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Abstract: Forest landscape restoration and ecosystem of Loess Plateau have enhanced prominently,
since the policy implementation (1999) of the Grain for Green Project in China. Land ecological
security (LES) performs an extremely critical function for protecting vulnerable land resources and
sustaining forest ecosystem stability. Predecessors’ studies substantially concentrate on biophysi-
cal and meteorologic variables using numerous grounded methodologies, little research has been
launched on systematic natural-socio-economic-ecological relationships and how these contributions
and regulations for LES evaluation. Here, pressure-state-response (PSR) model was used to establish
the evaluation system of LES in regional-scale, and LES was classified into five levels measured by
ecological security index (S), including high (S ≥ 0.75), medium−high (0.65 ≤ S < 0.75), medium
(0.55≤ S < 0.65), medium−low (0.45≤ S < 0.55), and low (S < 0.45) level, for systematically analyzing
its spatiotemporal distribution characteristic and response mechanism to explanatory variables in
Yan’an, northwest China, from 2000 to 2018. The results demonstrated that: (1) LES status was
mainly characterized by medium−high level and medium level, and maintained profound stability.
(2) zone with medium−high LES level was mainly concentrated in western and southern regions,
continuously expanding to northeast regions, and possessed the largest territorial area, accounting for
37.22–46.27% of the total area in Yan’an. (3) LES was primarily susceptible to normalized differential
vegetation index, vegetation coverage, and land surface temperature with their optimal impacting
thresholds of 0.20–0.64, 0.20–0.55, and 11.20–13.00 ◦C, respectively. (4) Normalized differential vege-
tation index and vegetation coverage had a significant synergistic effect upon LES based on their
interactive explanation rate of 31% and had significant variation consistency (positive and negative)
with LES, which were powerfully suggested to signal the intensification of the regional eco-security
level in the persistent eco-greening process.

Keywords: forest ecosystem; PSR model; land security; natural-socio-economic-ecological systems;
Yan’an

1. Introduction

Ecological security mainly refers to the balance of the internal ecosystem of land
resources and the supply of ecological needs, ensuring the security of land quantity, quality,
structural integrity, preserving the stability of the function of an ecosystem, due to its direct
relationship with sustainable natural, economic and social development [1,2]. Forests,
the Earth’s largest terrestrial ecosystems, provide crucial services to human society [3].
Statistically, global forest coverage of the earth’s terrestrial surface declined from 31.60% to
30.60% between 1990 and 2015, and every year, 10 million hectares (ha) of forest are lost [4].
Forest landscape restoration (FLR) is an effective approach to restore forest ecosystems,
sustain the diverse ecosystem services, and break the socioeconomic loss [5,6], which was
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promoted by the Global Partnership on Forest and Landscape Restoration—the global
network established in 2003 [7]. Large-scale ecological restoration programs have been
implemented worldwide. Such as, the government of Germany and International Union for
Conservation of Nature (IUCN) launched globally the Bonn Challenge in 2011 to achieve a
restoration target of 150 million hectares (Mha) of land by 2020, and 350 Mha by 2030 [8,9].
The implementation of numerous existing multilateral environmental agreements, harmo-
nizing together the Bonn Challenge, including the United Nation Convention on Biological
Diversity (UNCBD); the Aichi Target 15 to restore 15% of degraded ecosystems by 2020 [9];
the United Nations Convention to Combat Desertification’s (UNCCD) and the United
Nations Conference on Sustainable Development’s (“Rio + 20”) zero net land degrada-
tion goal [10]. India launched a program to increase its forests by an 8 million ha area
by 2030 [11]. Additionally, the Global 2030 Agenda for Sustainable Development Goals
(SDG 15) aims to protect, restore terrestrial ecosystems, forests manage sustainably, and
halt land degradation and biodiversity loss, was accepted by all countries [12,13]. It focuses
on the relationship between the sustainable management of natural resources and social
and economic development [14]. In domestic, many large-scale ecological policies also
have been implemented to mitigate unprecedented ecological degradation. such as the
“Natural Forest Conservation Program” and the “Grain-for-Green Program” [15,16]. The
policy implementation above generates positive ecological, societal, and economic effects
in forest and ecosystem services valuation.

