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Abstract: Analyzing the current status of forest loss and its causes is crucial for understanding and
preparing for future forest changes and the spatial pattern of forest loss. We investigated spatial
patterns of forest loss in South Korea and assessed the effects of various factors on forest loss based on
spatial heterogeneity. We used the local Moran’s I to classify forest loss spatial patterns as high–high
clusters, low–low clusters, high–low outliers, and high–low outliers. Additionally, to assess the effect
of factors on forest loss, two statistical models (i.e., ordinary least squares regression (OLS) and
geographically weighted regression (GWR) models) and one machine-learning model (i.e., random
forest (RF) model) were used. The accuracy of each model was determined using the R2, RMSE,
MAE, and AICc. Across South Korea, the forest loss rate was highest in the Seoul–Incheon–Gyeonggi
region. Moreover, high–high spatial clusters were found in the Seoul–Incheon–Gyeonggi and Daejeon–
Chungnam regions. Among the models, the GWR model was the most accurate. Notably, according
to the GWR model, the main factors driving forest loss were road density, cropland area, number of
households, and number of tertiary industry establishments. However, the factors driving forest loss
had varying degrees of influence depending on the location. Therefore, our findings suggest that
spatial heterogeneity should be considered when developing policies to reduce forest loss.

Keywords: forest loss; land-cover change; machine learning; spatial heterogeneity; random forest
model; geographically weighted regression

1. Introduction

The global forested area is 4.06 billion ha, which accounts for approximately 31% of
the total land area; global forest loss since the 1990s has reached approximately 0.42 billion
ha [1]. Forest loss increases ground surface temperatures, reduces ecosystem services, and
exacerbates climate change [2]. Climate change is caused by factors such as construction
and transportation [3,4]. Forest loss can be driven by human activity and biophysical
characteristics (i.e., roads, construction, expansion of settlements, industry, wildfires, agri-
cultural activities, mining, industrial logging, etc.) that directly affect forests and cause
canopy loss [5]. In particular, the expansion of urban infrastructures, such as roads, trans-
portation, and settlements, causes permanent forest loss [6,7]. Additionally, demand for
forest products and the conversion of native forests into commercial forests can simplify
forest vegetation structure and reduce biodiversity [8,9]. Therefore, reducing forest loss is
necessary to restore and improve the function of forests [10].

In South Korea, the ratio of forest area is about 63%, which is the fourth highest among
OECD countries, following Finland, Sweden, and Japan, with a high forest area ratio
compared to the global average forest area ratio [11]. However, the forest cover decreased
by approximately 3% in 2019 compared to in 1990, with a mean annual decline of 0.1% [12].
This is a higher figure than the 1.7% decrease in the global forest area ratio over the past
30 years, so it is necessary to reduce it by analyzing the causes of forest loss [1]. According
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to Kim and Hwang, continuous damage to the forest in South Korea has been reported due
to tourist sites, golf courses, industrial complexes, housing areas, road construction, and
various other factors [13]. To decrease the rate of forest loss, it is necessary to quantitatively
analyze the area of forest loss. Additionally, human socioeconomic factors associated with
forest loss need to be determined [14]. Recent improvements to geographic information
system (GIS) and remote sensing (RS) tools have enabled the rapid collection of data
regarding regional forest conversion and loss [15]. The collected data can be analyzed
using various techniques, including statistical approaches and machine-learning models,
to examine the spatial distribution characteristics of forest loss and the causes of forest
loss [16]. Forest loss can occur due to the conversion of forest to many different land uses,
and this process is affected by various spatial and socioeconomic factors. Verburg et al. [17]
showed that road construction increases human movement and economic activities, which
increases the conversion of forest to croplands and grasslands. Damnyag et al. [18] found
that, in Ghana, croplands affected forest loss. Scullion et al. [19] pointed out that pasture
expansion is the direct cause of forest loss worldwide, with the causes varying among each
continent. Echeverria et al. [20] showed that forests closer to rivers were more likely to be
lost. Forest in lower altitudes is less accessible; therefore, forest loss is less likely to occur.
Similarly, Gayen and Saha [21] showed that forest with a higher slope is less accessible and
less likely to experience forest loss. Sharma et al. [22] showed that commercial land use
(mining and transportation development) and infrastructure development increased forest
loss due to the expansion of surrounding urban areas.

Given that the factors mentioned above vary spatially [23–25], their spatial heterogene-
ity should be considered when determining their impact on forest loss [26,27]. Therefore,
the spatial distribution of forest loss and the relationship between forest loss and its oc-
currence factors should be analyzed. Regional spatial patterns of forest cover can be
quantitatively analyzed using the local Moran’s I, first proposed by Anselin [28]. This tech-
nique enables statistically significant spatial clusters and outliers to be measured according
to characteristics of the forest loss rate of a given area to quantitatively determine the forest
loss rate [29]. Correlations between forest loss and various factors have been conducted
using statistical models (e.g., ordinary least squares regression (OLS) and geographically
weighted regression (GWR) models) and machine-learning model (e.g., random forest (RF)
model) [30–32]. The OLS model does not consider the spatial heterogeneity of the area
when analyzing correlations among factors, whereas GWR incorporates spatial heterogene-
ity and, therefore, can provide useful visual information to identify factors impacting forest
loss [33]. The GWR model estimates discrete parameters by providing the higher weighted
value closer to the observation location [34]. The RF model does not consider spatial
heterogeneity; they are similar to the OLS model that provides a single result for the entire
range of the research area with high predictive accuracy and efficiency [35,36]. However,
the RF model can be used for both classification and regression, which is advantageous for
obtaining results very quickly [37]. Nevertheless, the OLS and RF models have rarely been
applied to analyze the factors affecting forest loss in South Korea.

