conflict of interest.

References
1. Verma, C.S.; Sharma, N.K.; Chariar, V.M.; Maheshwari, S.; Hada, M.K. Comparative study of mechanical properties of bamboo

laminae and their laminates with woods and wood based composites. Compos. Part B Eng. 2014, 60, 523–530. [CrossRef]
2. Verma, C.S.; Purohit, R.; Rana, R.S.; Mohit, H. Mechanical Properties of Bamboo Laminates with other composites. Mater. Today

Proc. 2017, 4, 3380–3386. [CrossRef]
3. Guo, N.; Chen, H.H.; Zhang, P.Y.; Zuo, H.L. The Research of Parallel to the Grain Compression Performance Test of Laminated

Glued Bamboo-Wood Composites. Teh Vjesn 2016, 23, 129–135. [CrossRef]
4. Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Paques, L.; Van den Bulcke, J.; Wang, X.P.

Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests 2019, 10, 728. [CrossRef]
5. Fernández, F.G.; de Palacios, P.; Esteban, L.G.; Garcia-Iruela, A.; Rodrigo, B.G.; Menasalvas, E. Prediction of MOR and MOE of

structural plywood board using an artificial neural network and comparison with a multivariate regression model. Compos. Part
B Eng. 2012, 43, 3528–3533. [CrossRef]

6. Chen, F.; Wang, G.; Li, X.; Simth, L.M.; Shi, S.Q. Laminated structure design of wood—Bamboo hybrid laminated composite
using finite element simulations. J. Reinf. Plast. Compos. 2016, 35, 1661–1670. [CrossRef]

7. Arabi, M.; Faezipour, M.; Layeghi, M.; Enayati, A.; Zahed, R. Prediction of bending strength and stiffness strength of particleboard
based on structural parameters by Buckingham’s p-theorem. J. Indian Acad. Wood Sci. 2011, 7, 65–70. [CrossRef]

8. Jinman, W.; Yanjie, Q.; Yongsheng, W. Analysis of wood anatomy characteristics by Fast Fourier Transfer image analysis. J. For.
Res. 1997, 8, 243–245. [CrossRef]

9. Martins, J.G.; Oliveira, L.S.; Britto, A.S.; Sabourin, R. Forest species recognition based on dynamic classifier selection and
dissimilarity feature vector representation. Mach. Vis. Appl. 2015, 26, 279–293. [CrossRef]

10. Dong, Z.; Ren, H.; Hessel, C.M.; Wang, J.; Yu, R.; Jin, Q.; Yang, M.; Hu, Z.; Chen, Y.; Tang, Z.; et al. Quintuple-shelled SnO(2)
hollow microspheres with superior light scattering for high-performance dye-sensitized solar cells. Adv. Mater. 2014, 26, 905–909.
[CrossRef]

11. Kobayashi, K.; Hwang, S.W.; Okochi, T.; Lee, W.H.; Sugiyama, J. Non-destructive method for wood identification using
conventional X-ray computed tomography data. J Cult Herit 2019, 38, 88–93. [CrossRef]

12. de Andrade, B.G.; Vital, B.R.; de Cássia Oliveira Carneiro, A.; Basso, V.M.; de Assis de Carvalho Pinto, F. Potential of Texture
Analysis for Charcoal Classification. Floresta E Ambiente 2019, 26, e20171241. [CrossRef]

http://doi.org/10.1016/j.compositesb.2013.12.061
http://doi.org/10.1016/j.matpr.2017.02.226
http://doi.org/10.17559/tv-20160108190015
http://doi.org/10.3390/f10090728
http://doi.org/10.1016/j.compositesb.2011.11.054
http://doi.org/10.1177/0731684416663852
http://doi.org/10.1007/s13196-011-0013-8
http://doi.org/10.1007/BF02875014
http://doi.org/10.1007/s00138-015-0659-0
http://doi.org/10.1002/adma.201304010
http://doi.org/10.1016/j.culher.2019.02.001
http://doi.org/10.1590/2179-8087.124117