Land ecological security (LES) is a frontier regional hotspot in sustainable utilization
of land resources [17], especially, in the western arid region of China due to its fragile and
insecure ecological environment [18,19]. Thereby, it is urgently imperative to determine
how to maintain and strengthen the security of the land ecosystem [20]. Since “land health”
was proposed, relevant methods for the quantitative description of regional land safety
have been unavoidably developed [21]. The international institute for applied systems
analysis (IIASA) firstly defined ecological security in 1989, thereby laying the foundation
for LES [22]. LES mainly involves the determination methods, indicator system, impact
factors, and safety thresholds [23]. Numerous ways are established to evaluate LES, such as
comprehensive index, entropy weight method, ecological footprint, landscape ecology, and
ecosystem service value [24–26]. Yet, there is less objectivity due to the limitation of many
evaluation methods because biophysical and meteorologic variables are just mentioned,
and LES evaluation undoubtedly involves a wide range of aspects, both the socio, economic,
and ecological aspects. In consequence, some models increasingly appear to improve the
comprehensiveness of methods [27]. Such as, the pressure-state-response model (PSR) has
been commonly used to establish a time-scale index system to assess LES, to thoroughly
investigate how to determine the status of regional LES, the rationality of land use, and the
management of land [28,29]. The function of three indicators in the PSR framework include:
(1) pressure expressing pressures on environment originating from human economic and
social activities, (2) state showing describing the status of environment and resources, and
(3) response describing the societal response to environmental changes [30]. By establishing
the spatiotemporal pattern of differing ecological landscapes to better realize the strength of
the environment [31]. Indeed, using data from LES modeling, the contribution of security
assessment factors can then be quantified, and crucial drivers and their spatial relationships
can be determined, so regional environmental assessments can be fully addressed [32].
However, regional timing studies are primarily focused in much of the literature, the
gap exists in comprehensive studies on spatiotemporal patterns and driving factors of
LES [33]. Though the primary influencing factors of LES are frequently determined via the
numerous multivariate approaches, neither the optimal threshold of primary influencing
factor nor the contribution rate of each factor and interactions among them have yet to
be determined [34]. For example, the proximities to the urban center, developed areas,
sources of pollution, the density of built-up areas, and normalized difference vegetation
index were identified as the explanatory factors for exploring LES status in Shanghai [15];
urban built-up area, transportation, vegetation cover, and ecosystem service were used
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as the spatial variables for assessing LES of Guangzhou [35]. Substantially explanatory
variables (various constructions and landscape features) to LES were just acknowledged
in these studies, the primary interactions and the contribution threshold of explanatory
variables would necessarily explore further. Additionally, the natural-social-economic
framework is another model useful for evaluating LES status [36,37]. It uses data from
natural, economic, and social-ecological aspects of land to construct the index system to
comprehensively convey regional LES [38]. In the light of land is a highly coupled social-
economic-ecological complex, LES attaches importance to the dynamic interaction, action,
and reaction processes between humans and land systems [39,40]. Therefore, establishing
a robust, comprehensive human–land evaluation index can simultaneously systematically
raise the accuracy of LES evaluation [41].

The Grain for Green Project in China was launched in 1999 and has significantly
facilitated an environment with well-protected ecological restoration status on the Loess
Plateau [42]. Yan’an city, a hill and gully region of Loess Plateau, was established as a
representative experimental area with an area of 707 km2 for ecological rehabilitation [43].
Nevertheless, it still has prominent environmental problems and a fragile ecosystem in-
fluenced by human activities and economic growth, being recognized as the significant
characterization indexes for ecological security [44,45]. Primary interactions and explana-
tory threshold of substantial environment variables for LES evaluation are still fuzzy.
Furthermore, predecessors’ studies of ecological security in Yan’an largely concentrate on
biophysical, meteorologic characteristics and quantification through models, little attention
has been paid to natural-socio-economic-ecological relationships and how their contri-
butions and influence mechanisms [46,47]. Given this consideration, here we analyzed
the LES status of Yan’an during 2000–2018 (after the implementation of the “Grain for
Green” policy) to explore two objectives: (1) Utilizing geographic information system (GIS)
technology and PSR model to ascertain the spatiotemporal tendency and pattern of LES
levels via integrated natural-socio-economic-ecological systems. (2) Utilizing canonical
correspondence analysis (CCA), random forest model, and Venn diagram to lastly detect
the vital driving factors of LES, with their optimal influence threshold and interactive inter-
pretation rate. The aim here was to fundamentally provide a sound basis for stabilizing
and improving forest landscape and ecosystem safety in Yan’an.

2. Materials and Methods
2.1. Overview of the Study Region

Yan’an, located in the central and southern region of Loess Plateau, northern Shaanxi
Province (35◦21′ N–37◦31′ N, 107◦41′ E–110◦31′ E), has jurisdiction over two districts and
11 counties, encompassing 37,037 km2 (Figure 1). Yan’an is dominated by tableland and
beam terrain, lying at an average elevation of 1200 m, within a monsoon climate that
provides 2418 h of sunshine per year, large diurnal temperature differences, and an average
annual frost-free period of 162 d. The annual average temperature is 7.7–10.6 ◦C and the
annual average precipitation approximates 500 mm [48]. Based on the deterioration of
ecosystems significantly threats land security in the process of urbanization and human
activities, it has become a major implementation region of the National Returning Farmland
to Forest Project [15]. Now, vegetation coverage exceeds 80%, forest coverage exceeds 46%,
and forest and grass vegetation coverage exceeds 67% in Yan’an, benefiting from this policy
implementation [49].



Forests 2021, 12, 1754 4 of 21Forests 2021, 12, x FOR PEER REVIEW 4 of 22 
 

 

  
Figure 1. Location of the study region. Including the municipal administrative boundary of Shaanxi 
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Figure 1. Location of the study region. Including the municipal administrative boundary of Shaanxi Province (left), and the
elevation of Yan’an (right).