In this study, we analyzed the areas of forest loss in South Korea and the factors
driving this forest loss. The specific goals were as follows: (1) The distribution of the forest
loss area was analyzed using local Moran’s I. (2) The suitability of models (OLS, GWR, and
RF) to evaluate factors affecting the forest loss rate was compared. (3) Factors affecting
forest loss in each region were analyzed. Understanding the causes of forest loss and forest
distribution status may contribute to the development of measures that prevent forest loss.
In the future, this study can be used to establish forest management policies to prevent
forest loss.

2. Materials and Methods
2.1. Study Site

The study was conducted in South Korea at 125◦–131◦ longitude and 33◦–38◦ latitude
and included administrative districts, as well as one special city, one special self-governing
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city, six metropolitan cities, eight provinces, and one special self-governing province. The
total area of the study site comprised approximately 10.04 million ha with 63% forest.
The highest forest area % of land area was in the Gangwon region (81%), followed by
the Daegu–Gyeongbuk (69%) and Busan–Ulsan–Gyeongnam (65%) regions. Forests in
the north and east were generally at higher altitudes, and those in the west and south
were generally at lower altitudes; however, there were substantial variations in the mean
altitude and slope [38]. The study site was divided into eight “spatial regions” containing
152 “spatial areas”, based on eight provinces to which each of the seven metropolitan
cities belonged (Table 1 and Figure 1). To analyze forest loss and the factors impacting
forest loss from a macroscopic perspective, spatial regions were defined by classifying
metropolitan cities and provinces by region. Then, for a more detailed analysis, spatial
areas were defined to analyze Seoul and other metropolitan cities and the special self-
governing city under the same parameters as those used for general cities. Each spatial
area was quantitatively analyzed as an independent unit, irrespective of the size of the
cities or provinces. Additionally, Seogwipo-si, Jeju-si in the Jeju Special Self-Governing
Province, and Ulleung-gun in Gyeongsangbuk-do, which are geographically remote islands,
were excluded from analysis because they are distant from other regions, limiting the
weighting in spatial pattern analysis [39]. Furthermore, Sejong Special Autonomous City,
an administrative district designated in 2012, was excluded from the analysis due to a lack
of statistical data from 2005 [40,41].

Table 1. Number of spatial areas and forest rate in each spatial region. For the study, “spatial regions” were defined and
split into “spatial areas” (see Figure 1).

Spatial
Region

Seoul–Incheon–
Gyeonggi

Region

Gangwon
Region

Busan–
Ulsan–

Gyeongnam Region

Daegu
Gyeongbuk

Region

Gwangju–
Jeonnam
Region

Jeonbuk
Region

Daejeon–
Chungnam

Region

Chungbuk
Region

Spatial area (n) 32 15 20 22 22 14 16 11
Forest rate (%) 46 81 65 69 54 51 51 64

Forests 2021, 12, x FOR PEER REVIEW 3 of 23 
 

 

2. Materials and Methods 
2.1. Study Site 

The study was conducted in South Korea at 125°–131° longitude and 33°–38° latitude 
and included administrative districts, as well as one special city, one special self-govern-
ing city, six metropolitan cities, eight provinces, and one special self-governing province. 
The total area of the study site comprised approximately 10.04 million ha with 63% forest. 
The highest forest area % of land area was in the Gangwon region (81%), followed by the 
Daegu–Gyeongbuk (69%) and Busan–Ulsan–Gyeongnam (65%) regions. Forests in the 
north and east were generally at higher altitudes, and those in the west and south were 
generally at lower altitudes; however, there were substantial variations in the mean alti-
tude and slope [38]. The study site was divided into eight “spatial regions” containing 152 
“spatial areas”, based on eight provinces to which each of the seven metropolitan cities 
belonged (Table 1 and Figure 1). To analyze forest loss and the factors impacting forest 
loss from a macroscopic perspective, spatial regions were defined by classifying metro-
politan cities and provinces by region. Then, for a more detailed analysis, spatial areas 
were defined to analyze Seoul and other metropolitan cities and the special self-governing 
city under the same parameters as those used for general cities. Each spatial area was 
quantitatively analyzed as an independent unit, irrespective of the size of the cities or 
provinces. Additionally, Seogwipo-si, Jeju-si in the Jeju Special Self-Governing Province, 
and Ulleung-gun in Gyeongsangbuk-do, which are geographically remote islands, were 
excluded from analysis because they are distant from other regions, limiting the weighting 
in spatial pattern analysis [39]. Furthermore, Sejong Special Autonomous City, an admin-
istrative district designated in 2012, was excluded from the analysis due to a lack of sta-
tistical data from 2005 [40,41]. 

Table 1. Number of spatial areas and forest rate in each spatial region. For the study, “spatial regions” were defined and 
split into “spatial areas” (see Figure 1). 

Spatial  
Region 

Seoul–Incheon–
Gyeonggi  

Region 

Gangwon  
Region 

Busan– 
Ulsan– 

Gyeongnam 
Region 

Daegu 
Gyeongbuk 

Region 

Gwangju– 
Jeonnam  
Region 

Jeonbuk  
Region 

Daejeon– 
Chungnam 

Region 

Chungbuk  
Region 

Spatial area (n) 32 15 20 22 22 14 16 11 
Forest rate (%) 46 81 65 69 54 51 51 64 

 

      
(a) (b) (c) 

Figure 1. Study area location in South Korea. (a) Administrative boundaries at the Metropolitan City·Do level and 
Si·Gun·Gu level; (b) boundaries of spatial regions and spatial areas defined for the study; and (c) forest rate in each spatial 
area in 2015. 

Figure 1. Study area location in South Korea. (a) Administrative boundaries at the Metropolitan City·Do level and
Si·Gun·Gu level; (b) boundaries of spatial regions and spatial areas defined for the study; and (c) forest rate in each spatial
area in 2015.