Forests 2021, 12, 1535 11 of 11

13. Kamal, K.; Qayyum, R.; Mathavan, S.; Zafar, T. Wood defects classification using laws texture energy measures and supervised
learning approach. Adv. Eng. Inform. 2017, 34, 125–135. [CrossRef]

14. Hu, C.S.; Min, X.; Yun, H.; Wang, T.; Zhang, S.K. Automatic detection of sound knots and loose knots on sugi using gray level
co-occurrence matrix parameters. Ann. For. Sci. 2011, 68, 1077–1083. [CrossRef]

15. Wang, X.; Fritz, A.; Bent, F. Texture Analysis Using Gray Level Gap Length in Theory and Applications of Image Analysis II; Centre for
Image Analysis, SUAS: Uppsala, Sweden, 1995; pp. 65–78. [CrossRef]

16. Yadav, A.R.; Anand, R.S.; Dewal, M.L.; Gupta, S. Binary wavelet transform-based completed local binary pattern texture
descriptors for classification of microscopic images of hardwood species. Wood Sci. Technol. 2017, 51, 909–927. [CrossRef]

17. Zhang, Y.; Liu, S.; Cao, J.; Li, C.; Yu, H. Wood board image processing based on dual-tree complex wavelet feature selection and
compressed sensing. Wood Sci. Technol. 2015, 50, 297–311. [CrossRef]

18. Zhu, X.D.; Liu, Y. Detection and Location of Defects in Laminated Veneer Lumber by Wavelet Package Analysis. Bioresources 2014,
9, 4834–4843. Available online: https://www.webofscience.com/wos/alldb/full-record/WOS:000344184300091 (accessed on 2
November 2021). [CrossRef]

19. Cherkassky, V. The nature of statistical learning theory. IEEE Trans. Neural Netw. 1997, 8, 1564. [CrossRef]
20. Uddin, J.; Kim, J.M.; Islam, R. Texture analysis based feature extraction using Gabor filter and SVD for reliable fault diagnosis of

an induction motor. Int. J. Inf. Technol. Manag. 2018, 17, 20–32. [CrossRef]
21. Liang, Y.; Cheng, F.C.; Jiang, Z.L.; Yuan, Q.P.; Sun, J.P. Concentrated load simulation analysis of bamboo-wood composite

container floor. Eur. J. Wood Wood Prod. 2021, 79, 1183–1193. [CrossRef]
22. Wang, H.J.; Qi, H.N.; Wang, X.F. A new Gabor based approach for wood recognition. Neurocomputing 2013, 116, 192–200.

[CrossRef]
23. Lin, H.C.; Ye, Y.C. Reviews of bearing vibration measurement using fast Fourier transform and enhanced fast Fourier transform

algorithms. Adv Mech Eng 2019, 11, 1687814018816751. [CrossRef]
24. Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. 1997, 22, 61–79. [CrossRef]
25. Cohen, A.; Daubechies, I.; Feauveau, J.C. Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1992,

45, 485–560. [CrossRef]
26. Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [CrossRef]
27. Iqbal, A.; Valous, N.A.; Mendoza, F.; Sun, D.W.; Allen, P. Classification of pre-sliced pork and Turkey ham qualities based on

image colour and textural features and their relationships with consumer responses. Meat Sci. 2010, 84, 455–465. [CrossRef]
[PubMed]

28. Wang, X.; Shi, T.; Liao, G.; Zhang, Y.; Hong, Y.; Chen, K. Using Wavelet Packet Transform for Surface Roughness Evaluation and
Texture Extraction. Sensors 2017, 17, 933. [CrossRef] [PubMed]

29. Hamzaçebi, C.; Akay, D.; Kutay, F. Comparison of direct and iterative artificial neural network forecast approaches in multi-
periodic time series forecasting. Expert Syst. Appl. 2009, 36, 3839–3844. [CrossRef]

30. Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A.S. Application of Artificial Neural Networks (ANNs) in Drying Technology:
A Comprehensive Review. Dry Technol 2015, 33, 1397–1462. [CrossRef]