2.2. Establishment of Evaluation System

LES is closely related to resource and environmental problems, human population,
social and economic conditions, and ecosystem health. The present research considers
sustainable forest and land ecological management as the integration of biophysical, social,
economic, and environmental elements. Preserving social, economic, and ecological values
while simultaneously maintaining ecosystem security and sustainability is a global suc-
cessful model based on experience in forest and land communities because provisioning
ecosystem services from the forests and land contribute much to national society and
economy [46]. For example, forest management modality determines the distribution
of economic benefits, people living near forests receive the highest economic benefits;
ecosystems productivity and richness are endowed with socio-demographic and socioeco-
nomic levels [47]. Therefore, establishing a natural-socio-economic-ecological system by
using grounded theory methodology to select the variables for LES evaluation is urgently
necessary [50]. It integrates natural components (slope, vegetation coverage, land surface
temperature, water coverage, land relief), social components (population density, human
disturbance index, degree of land use, town buffer classification), economic components
(GDP per capita, grain output per capita, economic density, Regional development in-
dex), and ecological components (Soil erosion sensitivity, ecosystem services, ecosystem
resilience) to understand their interactions through management practices(Table 1).

Ecological problems are mounting in Yan’an because of its increasingly urban pop-
ulation and expanding urban construction, which puts pressure (population and urban
expansion, economic growth, human activity, and changes in land structure) on the region’s
already fragile ecological environment. Hence, based on the structure of the PSR model
and data availability and practicability, 18 indexes of the natural-socio-economic-ecological
system (dividing into three categories: regional environmental pressure, regional envi-
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ronmental status, and regional human response) are used to construct a comprehensive
evaluation framework of Yan’an in PSR model (Table 1) [1,51,52].

Secondly, the entropy weight method is chosen to determine the Weightiness of
each evaluation system (Table 1) [53]. This method uses the information of each index to
determine its importance and then calculates each evaluation index accordingly, thereby
effectively eliminating subjectivity [54].

Table 1. The evaluation system of land ecological security (LES) in Yan’an. LES represents land ecological security.
18 indexes of natural-socio-economic-ecological systems are divided into environmental pressure, environmental status,
and human response based on the structure of the PSR model to evaluate LES.

Target Layer Rule Layer Index Layer Trend Weight

The evaluation
of regional

ecological security

Regional environmental
pressure C1

x1 Population density (P km−2) C11 negative 0.0964
x2 Economic density (Yuan km−2) C12 negative 0.0576
x3 Cultivated area per capita (hm2 P−1) C13 negative 0.0576
x4 Human disturbance index C14 negative 0.0374
x5 Town buffer classification C15 negative 0.0530
x6 Degree of land use C16 negative 0.0527

Regional environmental
status C2

x7 Slope C21 negative 0.0530
x8 Land Relief C22 negative 0.0576
x9 NDVI C23 positive 0.0144
x10 Vegetation coverage C24 negative 0.0577
x11 Soil erosion sensitivity C25 negative 0.0579
x12 Land surface temperature C26 negative 0.1046
x13 Water coverage C27 positive 0.0388
x14 Value of ecosystem services C28 positive 0.0576
x15 Ecosystem resilience C29 positive 0.0576

Regional human response C3
x16 GDP per capita (Yuan P−1) C31 positive 0.0576
x17 Grain output per capita C33 positive 0.0576
x18 Regional development index C34 negative 0.0308

The entropy value of each evaluation index is calculated by the way (2):

Hi = −K×
n
∑

i=1
Cij × In(Cij)

Cij =
aij

n
∑

i=1
aij

(1)

where, i and j represent two random evaluation indexes in the evaluation system of LES
(Table 1), Hi > 0, K > 0 (generally, K = 1 lnn−1) and 0 < Hi < 1, (i = 1, 2, . . . , n). When Cij = 0,
lnCij has an infinite value, so it is necessary to correct Cij and shift the aij. The modified
formula to calculate Cij is given by:

Cij =
aij + B

n
∑

i=1

(
aij + B

) (2)

where i and j represent two random evaluation indexes in the evaluation system of LES
(Table 1), B represents the translation amplitude, taking the fixed value of 0.1.

The weight of each evaluation index is shown below:

Wi =
1− Hi

n−
n
∑

i=1
Hi

(3)
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where i and j represent two random evaluation indexes in the evaluation system of LES
(Table 1), Wi represents the entropy weight of the ith index, Hi represents the information
entropy of the ith index, and n represents the number of index.

2.3. Data Source and Processing

Municipal, county-level administrative vector boundary, natural-socio-economic-
ecological raster data are needed in this study to establish the evaluation system of the PSR
model for LES assessment.

Municipal, and county-level administrative vector boundaries of China (the bound-
aries in 2015 is employed in this study) are collected from the Resources and Environmental
Science Data Center, Chinese Academy of Sciences (http://www.resdc.cn, accessed on
19 May 2020) [55], the municipal, and county-level administrative vector boundary of
Yan’an is obtained by editor tool and clip tool in ArcGIS 10.6 software exploited by the En-
vironmental Systems Research Institute (ESRI), Inc., Redlands, CA, USA (the same below).