2.2. Data Collection

The data used in the status analysis of the spatial distribution of forest loss areas were
obtained from the Forest Basic Statistics (FBS), which provides statistics on the current status
of national forests in South Korea [42,43]. The FBS data included information regarding
the forest type (coniferous forest, deciduous forest, or mixed forest) and age [44,45]. The
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FBS data are published every five years; the 2015 and 2005 data were used to analyze
changes in forest cover over a ten-year period. Census data and spatial data were used
to determine factors affecting forest loss. Census data were obtained from the Cadastral
Statistics Chronology [46,47]; the Agricultural Area Survey and the Agriculture, Forestry
and Fishery Survey [48–51]; and the Survey of Establishments [52,53]. Spatial data were
obtained from the road network map and the railway network map, which were produced
in 2005 and 2015 by the Ministry of Land, Infrastructure and Transport (MOLIT). The
Cadastral Statistics Chronology includes the area of 28 land categories, including forests,
crop fields, paddies, and house sites, for each administrative district [54]. The Agricultural
Area Survey provides data on the current status of agricultural land and cultivation
within a selected sample area. The Agriculture, Forestry and Fishery Survey analyzes
the distribution of agriculture, forestry, and fishery households, number of household
members, and farms to construct the data in a cycle of one year and five years [55–57].
The Survey of Establishments collects annual data of each region’s establishments, such as
size, distribution, industry type, and employees [58]. The road and railway network maps
provide the current status of roads and railways across the nation [59] (Table 2).

Table 2. Sources of data for factors affecting forest loss.

Category Data Institution Year of Data
Collection Detailed Data

Census Data

Forest Basic Statistics Korea Forest Service (KFS)

2005, 2015

Forested area,
accumulation of standing

Cadastral Statistics
Chronology

Ministry of Land,
Infrastructure and
Transport (MOLIT)

28 land categories, including
Forestry, Dry paddy-field,

Paddy-field, and
Building site

Agricultural Area Survey

Statistics Korea (KOSTAT)

Current status of
agricultural land

Agriculture, Forestry and
Fishery Survey

Number of household
members, and farms

Survey of Establishments Ministry of Employment
and Labor (MOEL)

Size, distribution of industry,
industry type,

Spatial Data Road network map
MOLIT Spatial data

Railway network map

2.3. Study Method

In this study, a spatial database was constructed to analyze the forest loss rate for
2005–2015 and the spatial patterns of forest loss. Then, a spatial database for the factors
potentially influencing forest loss was constructed. The impact of these factors on forest
loss was then analyzed using statistical and machine-learning models (Figure 2).
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2.3.1. Construction of the Spatial DB for Forest Loss and Current Status Analysis

For the forest loss area, the data of forest area per spatial area were extracted from
the 2005 and 2015 FBS data, and using Equation (1), the rate of change in the forest area
was estimated. The rate of change in the forest area was negative (−) if the forest area
had decreased, and the negative values were converted into positive (+) values to clearly
identify the characteristics of forest loss area, while the spatial areas without a decrease in
forest area were excluded from the analysis (Equation (1)).

∆vt =
(vt − vt−1)

vt−1
(1)

∆vt: Forest loss rate at t time; vt: Forest rate at t time;
vt−1 : Forest rate at t − 1 time; v: Forest rate.

2.3.2. Analysis of Spatial Pattern on Forest Loss Area

The spatial autocorrelation patterns of the forest loss in each area were analyzed using
global Moran’s I. A Moran’s I value >0 indicates that the forest loss area is clustered, and
a value <0 indicates that the forest loss area is dispersed [60,61] (Equation (2)). The local
Moran’s I identifies spatial clusters and outliers based on proximity, which is fundamentally
different from the hotspot method but may contribute as a complementary concept because
the Moran’s I is a high or low level of similarity to the spatial area in the vicinity [62,63]. In
the case of proximity, the Euclidean distance was used to measure the distance between
features, and similarity with the neighboring area was analyzed based on the result. Based
on this, spatial areas were categorized into the following four spatial patterns: high–high
(HH) spatial clusters, high–low (HL) spatial outliers, low–low (LL) spatial clusters, and
low–high (LH) spatial outliers (Figure 3) [64]. The local Moran’s I assigns a weight to a
given area based on the spatial proximity among the areas in a cluster, and to analyze the
consequent patterns, the range and distance of the weight should be determined. We used a
fixed bandwidth to determine the weight range of the local Moran’s I in this study [65], and
the Euclidean distance was applied for the distance between areas [66,67] (Equation (3)).
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I =
n ∑n

i=1 ∑n
j=1 Wij(d)(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1 Wij(d)∑n

i (xi − x)2 (2)

Ii=
(xi − x)∑j Wij

(
xj − x

)
S2 (3)

xi: forest loss rate at ith area; xj : forest loss rate at jth area;
x: the mean of the forest loss rate; Wij : weight index for the location of i relative to j;
S2: variance; n: number of areas.

2.3.3. Selection of Impact Factors

For the variables that influence forest loss, a total of 11 variables were selected in
reference to previous studies conducted in South Korea and overseas (Table 3). The se-
lected variables were as follows: road density [68], cropland area [69], grassland area [70],
settlement area [71], number of households [72], population [73], and industry employees
and establishments [74]. The “industry employees and establishments” variable was ana-
lyzed by first recategorizing the industry types in the Survey of Establishments [52,53] that
follows the Fisher–Clark categorization of industry (agriculture, forestry, fishery, mining,
manufacturing, electricity, gas and waterwork, transportation, and communication) into
primary, secondary, and tertiary industries, then counting the employees and establish-
ments in each class of industry [75]. For each variable, the rate of change for each spatial
area was estimated following the same method used to determine changes in forest rate.
Next, the multicollinearity of variables was determined, and the variables were excluded
from further analyses if the variance inflation factor (VIF) was ≥10 [76].
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Table 3. Impact factors of forest loss.