31. Fu, Z.Y.; Avramidis, S.; Zhao, J.Y.; Cai, Y.C. Artificial neural network modeling for predicting elastic strain of white birch disks
during drying. Eur. J. Wood Wood Prod. 2017, 75, 949–955. [CrossRef]

32. Yu, F.; Xu, X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural
network. Appl. Energy 2014, 134, 102–113. [CrossRef]

33. Tiryaki, S.; Hamzacebi, C. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by
artificial neural networks. Measurement 2014, 49, 266–274. [CrossRef]

34. Aya, S.A.; Acar, T.O.; Tufekci, N. Modeling of membrane fouling in a submerged membrane reactor using support vector
regression. Desalin. Water Treat. 2016, 57, 24132–24145. [CrossRef]

35. Samarasinghe, S.; Kulasiri, D.; Jamieson, T. Neural networks for predicting fracture toughness of individual wood samples. Silva
Fenn 2007, 41, 105–122. [CrossRef]

36. Mansfield, S.D.; Kang, K.-Y.; Iliadis, L.; Tachos, S.; Avramidis, S. Predicting the strength of Populus spp. clones using artificial
neural networks and ε-regression support vector machines (ε-rSVM). Holzforschung 2011, 65, 855–863. [CrossRef]

37. Nguyen, T.T.; Nguyen, T.H.V.; Ji, X.D.; Yuan, B.N.; Trinh, H.M.; Do, K.T.L.; Guo, M.H. Prediction of the color change of heat-treated
wood during artificial weathering by artificial neural network. Eur. J. Wood Wood Prod. 2019, 77, 1107–1116. [CrossRef]

38. Fu, Z.Y.; Zhou, F.; Gao, X.; Weng, X.; Zhou, Y.D. Assessment of mechanical properties based on the changes of chromatic values in
heat treatment wood. Measurement 2020, 152, 107215. [CrossRef]

39. Schubert, M.; Kläusler, O. Applying machine learning to predict the tensile shear strength of bonded beech wood as a function of
the composition of polyurethane prepolymers and various pretreatments. Wood Sci. Technol. 2019, 54, 19–29. [CrossRef]

http://doi.org/10.1016/j.aei.2017.09.007
http://doi.org/10.1007/s13595-011-0123-x
http://doi.org/10.1142/9789812830579_0006
http://doi.org/10.1007/s00226-017-0902-0
http://doi.org/10.1007/s00226-015-0776-y
https://www.webofscience.com/wos/alldb/full-record/WOS:000344184300091
http://doi.org/10.15376/biores.9.3.4834-4843
http://doi.org/10.1109/TNN.1997.641482
http://doi.org/10.1504/IJITM.2018.10010489
http://doi.org/10.1007/s00107-021-01726-x
http://doi.org/10.1016/j.neucom.2012.02.045
http://doi.org/10.1177/1687814018816751
http://doi.org/10.1023/A:1007979827043
http://doi.org/10.1002/cpa.3160450502
http://doi.org/10.1002/cpa.3160410705
http://doi.org/10.1016/j.meatsci.2009.09.016
http://www.ncbi.nlm.nih.gov/pubmed/20374810
http://doi.org/10.3390/s17040933
http://www.ncbi.nlm.nih.gov/pubmed/28441749
http://doi.org/10.1016/j.eswa.2008.02.042
http://doi.org/10.1080/07373937.2015.1036288
http://doi.org/10.1007/s00107-017-1183-x
http://doi.org/10.1016/j.apenergy.2014.07.104
http://doi.org/10.1016/j.measurement.2013.12.004
http://doi.org/10.1080/19443994.2016.1140080
http://doi.org/10.14214/sf.309
http://doi.org/10.1515/HF.2011.107
http://doi.org/10.1007/s00107-019-01449-0
http://doi.org/10.1016/j.measurement.2019.107215
http://doi.org/10.1007/s00226-019-01144-6

	Introduction 
	Materials and Methods 
	Materials 
	Mechanical Property Test 
	Characteristic Parameter Extraction 
	Artificial Neural Network (ANN) 
	Support Vector Machine (SVM) 
	Performance Measure 

	Results and Discussion 
	Conclusions 
	References