Raster data with a spatial resolution of 1000 m × 1000 m for remotely sensed mon-
itoring of land use, NDVI, DEM, soil erosion in 2000, 2005, 2010, 2015, 2018 is collected
from the Resources and Environmental Science Data Center, Chinese Academy of Sciences
(http://www.resdc.cn, accessed on 4 June 2020) [55]. Satellite image of land use is derived
from the remote sensing image of Landsat TM/ETM (obtaining from United States Geo-
logical Survey (https://earthexplorer.usgs.gov, accessed on 15 June 2020) [56], the details
of collected satellite images with cloudage ≤ 5% are shown in Table 2) and is based on
the completion of artificial visual interpretation (including radiation correction, geometric
correction, seamless mosaic and extract, classification), the classification and description
of different types of land use by artificial visual interpretation are shown in Table 3. For
ensuring the precision of land use data derived from the Resources and Environmental
Science Data Center, Chinese Academy of Sciences, Majority/Minority tool of ENVI 5.3
software is used to process the tiny patches of raster data of five stages (2000–2018) by
comparing the high-resolution images obtained by Google Earth, and adjusted raster clas-
sification of land use is obtained. Then, the confusion matrix and ROC curve method are
selected to evaluate the precision of adjusted raster classification (total precision and Kappa
coefficient are the precision indexes) [57]. Finally, the average total precision and Kappa
coefficient of revised raster classification in five stages (2000–2018) are 89.40% and 0.872,
respectively (both exceeding 0.75), indicating that adjusted raster classification of land use
has excellent precision, and can evaluate LES further. Meanwhile, raster data of NDVI is
derived from the SPOT/VEGETATION and MODIS satellite and is based on the method
of maximum value composite [52]; raster data of DEM is based on SRTM (Shuttle Radar
Topography Mission) data and the method of resampling; raster data of slope and land
relief is extracted from DEM using ArcGIS 10.6 software [49]; land surface temperature
(annual mean value) is calculated based on Band 6 of Landsat 5 TM and band 10 of Land-
sat 8 OLI_TIRS (obtaining from the Geospatial Data Cloud by http://www.gscloud.cn,
accessed on 24 September 2020, cloudage ≤ 5%) using image inversion of remote sensing,
radiometric calibration, atmospheric correction, and seamless mosaic and extract are com-
pleted [52]; human disturbance index, town buffer classification, water coverage, the value
of ecosystem services, ecosystem resilience, and regional development index are calculated
and rasterized based on raster data of land use and grounded methodology using ArcGIS
10.6 software.

Socio-economic data of 2000, 2005, 2010, 2015, 2018, including population density,
economic density, cultivated area per capita, GDP per capita, grain output per capita, are
orderly derived and calculated from the statistics yearbook of Shaanxi Province and the
statistical yearbook of Yan’an [55]. Then, they are added to the property sheet in all counties
of Yan’an using ArcGIS 10.6 software and are converted to raster graphics.

http://www.resdc.cn
http://www.resdc.cn
https://earthexplorer.usgs.gov
http://www.gscloud.cn
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Finally, raster graphics above in Yan’an is obtained from the extraction tool of Ar-
cGIS 10.6 software by municipal, county-level administrative vector boundaries, and are
resampled to the spatial resolution of 30 m × 30 m by using the resample tool for greatly
improving the resolution of raster data and elevating the evaluation precision of LES.

Yet, due to different dimensions of evaluation indexes used, data is standardized by
using Equation (1) [49]:

Positive correlation index : aij =
xij−xmin

xmax−xmin

Negative correlation index : aij =
xmax−xij

xmax−xmin

(4)

where aij represents the value of the jth index of ith unit after the standardization; Xij
represents the original value of the jth index of the ith unit; Xmax represents the maximum
value of the jth index of the ith unit, and Xmin represents the minimum value of the jth
index of the ith unit.

Table 2. The details of collected satellite images (cloudage≤ 5%) for the classifications of land use types, including path/row,
acquisition time (day month year), and spatial resolution of satellite data.

Path/Row Satellite Acquisition
Time

Spatial
Resolution Path/Row Satellite Acquisition

Time
Spatial

Resolution

126/034

Landsat 5 27 April 2000 30 m

127/035

Landsat 5 18 April 2000 30 m
Landsat 5 12 June 2005 30 m Landsat 5 19 June 2005 30 m
Landsat 5 12 July 2010 30 m Landsat 5 17 June 2010 30 m
Landsat 8
OLI_TIRS 8 Jule 2015 30 m Landsat 8

OLI_TIRS 1 July 2015 30 m

Landsat 8
OLI_TIRS 29 April 2018 30 m Landsat 8

OLI_TIRS 22 May 2018 30 m

126/035

Landsat 5 27 April 2000 30 m

128/034

Landsat 5 9 April 2000 30 m
Landsat 5 12 June 2005 30 m Landsat 5 9 May 2005 30 m
Landsat 5 12 July 2010 30 m Landsat 5 24 June 2010 30 m
Landsat 8
OLI_TIRS 8 June 2015 30 m Landsat 8

OLI_TIRS 24 July 2015 30 m

Landsat 8
OLI_TIRS 31 May 2018 30 m Landsat 8

OLI_TIRS 29 May 2018 30 m

127/034

Landsat 5 5 June 2000 30 m

128/035

Landsat 5 11 May 2000 30 m
Landsat 5 3 June 2005 30 m Landsat 5 26 June 2005 30 m
Landsat 5 19 July 2010 30 m Landsat 5 24 June 2010 30 m
Landsat 8
OLI_TIRS 1 July 2015 30 m Landsat 8

OLI_TIRS 24 July 2015 30 m

Landsat 8
OLI_TIRS 23 June 2018 30 m Landsat 8

OLI_TIRS 14 June 2018 30 m

2.4. Establishment of Evaluation Level of LES

After rasterized and standardized indexes of LES evaluation were obtained, a grid
map of LES in Yan’an in 2000, 2005, 2010, 2015, and 2018 is generated, according to the
weight of each index.