Factor Description Unit Data Source

Road density (Rd) Forest loss is caused by the increased
accessibility due to high road density m/ha Mena et al., 2006 [68]

Cropland area (Ca) Forest loss is caused by the expansion of farms
leading to increase in population and poverty

%

Ngwira and Watanbe, 2019 [69]

Grassland area (Ga)
Forest loss is caused by the expansion of
industry to meet the increased demand for
livestock animals

Walker et al., 2013 [70]

Settlement area (Sa) Forest loss is caused by the settlement and
construction of infrastructure Jayathilake et al., 2020 [71]

Number of households (Nh) Forest loss is caused by increase in number of
households leading to expansion of croplands n Godoy et al., 1997 [72]

Population (P)
Forest loss is caused by increase in population
leading to increased demand for food
and housing

n Biswas et al., 2012 [73]

Primary industry number of
Employees (Pm)

Forest loss is caused by industrialization and
subsequent population pressure n Lata et al., 2018 [74]

Primary industry
Establishments (Pe)

Secondary industry number of
Employees (Sm)

Secondary industry number of
Establishments (Se)

Tertiary industry
Employees (Tm)

Tertiary industry
Establishments (Te)

2.3.4. Concept of Statistical Learning (OLS and GWR Models)

The OLS and GWR models were used to analyze the spatial correlation between forest
loss and human activity. The OLS model is a global model that estimates the influence of a
given variable as identical across all study areas, based on the assumption that the variables
would have identical correlations in any space. Therefore, the OLS model can be used to
confirm the influence of variables on the whole study area [77]. Meanwhile, the global
correlation determined through the OLS model may deviate from the locally analyzed
correlation so that the estimated correlation may differ from the actual correlation [78]. The
estimation equations of OLS are shown in Equations (4) and (5). Thus, the OLS model was
used to analyze the global impact factors of forest loss.

y = β0 +
n

∑
k=1

βkxk + ε (4)

β̂ =
(
X′X

)−1X′Y (5)

y: dependent variable; β0: intercept; βk: regression coefficient; xk: kth independent variable;
ε: error; β̂: estimated regression coefficient; X′: transpose matrix of variable; X: matrix of
variable; Y: vector of the dependent variable.

The GWR model allows for estimation of local parameters as a regional model, en-
abling estimation of the influence of variables by region. In contrast to the OLS model, the
influence of the variable within the study area was estimated per area, and the results of
the model were applied to each area [79]. This suggests that the GWR produces a more
reliable performance than the OLS because local influences are analyzed to allow the study
of spatial migration of variables and as the influence is analyzed per area [80,81]. The
weight in the GWR model is assigned through kernel functions based on distance [82]. The
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bandwidth is divided into fixed and adaptive kernels based on how the bandwidth is set
as the weight range. For a fixed kernel, the distribution shows bandwidths of consistent
size. For adaptive kernels, the distribution varies according to the data density [83]. The
weights were assigned via an adaptive kernel. The estimation equations for the GWR are
shown in Equations (6)–(8). Thus, the GWR model was used to analyze the impact factors
of forest loss in the dimension of areas (units of spatial areas).

yi = β0(ui, vi) + ∑n
k=1 βk(ui, vi)xki + εi (6)

β̂i=
(
X′WiX

)−1X′WiY (7)

w(ui, vi) =

 wi1 · · · 0
...

. . .
...

0 · · · wik

 (8)

β0: intercept; βk: estimate coefficient for independent variable; yi: dependent variable; xk:
kth independent variable; (ui, vi): longitude and latitude coordinates of ith area; βk(ui, vi):
estimate coefficient for the location of ith area; εi: error; β̂i: estimated coefficient for the
location of ith area; X′: transpose matrix of variable; X: matrix of variable; Y: vector of the
dependent variable; Wi: weighted matrix for the location of ith area

2.3.5. Machine-Learning Model (RF Model)

The performance of a machine-learning model and importance of each impact factor
were estimated with respect to forest loss for a comparative analysis concept of statistical
learning. The RF model was used because it is a representative machine-learning model
which is well-known for its simplicity and efficiency [84]. The RF model was implemented
using Python’s scikit-learn library. A variable is selected at each node, and randomness
is exhibited by the learning data at each tree to create an ensemble model of myriads of
decision trees [85]. In general, the prediction accuracy and efficiency of the RF model
are high, with a low probability of overfitting for learning data [35,86]. The RF model
was analyzed using n_estimators, max_depth, min_samples_split, and min_samples_leaf as
hyperparameters, as shown in Table 4. n_estimators is the number of regression trees in
the model. As n_estimators increases, the fitting effect decreases; therefore, n_estimators is
often set to 100 [87]. In addition, in reference to previous studies which reported the use of
the basic hyperparameter values leading to a high level of accuracy, n_estimators was set
as 100, min_samples_split as 2, max_depth as 0, and min_samples_leaf as 1 [88,89] (Figure 4).
We analyzed the hyperparameter as the default value by referring to previous research
when evaluating the relationship between dependent and independent variables as well as
statistical models [88] (Table 4).
Table 4. Hyperparameters of the random forest (RF) model.