These data are combined with the PSR model, to quantify the ecological security
index (S) of Yan’an, which could then be divided into five evaluation levels according to
reported scholarly findings (Table 4) [58]. A higher value of S indicates better ecological
security. Comprehensive evaluation criteria and LES status are shown as follows: high LES
level represents zone is far away from the urban center, the ecosystem of land resource is
undisturbed and undamaged, with high vegetation coverage, reasonable structure and
function; medium−high LES level represents zone maintain a considerable distance away
from the urban center, land ecosystem is less damaged, with higher vegetation coverage
and ecosystem structure; medium LES level represents zone maintain a short distance away
from the urban center, service structure and function of land resource ecosystem have been
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degraded, land have medium vegetation coverage; medium−low LES level represents
zone is greatly close to the urban center with low vegetation coverage, land ecosystem
is subject to man-made disturbance and destruction, the ecological problem frequently
appear; low LES level represents zone is located in the urban center with a little vegetation
coverage, the structure of the ecosystem is incomplete, the function has been lost, which is
extremely difficult to restore [15]. The evaluation level is slightly higher than that of the
study by Feng et al. [15] and He et al. [52], due to the hill-gully terrain complexity and
ecosystem vulnerability in Yan’an.

2.5. Analysis Methods

Principal component analysis (PCA), stepwise regression analysis, and canonical
correspondence analysis (CCA) are adopted to cross-verify primary variables highly af-
fecting LES status. Path analysis (PA) and correlation analysis are adopted to determine
the influence degree of primary variables on LES. A random forest model is selected to
determine the regulatory threshold range of primary variables required by advanced LES
status (high level and medium−high level). Venn diagram is used to determine the single
and synergistic contribution rates of primary driving variables to LES.

Table 3. The classification and description of six types of land use.

Type I Type II Description

Cropland

Paddy field Cultivated land with a water supply and irrigation facilities, which can be irrigated normally
in general years for plant aquatic crops.

Dryland
Cultivated land without irrigation water sources and facilities, growing crops by
precipitation; Dry cropland that can be irrigated normally in general years with water and
irrigation facilities.

Forest land

Forestland Natural forests and plantations with canopy density > 30%.

Shrubland Dwarf woodland and shrubby woodland with canopy density > 40% and height below 2 m.

Open forest land Forest land with 10–30% canopy density.

Other forest land Undeveloped forest land, nurseries, and gardens.

Grassland High coverage grassland (coverage > 50%), high coverage grassland (20% < coverage < 50%),
high coverage grassland (5% < coverage < 20%)

Water Graff, lakes, reservoir pits, permanently glacial snow, rhoals, beach.

Built-up land Urban and rural residential land, other construction lands.

Unused land Desert, gobi, saline-alkali soil, wetland, bare land, bare rock.

Table 4. Evaluation level of LES. S represents the ecological security index. LES represents land ecological security.

Ecological
Security Index S < 0.45 0.45–0.55 0.55–0.65 0.65–0.75 ≥0.75

LES level Low security Medium−low
security Medium security Medium−high

security High security
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3. Results
3.1. Evaluation Level of Land Ecological Security (LES)

Intuitively, zone with high LES level was mainly distributed in southern Yan’an, where
it was concentrated in Fu county, Huangling county, Huanglong county, Yichuan county,
and Ganquan county, while the ecologically secure area of Fu county significantly exceeded
that of other districts and counties (Figure 2). In 2000, the ecologically secure area of Fu
county was 1128 km2, but it had been reduced to 924 km2 in 2018. Spatially, the zones with
medium−high LES levels were primarily concentrated in western and southern regions
of Yan’an, including Wuqi county, Zhidan county, Fu county, and Huanglong county; the
average area of ecological security zones from 2000 to 2018 exceeded 1500 km2. Followed
by Baota district, Yichuan county, Huangling county, and Ganquan county. In short, the
southwest and south lands of Yan’an had a better LES status. In Wuqi county and Zhidan
county, the area of LES increased significantly since 2010, reaching 2074 km2 and 2075 km2

in 2018, respectively. Both Fu county and Huanglong county, area of LES zone were
tended to be stable after 2015, fluctuating between 1785 km2 and 1629 km2, respectively.
Additionally, in the northeast of Yan’an, namely, Ansai district, Zichang county, Yanchuan
county, and Yanchang county, the area of the zone with medium-high LES level increased
steadily since 2000. This finding indicated that the zone in a medium-high LES level was
expanding from the west and south to the northeast. The zone with the medium LES level
had a widely distributed area and is primarily located in the central and northern regions
of Yan’an, and it fluctuated over the years and maintained relative stability. The zones with
a low LES level were mainly located in Luochuan county, Baota district, and Huangling
county and their areas continuously increased, respectively, reaching 32 km2, 36 km2, and
28 km2 in 2018 (Figure 2). However, generally, the ecological security index (S) of Yan’an
from 2000 to 2018 was insignificant, indicating that the level of LES was extremely stable
(Figure 3).