Hyperparameter Value

n_estimators 100
Max_depth None

Min_sample_split 2
Min_samples_leaf 1
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2.3.6. Model Fitness

The coefficient of determination (R2), root mean squared error (RMSE), mean absolute
error (MAE), and Akaike’s information corrected criterion (AICc) were used to test the
performance of the statistical and machine-learning models. The R2 was used to analyze
the predictive power of the models. RMSE is a scale that represents the differences between
the model-predicted values and the actual observed values and is used to evaluate the
accuracy of spatial analyses and remote sensing with error distributions [90,91]. MAE is the
mean value for the absolute difference between the model-predicted value and actual value,
which indicates the mean error size. As in the RMSE, smaller estimates indicate smaller
errors, which verifies a higher prediction accuracy [92,93]. AICc allows the estimation of
the relative quantity of data lost in the statistical model. Smaller values indicate a higher
model fitness. In general, AICc provides the solution to overfitting when the sample size is
small; thus, it is more useful than AIC [94]. The R2, RMSE, MAE, and AICc values were
obtained using Equations (9)–(12), respectively. Additionally, the influence and importance
of variables were analyzed based on the regression coefficients from the statistical models
and the IncMSE from the machine-learning model. The regression coefficient is indicative
of the influence of the impact of factors on forest loss, and a positive or negative value
indicates a positive or negative, respectively [95]. The % IncMSE is indicative of an increase
in the mean squared error, and a higher value indicates a more critical variable within the
RF model [96].

R2 = 1− ∑n
i=1(yi − ŷi)

∑n
i=1 (yi − y)2 (9)

RMSE =

√
1
n ∑n

i=1 (yi − ŷi)
2 (10)

MAE =
1
n ∑n

i=1|yi − ŷi| (11)
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AICc = 2nloge(σ̂) + nloge(2π) + n
(

n + tr(s)
n− 2− tr(s)

)
(S =

ŷi
yi
) (12)

yi: dependent variable; ŷi: estimated value of dependent variables; yi: mean of dependent
variables; σ: residual standard error ; σ̂: estimated value of residual standard error; n:
number of variables; tr(s): trace of the hat matrix.

3. Results and Discussion
3.1. Spatial Distribution of Forest Loss during 2005–2015

The forest rate in South Korea decreased by approximately 1% in 2015 compared
to 2005, with significant differences among spatial regions. The highest forest loss rate
was observed in the Seoul–Incheon–Gyeonggi region, and the lowest forest loss rate was
observed in the Gangwon region (Table 5). The mean forest loss rate in the Seoul–Incheon–
Gyeonggi region was 3.3%, which was 1.8-fold higher than the mean national rate of forest
loss and approximately 5-fold higher than the Gangwon region with the lowest forest
loss rate. In particular, the Seoul–Incheon–Gyeonggi region exhibited a 14.4% maximum
forest loss rate, a level far higher than other spatial regions. This result indicated that
forest loss caused by forest conversion and land use change was concentrated in the Seoul
region over the past decade (Figure 5a). Such changes in forest conversion and land use
seem to have occurred due to urbanization such as the expansion of road network and the
construction of various infrastructure facilities centered on the metropolitan area where the
altitude of the sea level is relatively low due to the cancellation policy of the development
restriction area in the metropolitan area [97]. This is similar to the case of China, which is
geographically neighboring. In order to analyze the impact of development due to urban
expansion on forest loss, Zhou et al. [98] analyzed the impact of urbanization on forest loss
in six major urban megaregions of China, including Beijing–Tianjin–Hebei (BTH), Yangtze
River Delta (YRD), Pearl River Delta (PRD), Wuhan (WH), and Chengdu–Chongqing (CY).
As a result, forest loss was slightly different in each region, but urban expansion showed
a major impact on forest loss [98]. Conversely, the standard deviation was 3.3% for the
Seoul region, which was higher than all other spatial regions, with 14.4% maximum and
0.1% minimum forest loss rates, indicating that forest loss occurred intensively in the
Seoul–Incheon–Gyeonggi region and its surrounding regions. However, the deviation in
forest loss among spatial areas was substantially higher than other spatial regions. On the
other hand, one area in the Seoul–Incheon–Gyeonggi region, three in Gangwon region, one
in the Daegu–Gyeongsangbuk region, and one in the Gwangju–Jeonnam region showed
increases in forest area during 2005–2015. These areas were excluded from the analyses of
the spatial clusters and outliers of forest loss areas and the factors influencing forest loss
(Figure 5b).

Table 5. Distribution of forest loss rate across spatial regions.

Category Minimum
Forest Loss Rate

Mean
Forest Loss Rate

Maximum
Forest Loss Rate

Standard
Deviation

Seoul–Incheon–Gyeonggi region 0.1% 3.3% 14.4% 3.3%
Gangwon region 0.2% 0.6% 1.5% 0.4%

Busan–Ulsan–Gyeongnam region 0.2% 1.1% 2.6% 0.8%
Daegu–Gyeongbuk region 0.1% 0.8% 2.8% 0.6%
Gwangju–Jeonnam region 0.1% 1.6% 7.7% 1.9%

Jeonbuk region 0.3% 1.7% 3.8% 1.0%
Daejeon–Chungnam region 0.3% 2.7% 8.1% 2.0%

Chungbuk region 0.1% 1.5% 5.3% 1.5%
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3.2. Spatial Patterns of Forest Loss

The spatial distribution characteristics of forest loss are shown in Figure 6. Forest
loss showed significant positive spatial autocorrelation (global Moran’s I = 0.29, p < 0.01),
indicating that forest loss was clustered. A high number of HH clusters occurred in the
Seoul–Incheon–Gyeonggi region, approximately 77% of all HH clusters. Seoul-si, Incheon-
si, Gimpo-si, Hwaseong-si, and Pyeongtaek-si, which are in the capital region, had many
large-scale development projects (e.g., for housing, urban development, multicomplexes,
free economic zones, etc.), which were either ongoing or completed in 2021. This is
presumed to have led to the higher rate of forest loss in this region compared with other
spatial regions. The possibility of continuous forest loss is also predicted to be high in this
region [99]. Approximately 42% of clusters in the Gangwon region were LL clusters, and
the mean forest loss rate was 0.6%, which was 1.2% lower than the mean forest loss rate
across all spatial areas (1.8%). HL spatial outliers were mostly found close to LL clusters,
whereas LH spatial outliers were mostly found close to HH clusters. The forest loss rate in
the areas with HL outliers was 1.9%, which was 0.1% higher than the mean forest loss rate
across all spatial areas (1.8%). This is presumably because the distribution of forest loss
rate in the neighboring regions (i.e., Daegu-si, Gumi-si, Gimcheon-si, Gunwui-gun, and
Seongju-gun; 0.6%) was 1.2% lower than the mean forest loss rate across all areas. Most LH
spatial outliers were found in the Seoul–Incheon–Gyeonggi region, presumably due to the
presence of HH clusters in the surrounding areas (Figure 6).
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3.3. Assessment of Factors Impacting Forest Loss
3.3.1. Selection of Variables Related to the Factors Impacting Forest Loss

Prior to the selection of variables related to the impact factors of forest loss, multi-
collinearity and correlation analyses were performed for the variables. As shown in Table 5,
the population and number of households showed VIFs of approximately 28 and 26, re-
spectively; therefore, reanalysis was conducted after excluding the population. The results
of the reanalysis showed that the multicollinearity was reduced to ≤10, and the remaining
variables were selected as the final variables. (Table 6).

Table 6. Correlation coefficients and variance inflation factors (VIFs) among variables potentially influencing forest loss. See
Table 3 for variable abbreviations.

Category Rd Ca Ga Sa P Nh Pm Pe Sm Se Tm Te VIF

Rd 1 - - - - - - 1.3
Ca −0.312 ** 1 - - - - - - - - - - 1.5
Ga −0.059 0.143 1 - - - - - - - - - 1.0
Sa 0.047 0.145 −0.044 1 - - - - - - - - 1.6
P 0.333 ** −0.267 ** −0.166 * 0.448 ** 1 - - - - - - - 28.7

Nh 0.347 ** −0.328 ** −0.168 * 0.455 ** 0.976 ** 1 - - - - - - 26.5
Pm −0.039 0.093 0.025 0.089 0.011 −0.012 1 - - - - - 3.1
Pe −0.121 0.174 0.025 0.097 −0.036 −0.067 0.812 ** 1 - - - - 3.2
Sm −0.033 0.138 −0.033 0.340 ** 0.206 * 0.177 * 0.058 0.049 1 - - - 1.8
Se −0.171 * 0.186 * −0.011 0.246 ** 0.186 * 0.153 0.092 0.176 * 0.624 ** 1 - - 2.0
Tm 0.340 ** −0.183 * −0.171* 0.373 ** 0.811 ** 0.769 ** 0.049 −0.032 0.245 ** 0.292 ** 1 - 6.7
Te 0.351 ** −0.288 ** −0.197* 0.321 ** 0.855 ** 0.830 ** 0.050 −0.036 0.243 ** 0.278 ** 0.910 ** 1 8.6

* p < 0.10, ** p < 0.05.
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3.3.2. Model Fitness Test

The fitness of each of the three models is presented in Table 7. The GWR model showed
better performance than the OLS model and the RF model in explaining the correlation
between forest loss and its impact factors. The R2 of the GWR model was 0.69, which was
1.4-fold higher than the OLS model and equivalent to the RF model. The RMSE of the GWR
model was 1.17, which was 0.37 lower than the OLS model but equivalent to the RF model.
The MAE of the GWR model was 0.85, which was 0.2 and 0.03 lower than that of the OLS
and RF models, respectively. The AICc of the GWR was lower than that of the OLS model
by approximately 48. The GWR model was similar to the RF model with respect to R2 and
RMSE; however, a lower MAE meant that the GWR model most accurately explained the
relationship between the variables and forest loss (Table 7).

Table 7. Model fitness test of the statistical models and machine-learning model.

Model R2 RMSE MAE AICc

OLS 0.48 1.54 1.05 591.4
GWR 0.69 1.17 0.85 543.9

RF 0.69 1.17 0.88 -

Our results suggest that the GWR model is more suitable than the OLS model, and
unlike the OLS model, it is possible to emphasize the relationship between forest loss
and impact factors by deriving results according to geographical location and regional
characteristics [100,101]. In addition, as with the OLS model, the RF model analyzes the
relationship between forest loss and impact factors across the entire range of research
areas, so it is limited to analyze the effects of regional characteristics [36]. The GWR
model is considered to be the best explanation for the relationship between forest loss and
impact factors.

Table 8 shows the influence of the OLS, GWR, and RF models. The influence and
importance of the models reflect the quantitative degree of the effect of independent
variables on forest loss in each model. In the OLS model, the variables with the highest
influence (≥0.01) on forest loss were the number of households, number of tertiary industry
establishments, grassland area, and road density, whereas the variables with the lowest
influence (<0.001) were the number of secondary industry establishments, number of
primary industry establishments, number of secondary industry employees, and number
of tertiary industry employees. In the GWR model, the variables with the highest influence
(≥0.01) on forest loss were road density, number of households, cropland area, and number
of tertiary industry establishments, whereas the variables with the lowest influence (<0.001)
were grassland area, number of primary industry employees, and number of tertiary
industry employees. In the RF model, the variables with the highest influence (≥0.01)
on forest loss were road density, number of households, and number of tertiary industry
establishments, whereas the variables with the lowest influence (<0.03) were cropland
area, grassland area, number of primary industry employees, and number of secondary
industry employees. Therefore, three variables (road density, number of households, and
number of tertiary industry establishments) were the most influential variables across the
three models.



Forests 2021, 12, 1636 14 of 23

Table 8. The influence of each variable on forest loss in the statistical (OLS and GWR) and machine-
learning (RF) models. See Table 3 for variable abbreviations.