3.2. Area Variation of Zones with Different Levels of Land Ecological Security

From 2000 to 2018, the area of zones with medium-high and medium levels of LES
were the largest, accounting for 37.22–46.27% and 33.49–42.33% of the total area of Yan’an,
respectively. The second-largest area was the zone with high and medium-low levels
of LES, corresponding to the proportion thresholds of 8.49–12.07% and 8.29–14.35% of
total land area. For a zone with a low LES level, its area was the smallest, accounting for
only 0.09–0.38% of the total area (Figure 4). These results indicated that LES was mainly
characterized by medium−high and medium levels with the widest distribution in Yan’an.
As a result, there was tremendous space to improve its LES status.

Overall, the temporal change of LES status in Yan’an from 2000 to 2018 was as follows:
visually, the area of the zone with a high LES level continually shortened by 29.25% from
2000 to 2018. The area of the zone with a medium-high LES level increased significantly,
expanding by 25.83% from 2000 to 2018, and reaching 15,329 km2 in 2018. Conversely,
those areas of zones having medium level and medium−low of LES remained relatively
steady over the past 18 years, fluctuating slightly around 14,914.60 km2 and 4010.60 km2,
respectively. Finally, the area of the zone with the low LES level increased significantly,
amounting to 139 km2 by 2018 (Figure 3).

In sum, land security tended to stabilize, but a gap from high level still existed sig-
nificantly, ecological greening projects would need to be further deepened to scientifically
regulate and guide land use structure, human activities, forest and vegetation coverage.
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represents the medium−low level, and S < 0.45 represents the low level.
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4. Discussion
4.1. Spatiotemporal Pattern of Land Ecological Security

Land ecosystems are an important part of the terrestrial ecosystem, but in the context
of rapid urbanization, human activities have caused a persistent alteration in land cover
on a regional scale that has led to weaker ecological security [59]. Accordingly, it is of
great significance to systematically evaluate the LES level for ensuring the sustainable
development of the land ecosystem. Yan’an is one of the most vulnerable and sensitive
regions on the Loess Plateau. Because of its various ecological environments and complex
topography, LES may be influenced by multiple differing factors, and there are varying
levels of ecological security throughout this region [60]. Within this context, it was necessary
to comprehensively investigate LES and its driving factors in Yan’an. As a whole, its
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regional land use types changed markedly, eco-environmental quality gradually improved
in most regions, and ecological vulnerability was superior than anticipated [61]. The results
obtained in our study were heterogeneous from the spatial perspective, which would
discriminate the most important region of change [62].

In sum, our research confirmed that the LES level was extremely desirable stable from
2000 to 2018 (Figure 3). LES in Yan’an was best characterized by zones at the medium-high
and medium levels. Spatially, the zones with high LES levels were mainly distributed
in southern Yan’an, including Fu county, Huangling county, Huanglong county, Yichuan
county, and Ganquan county. The zones with medium-high LES levels were mainly located
in the western and southern regions of Yan’an, such as Wuqi county, Zhidan county, Fu
county, and Huanglong county. Consequently, the ecological status of land in southern
and southwestern Yan’an was superior compared to the rest of region. The zone with the
medium-high LES level continued to expand from the west and south to the northeast. The
zones with medium LES levels were the most widely distributed in the central and northern
regions of Yan’an. In stark contrast, the zone with the low LES level was limited and
scattered. Hou et al. [61] stated that the ecological vulnerability of four northern counties
(Baota district, Ansai county, Zichang county, and Yanchuan county) was higher than that
of four southern counties (Fu county, Ganquan county, Huangling county, and Luochuan
county). For most of the study area, the range of ecological vulnerability indexes decrease
gradually from north to south, indicating that the safety of the ecological environment
increased from north to south. Temporally, the area of the zone with a high LES level
continuously decreased from 2000 to 2018. Whereas, that of zones at a medium level and
medium−low level of LES showed little fluctuation with relatively stable changes over
years, while for zones at medium−high and low levels of LES, it increased significantly.
The ecological vulnerability of Huangling county and Fu county was minimal from 1997 to
2011, and that of most regions has gradually decreased over years [61]. The results above
illustrated the security and stability of the regional ecological environment, which was
deeply responsible for the policy of returning farmland to forest.

The decreased area of the zone with a high LES level in Yan’an may be caused by
changes in land-use types. Other research has shown that from 1990 to 2018, the total area
of cropland, grassland, wetland, and unused land underwent a considerable reduction.
The area of land used for construction increased while the amounts of degraded areas of
forest, grassland, and wetland expanded, resulting in the deterioration of environmental
quality. The unstable trend of land cover change in the Loess Plateau and sandy loess hills
declined [60]. However, from 1999 onward, land conversion from farmland and unused
land into forest and grassland was widely implemented, which drove an improvement
in the quality of the ecological environment. All land-use types converted into dry land,
forest, and unused land showed improvements, indicating that ecological protection has
achieved noteworthy effects. However, potential degradation risks still exist in parts of
Yan’an. Hence, the policy of returning farmland to forest would need to be continually
implemented to maintain the balance of the land ecosystem.

4.2. Driving Mechanism of Land Ecological Security
4.2.1. Response of Primary Driving Variables to Land Ecological Security

Ecological land is a basic resource for human beings to survive, and ecological land use
is a strategy to manage land resources. Hence, ecologically-sustainable land use is essential
for humanity’s survival. Various climatic factors, such as temperature, precipitation, and
solar radiation, will affect the growing conditions of vegetation [63]. Incontestably, in
quantifying vegetation status, NDVI can gauge changes in biomass, VC, and ecosystem
parameters. Vegetation succession generally follows the process from low level to high
level structural complexity [64]. So, applying NDVI to study VC is paramount [65], and
has been widely utilized to analyze the change in VC on landscape [66]. Yan’an is an
ecologically fragile zone that is extremely sensitive to climate [25]. According to the
results illustrated in Figure 5, it was released that, from 2000 to 2018, factors dramatically
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influencing LES in Yan’an were NDVI, VC, TP, gross domestic product, economic density,
human disturbance index, degree of land use, regional development index, arable land
per capita, the value of ecosystem service, the elasticity of ecological environment, with
correlativity, which was also verified by stepwise regression analysis (Table 5). The structure
and function of land ecological security were strongly influenced by the evaluation model
of the natural-social-economic framework. NDVI, VC, TP belonged to the natural ecological
aspect, other influence indexes belonged to the economic, and social-ecological aspects,
deeply confirming that coupled natural-social-economic relationship was greatly critical to
LES [67]. Based on this, and the collinearity of influence factors was considered, so NDVI,
VC, TP was finally identified as the primary factors highly influencing LES by canonical
correlation analysis, which was coincident with results above (Figure 6), indicating the
natural ecological index critically affected LES, comparing to the economic, and social-
ecological aspects.
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Figure 5. Principal component analysis of land ecological security in Yan’an from 2000 to 2018.
Contrib. represents contribution rate of each factor to LES; LES represents land ecological security; TP
represents land surface temperature; VC represents vegetation coverage; NDVI represents normalized
differential vegetation index; ERS represents soil erosion; ESV represents the value of the ecosystem
service; HAI represents human disturbance index; SLP represents slope; RDLS represents topographic
relief; ECO represents the elasticity of ecological environment; BZ represents buffer zone; RDI
represents regional development index; ED represents economic density; GDP represents gross
domestic product; LU represents the degree of land use; LA represents arable land per capita; WD
represents water coverage; PD represents the density of the population; FP, grain yield.

For change characteristics of NDVI, VC, and TP, Qu et al. [68] found that NDVI
followed a significant upward trend, increasing at a rate of 0.15% per year, from 1985 to
2015. The trend of a human-induced increase in NDVI was consistent with the spatial
distribution of increasing forest areas in the eastern part of the Loess Plateau, which was
driven mainly by restoration projects. In addition, variation in NDVI during 1985–2015 in
the hill-gully region of Loess Plateau, indicated that the area of this region was significantly,
moderately, and slightly improved was 52,921.90 km2, 56,792.70 km2, and 25,889.80 km2,
respectively, which was significantly greater than degraded region [68]. Furthermore, the
last few decades have also produced evidence of an accelerating trend of climate change
in this region, and VC has been increasing on the Loess Plateau [69,70]. This finding
corresponds to the result conducted by Cao et al. [71], which found that VC increased
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rapidly over the past 30 years. Much of the Loess Plateau had a moderately high VC
in 2015. In the valley and mountain regions, more than 90% of the area had high or
moderately high VC and of the valley plain area, 96.26% (6.16 × 104 km2) of it had high
or moderately high VC. VC of 2001–2015 was 5.7 times higher than that reported for
1985–2000. Therefore, the LES of Yan’an can be mainly characterized by medium-high and
medium levels of LES. ZThe zones with medium-high LES levels continued to expand from
the west and south to the northeast, and their areas increased significantly with the years.
Nevertheless, VC evidently decreased in the hilly and gully regions of Loess Plateau [69]. In
the degraded region, increased VC did not meet expectations, indicating that anthropogenic
activity, such as land-use change, urbanization, and agricultural production, negatively
or indeterminately impacted the region and may have led to vegetation degradation. The
area of 71.53% was positively distributed, mainly in the hill-gully Loess regions. Thereby,
the area of the zone with high LES levels continued to decrease, while that of the zone with
a low LES level continued to expand.

Table 5. Stepwise regression analysis of factors affecting LES. LES represents land ecological security.
ANOVA represents the analysis of variance.