OLS Model GWR Model RF Model

Rd 0.016 0.0400 0.278
Ca 0.009 0.0245 0.012
Ga 0.019 0.0009 0.025
Sa 0.008 −0.0013 0.057
Nh 0.033 0.0253 0.258
Pm −0.000 −0.0002 0.020
Pe −0.000 −0.0009 0.039
Sm 0.000 0.0056 0.022
Se −0.001 −0.0042 0.046
Tm 0.000 0.0008 0.097
Te 0.023 0.0167 0.141

3.3.3. Assessment of Factors Impacting Forest Loss Areas in Each Spatial Region

Since the OLS model and the RF model are global models that cannot deal with spatial
heterogeneity, the GWR model was used to determine the influence of factors on forest loss
in each spatial region [36,90]. Figure 7 shows the results of the GWR model for each spatial
area. The factors that affect the forest loss by each spatial region through the GWR model
show the following characteristics.
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Road density showed a major influence on forest loss in the Seoul–Incheon–Gyeonggi
region, but on the contrary, a low influence in the Gwangju–Jeonnam region. The rate
of increase in road density and mean rate of forest loss during 2005–2015 in the Seoul–
Incheon–Gyeonggi region were 54.1% and 3.2%, respectively, both of which were the
highest across the nation. The higher rate of forest loss in this region compared with
other spatial regions may be attributed to the high road density in Seoul-si, Incheon-si,
and Gyeonggi-do, which are categorized as the capital regions of South Korea within the
Seoul–Incheon—yeonggi region, which accounted for 60% of the top 22 spatial areas with
reported high road densities in 2010 [102]. The cropland area was the main cause of forest
loss in the Seoul–Incheon–Gyeonggi region, but not the main cause of forest loss in the
Gwangju–Jeonnam and Jeonbuk regions. The grassland area was closely related to forest
loss in Gwangju–Jeonnam and Jeonbuk regions, but the relationship between forest loss
and the grassland area was weak in the Seoul–Incheon–Gyeonggi and Gangwon regions.
The settlement area showed a high influence on forest loss in the Busan–Ulsan–Gyeongnam
region, but it showed a low influence in the Daejeon–Chungnam region. The number of
households was the main factor of forest loss compared to other regions in the Daejeon–
Chungnam region, whereas the number of households in the Busan–Ulsan–Gyeongnam
region was not enough to factor for forest loss. Of all the metropolitan cities and provinces,
Daejeon-si and Chungcheongnam-do, which belong to the Daejeon–Chungnam region,
had the highest rate of increase in the number of households during 2000–2010, followed
by Gyeonggi-do. This is presumed to be the reason for the high rate of forest loss in the
Daejeon–Chungnam region [103].

Regarding the number of industry employees and establishments, the number of
primary industry employees had a high positive effect on forest loss in the Gwangju–
Jeonnam region but a negative effect in certain spatial areas in the Daejeon–Chungnam
region. The number of primary industry establishments did not have much effect on the
forest loss in the Gwangju–Jeonnam region. The number of secondary industry employees
was the main cause of forest loss in the Daejeon–Chungnam region, but not in Gwangju–
Jeonnam region. In the Chungcheongnam-do area of the Daejeon–Chungnam region, the
manufacturing industry contributed to 46.9% of the gross domestic regional production in
2006, which was higher than the national average (28.2%) [104]. Therefore, it is presumed
that the increase in secondary industry employees had an impact on forest loss. The
number of secondary industry establishments showed a high influence on forest loss in
certain spatial areas of the Gwangju–Jeonnam region, but a low influence in the Daejeon–
Chungnam region. The number of tertiary industry employees was analyzed as the
main factor causing forest loss in the Daegu–Gyeongbuk region, but the influence was
relatively insufficient in the Gwangju–Jeonnam region. The number of tertiary industry
establishments had a high influence on forest loss in the Gwangju–Jeonnam region, but
a low influence in the Daejeon–Chungnam area. Mo and Lee [105] reported that in 2015,
Gwangju-si in the Gwangju–Jeonnam region specialized in tertiary industries, with a
high number of wholesale, retail, accommodation, food service, banking, insurance, real
estate, and lease service establishments, among other tertiary industries. This is thought
to have resulted in the high positive effect of tertiary industry establishments in the
Gwangju–Jeonnam region. The effects of variables on forest loss differed among the spatial
regions. For example, in the Seoul–Incheon–Gyeonggi region, in which there was a higher
rate of forest loss, road density and number of households had a strong effect on forest
loss. Conversely, in the Daejeon–Chungnam region, the number of secondary industry
employees had a strong effect on forest loss (Figure 7).

The effect of these factors on forest loss is due to urbanization [106,107]. Urbanization
causes forest loss by generating high demand for residential facilities and infrastructure
facilities in neighboring areas, especially in the development area, as the population
and the number of households increase beyond simple regional development [108,109].
This is consistent with the results of Chen et al. that forest loss occurred due to urban
development including the increase of roads and residential areas [110]. Urbanization and
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development are likely to continue in the future, so it is necessary to prepare measures
to maintain the balance of forest conservation and forest loss between urbanization and
regional development.