Coefficient ANOVA

Index Standardized
Coefficient T p R2 F p

(Constant) 50.045

0 0.809 538.740 0

VC 0.202 13.956
TP −0.305 −23.398
HAI −0.195 −15.219
GDP −0.049 −3.756
LA −0.151 −10.411
ESV 0.045 3.556
ED −0.077 −6.245
ECO 0.061 1.700
NDVI 0.527 4.589
RDI 0.195 2.099
LU 0.085 2.090
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4.2.2. Influence Status (Interaction, Explanatory Threshold, Contribution Degree) of
Driving Variables on Land Ecological Security

Land ecology performs an extremely critical function for promoting ecosystem stability.
Many implements of multilateral policies and agreements to forest landscape restoration
were promoted by the Global Partnership to restore forest and land ecosystems. such
as the Bonn Challenge policy, the Aichi Target 15, the Global 2030 Agenda, and Grain-
for-Green Program, dramatically sustaining the environmental management [8,9,12,16].
Vegetation is a fundamental indicator of the regional ecological environment, and NDVI is a
vegetation index that can be used to accurately monitor vegetation growth, such that NDVI
is positively correlated with VC [72]. TP and precipitation are closely related to NDVI,
which features a lag effect and significant spatial heterogeneity [73]. Among these factors,
TP is the most direct driving force affecting the change in NDVI. Changes in land use and
land cover drastically alter surface temperature, and NDVI during the growing season of
plants is the most sensitive to temperature, and the correlation between the two is mostly
strongly correlated and extremely correlated at the 95% significance level [74,75]. In Yan’an,
elevation ranges from 385 m to 1799 m and has significant differences between western
and eastern regions. Among them, elevation in the districts and counties along the eastern
Yellow River, concentrating on Yichuan county, Yachang county, and Yanchang county are
lower than 1200 m. The elevation of the northwest region (including Zhidan county, Wuqi
county, Ansai district) fluctuates between 1200 m and 1799 m, significantly exceeding that
in the east (Figure 1). Remarkable spatial differences and gradients of elevation result in a
diversity of climate, vegetation, and land-use patterns [61]. It was found through analysis
that the ecological security index was significantly positively correlated with NDVI and
VC, but was significantly negative with TP (Figure 7), which was deeply responsible for
LES status.

Given the regional differences, the degree of correlation of NDVI, VC, and TP is also
different [76,77]. In Yan’an, the path coefficient of NDVI, VC, and TP affecting ecological
security index was 0.11, 0.11, and 0.26 (Figure 8) indicating that the direct effect of TP
on ecological security index is greater than NDVI and VC. Meanwhile, a random forest
model was used to simulate the effects of NDVI, VC, and TP on advanced LES status (high
level and medium-high level) (Figure 9). The optimal threshold of NDVI, VC, and the
temperature was 0.20–0.64, 0.20–0.55, and 11.2–13 ◦C, respectively, which contributed to
advanced LES status (high level and medium-high level). Furthermore, the Venn diagram
is committed to analyzing and quantifying the individual and common interpretation
of multiple environmental variables [78]. As shown in Figure 10, LES was explained
separately by NDVI, VC, and TP with 1%, 1%, and 8%, respectively. Together, NDVI
and VC jointly explained 31% of LES, which were co-correlated and had a significant
synergistic effect on it. Based on the 2030 agenda aim for sustainable development, natural
resources and social and economic development are needed to be consistent thoroughly
with healthy ecosystem cycles [13,79]. Therefore, the effect of driving variables with their
significant synergistic interactions, explanatory threshold, and contribution rate on land
ecological security must be regulated chronically for achieving regional ecological stability
and sustainable development [80].
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Figure 9. Influences of NDVI, VC, and TP on advanced LES status (high level and medium−high
level) based on the random forest model. LES represents land ecological security; NDVI represents
normalized differential vegetation index; VC represents vegetation coverage; TP represents land
surface temperature. The value between the red dotted lines represents the optimal threshold range
of NDVI, VC, and TP required by the advanced LES status.
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5. Conclusions

Spatiotemporal distribution characteristic and response mechanism of land ecological
security (LES) to the driving variables in Yan’an were launched during the policy implemen-
tation (1999) of Grain for Green Project, using pressure-state-response (PSR) model based
on the systematic natural-socio-economic-ecological relationships in the land ecosystem.

LES of Yan’an was mainly characterized by medium−high level and medium level
from 2000 to 2018. The zone with high LES levels was mainly distributed in southern re-
gions (concentrated in the counties of Fu, Huangling, Huanglong, Yichuan, and Ganquan),
nevertheless, the area of these zones decreased over the years. Zone with medium-high
LES level was mainly concentrated in western and southern regions (including the counties
of Wuqi, Zhidan, Fu, and Huanglong), and continuously expanded to northeast regions. In
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consequence, the superior land ecological status appeared in the southwest and south of
Yan’an. Additionally, the zone with the largest area appeared in medium-high LES levels,
distributed in the central and northern regions, accounting for 37.22–46.27% of the total
area of Yan’an. Thereby, the ecological greening projects are suggested to be persistently
implemented for achieving the higher status of forest landscape ecosystem by rational
regulation of land use structure, human activities, and vegetation coverage.

Normalized differential vegetation index, vegetation coverage, and land surface tem-
perature were the primary explanatory variables of LES, separately possessing the optimal
threshold of 0.20–0.64, 0.20–0.55, and 11.2–13 ◦C, respectively, for advanced LES status (in-
cluding high level and medium-high level). Meanwhile, normalized differential vegetation
index and vegetation coverage had a significant synergistic effect upon LES based on their
interactive explanation rate of 31% for ecological security index and had a significantly pos-
itive and negative consistency with LES. The results of the LES evaluation combined with
the influence mechanism of explanatory variables are recommended to provide profound
insights into the intensification and sustainability of regional ecosystem safety.
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