On the other hand, the causes of forest loss are different according to the region, as
in our research [98]. In developing countries, rapid agricultural expansion and excessive
use of forest resources are the main causes of forest loss, resulting in forest loss due to
food demand problems and agricultural investment [111,112]. For example, in Malawi,
the expansion of agricultural land such as corn farm expansion, tobacco cultivation, and
brick production is one of the main causes of forest loss [113]. Myanmar’s expansion
of agricultural land following rapid agricultural investment and expansion of the city is
among the main causes of forest loss. Then, the factors for forest loss differ according to
the region [69,114]. In addition, in countries such as Bhutan, Laos, Nepal, Sri Lanka, and
Vietnam, topographical conditions (altitude, slope) and biophysical requirements such
as temperature and precipitation were also among the main factors in the loss of forest
area [115]. In the United States, factories, houses, and roads have had a great impact
on forest loss, which is also the difference in accessibility, lifestyle, and institution [116].
As the relationship between forest loss and impact factors differs by country and region,
studies are being conducted on various regions. Mwangi et al. analyzed the relationship
between forest loss and impact factors on randomly selected sites using land coverage
maps in the Central Region and analyzed that topographic factors (altitude, slope), distance
from roads and distance from rivers are the main causes of forest loss [117]. This study
analyzed the influence of topographic factors and forest loss, unlike our research, which
showed that the closer the distance from the road and the closer the river, the easier the
transportation, resulting in forest loss. Santos et al. [118] analyzed the relationship between
forest loss and impact factors in the Amazon region of Brazil and confirmed that the
rapid expansion of roads, ranches, and agricultural products affected the loss of forest.
This means that the increase in roads increases accessibility, which is believed to have
promoted the change of forest into cropland and pasture [9,118]. In addition, Mas and
Cuevas analyzed the forest loss status based on the municipality, and then analyzed the
effect on forest loss using the GWR model, and confirmed that the same factors could have
different effects depending on the region. On the other hand, the forest loss and its impact
factors were also conducted through preceding research. Geist and Lambin analyzed the
causes of forest loss by dividing them into proximate causes and underlying driving forces
through preceding research review and analyzed that the impact of the forest loss was
on agricultural expansion, the use of timber and infrastructure expansion, economic and
commercialization, and institutional and demographic factors [23]. In addition, Armenteras
et al. [119] analyzed the previous studies conducted on Latin American countries to analyze
the factors affecting forest loss and its impacts and confirmed that access to markets and
agricultural and forest activities had a major impact on forest loss. As the factors of forest
loss and its impact differ by region, studies are being conducted on various continents
and regions. Forests are decreased by the above-mentioned factors, and this is affected
by regional socioeconomic factors, institutional factors, and topographic factors, so they
should be analyzed considering these factors. Therefore, causes of forest loss are different
in each region, which is judged to be due to the differences in socioeconomic, biophysical
characteristics, policies, and institutions of each region [19,22,100,120].

3.4. Limitations of the Study

Meanwhile, this study has certain limitations. First, we analyzed forest loss and factors
at the administrative district level. However, spatial analyses using grids or micropolygon
units can provide more details regarding the effects of factors on forests [121,122]. Another
limitation was the selection of factors influencing forest loss. We did not include several
variables that have recently been found to affect forest loss in South Korea, such as altitude,
slope, and photovoltaic solar plants [123,124]. The lower the altitude and slope, the easier
the accessibility, so the agricultural forest clearing is advantageous, and the forest loss
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appears. However, the altitude and slope were not used in this study because securing the
time-series data was limited compared to other forest loss factors [123]. In the case of the
photovoltaic solar plants, according to Mori and Tabata [125], there are benefits such as
mitigation of climate change and economic benefits, but it can cause biodiversity due to
forest loss, loss of carbon sinks, and risk of landslides. However, this study did not utilize it
due to the limitation of securing time-series data. Therefore, future studies need to discuss
the effects of geographical factors (high altitude, slope), photovoltaic solar plants, etc., on
forest loss and the problems that can be caused.

Therefore, considerable efforts are required to more clearly predict factors affecting
forest loss by including suitable factors in each spatial area. Results of this study may
contribute to the development of policies for reducing forest loss and provide valuable
data on the correlation between forest loss and the factors impacting this process. Further
studies are needed to address the limitations of this study to enhance the applicability of
the results.

4. Conclusions

We analyzed the spatial distribution of forest loss in Korea and the factors affecting
forest loss. The results of this study showed that forest loss occurred in large quantities
mainly in the Seoul–Incheon–Gyeonggi region and was 1.8 times higher than the average
forest loss in South Korea. As a result of Moran’s I analysis, HH clusters occurred mainly
in the Seoul–Incheon–Gyeonggi region, which shows that forest loss occurred mainly in
the Seoul–Incheon–Gyeonggi region. The forest loss and its impact factors were analyzed
using OLS, GWR, and RF models. The GWR model had a 1.4-fold higher R2 than the
OLS model, and the AICc was about 48 less. In addition, the MAE was lower than the
RF model, showing the highest model suitability. This means that the GWR model can
perform a better regional approach to forest loss and its impact compared to the OLS model
and the RF model, and it suggests that the GWR model is easy to analyze according to
regional differences. The most frequent forest loss in the Seoul–Incheon–Gyeonggi region
was found to have a strong impact on road density and number of households. This is
due to the progress of road construction and infrastructure installation as urbanization
progresses mainly in the Seoul–Incheon–Gyeonggi region between 2005 and 2015. In
particular, according to Liu et al. [126], infrastructure construction and economic growth
are the main causes of forest loss, and forest loss appears to have occurred as developments
have progressed around the region.

On the other hand, since forest loss varies according to regional characteristics, re-
search needs to be conducted based on background knowledge of the region [101]. There-
fore, the analysis of factors affecting forest loss should be carried out in consideration of
the situation of each country and region as in the previous studies, and both biophysical
and socioeconomic factors should be considered as much as possible. The GWR model
is useful for quantitative analysis of forest loss factors by region, and it is expected to be
useful for policy design and evaluation of forest loss by using it together with qualitative
analysis. In addition, if we analyze the changes in the forest loss and its impact factors,
which were mentioned earlier, it will be useful data for policy setting. Therefore, in future
studies, it is necessary to analyze the changes and causes of forest loss over time using the
local Moran’s I, time-series and hotspot analysis, and GWR model. Clearing the factors
affecting forest loss will be useful for establishing forest management plans and improving
forest protection systems.
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