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Abstract: The restoration of damaged or disrupted forests with genetically appropriate restoration
planting material that can adapt to future environmental conditions will ensure the conservation of
forest genetic resources. Abies koreana is endemic to the Republic of Korea, with declining populations
under current environmental changes. In this study, we examined the genetic diversity of its largest
population growing on Mt. Hallasan to determine the sampling size of planting material from the
population that will ensure 95% coverage of alleles in the population. We evaluated the genetic
diversity and spatial genetic structure of three subpopulations of A. koreana on Mt. Hallasan. A
total of 456 samples were evaluated using 10 microsatellites. The observed heterozygosity and
expected heterozygosity were 0.538 and 0.614 at the population level, respectively. The differences
among the subpopulations accounted for 4% of the total variance. Intervals between individuals
of the sample to be extracted were based on the two-target distance (5 and 10 m) inferred from the
spatial genetic structure. Through random sampling methods considering the target distance, we
showed that genetic diversity can be captured by obtaining at least 35 individuals in the population of
A. koreana on Mt. Hallasan.

Keywords: Abies koreana; sampling strategy; genetic diversity; restoration material; Mt. Hallasan

1. Introduction

Approaches to restore damaged or disrupted forests should utilize genetically appro-
priate restoration material that can adapt to future environmental conditions and ensure
the sustainable use and conservation of forest genetic resources [1]. The introduction of
exotic species alters the existing unique genetic traits of native species, resulting in genetic
pollution. Introgression may lead to the loss of native species identity through hybridiza-
tion, which is exacerbated by the smaller number of populations [2]. To prevent this, it
is important to use plant material native to the habitat to be restored [3]. Therefore, the
selection of the restoration material should be based on the unique genetic characteristics
of native habitats to ensure sustainable conservation of the genetic resources, by improv-
ing plant adaptability to changes in the environment [4]. Genetic diversity is a crucial
factor for species survival and adaptation, and changes in population genetic diversity,
estimated using genetic statistics, are a predictor of population resilience to environmental
changes [5,6].

Abies koreana E.H. Wilson is endemic to the Republic of Korea, where it is mainly
distributed on Mt. Jirisan, Mt. Hallasan, and Mt. Deogyusan [7]. It is a representative
coniferous species that is commonly distributed in the sub-alpine region above 1300 m
altitude [8]. The species has conservation value and is recognized as vulnerable to climate
change. In 1998, it was designated as “Near Threatened” by the IUCN Red List rating and
upgraded to “Endangered” in 2011 [9]. Mt. Hallasan is a distribution area with a single
community of A. koreana, covering the largest area [10].

Mt. Hallasan was proclaimed a natural reserve in 1966 and was designated as Hallasan
National Park in 1970, a UNESCO Biosphere Reserve in 2002, and a World Natural Heritage
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Site in 2007 [11–14]. Thus, the area is of high conservation value. However, owing to
growth decline, climate change, and other factors, the distribution of A. koreana on Mt.
Hallasan has declined by 15.2% in 10 years since 2006; according to a survey conducted
in 2017–2018, the incidence of dead trees was 28.2% [8,15]. Additionally, it has become
difficult to regenerate the natural A. koreana forest because of damage to pinecones caused
by insect pests and climate change in the habitat [16,17]. Therefore, appropriate restoration
and conservation measures are urgently needed to preserve and maintain the stability of
the declining A. koreana population on Mt. Hallasan.

Genetic variation in a population can be explained by various parameters, including
allele and genotype frequency, gene diversity, heterozygosity level, and disequilibrium
coefficient [18]. Marshall and Brown (1975) argued that a key indicator of optimal sampling
is the number of such alleles that each population possesses, that is, the number of alleles
that attain appreciable frequencies in only one population or in a few adjacent populations.
The goal is to include more than 95% of the alleles that occur in the target population
with a frequency greater than 0.05 [19]. However, sampling to detect alleles without a
sampling strategy may waste more resources and overlap genetically similar individuals as
the number of unnecessary samples increases. Therefore, extraction of genetically similar
material should be avoided. For optimal sampling, spatial genetic structural analysis is
used to understand the distribution of genetically similar specimens and determine the
appropriate sampling distance [20–22]. The sample size is then inferred, and it includes
more than 95% of the common alleles occurring in the target population with a frequency
greater than 0.05.

The purpose of this study was to present a sampling strategy for the conservation
and restoration of genetic resources of A. koreana population on Mt. Hallasan. First, we
evaluated the genetic diversity of A. koreana on Mt. Hallasan and conducted structure
analysis to see if there is any signature of population divergence. Second, we determined
the spatial genetic structure of each population. Third, after random sampling based on
the spatial genetic structure of each population, the number of specimens containing 95%
or more of the common alleles that occurred A. koreana population on Mt. Hallasan at a
frequency greater than 0.05 were selected. Finally, we suggested the minimum number of
individuals that should be sampled to obtain optimal restoration material for the A. koreana
population on Mt. Hallasan.

2. Materials and Methods
2.1. Study Sites

Needle leaves were collected from three subpopulations, from Yeongsil, Bangaeoreum,
and Jindallaebat, which are representative distribution areas for A. koreana on Mt. Hallasan
(Table 1, Figure 1). Mt. Hallasan has a representative large-scale population of Korean
fir, with a total area of 757 ha [8]. The mean age of A. koreana in Yeongsil, Bangaeoreum,
and Jindallaebat is estimated to be 73, 58, and 70 years, respectively [16]. Overall, it is one
population, but because the species mainly grows in the sub-alpine area of the mountain,
the main distribution area appears discontinuous. Therefore, the population was divided
into three sub-groups based on the distribution and region (west, east, and south) and
referred to as subpopulations. For each subpopulation, all mature trees (diameter at breast
height, DBH ≥6 cm) distributed within the study sites were selected. The height and DBH
of each individual were measured, and the average values are presented in Table 1. For
spatial structure analysis, the position of each individual was determined using a GPS (GPS
map60CSx; Garmin, Schaffhausen, Switzerland).
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Table 1. Location of sampled Abies koreana subpopulations.

No. Subpopulation Sample Size Height
(m)

DBH
(cm)

Geographic Location

Latitude Longitude Altitude (m)

1 Bangaeoreum 128 3.9 17.4 126◦31.0′ 33◦21.3′ 1610–1646
2 Yeongsil 152 3.6 17.3 126◦30.5′ 33◦21.6′ 1652–1663

3 Jindallaebat
(Azalea Field) 176 5.0 22.7 126◦33.3′ 33◦22.1′ 1493–1551
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Figure 1. Location of Abies koreana on Mt. Hallasan.

2.2. DNA Extraction, Amplification, and Sizing

The total genomic DNA was extracted from fresh needle leaves of mature trees using
a Plasmid SV mini kit (GeneAll Biotechnology, Seoul, Korea), and its concentration was
measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE,
USA).

Ten nuclear microsatellite (nuclear simple-sequence repeat, nSSR) markers developed
for different Abies species [23–25] were selected for the present study (Table 2). The poly-
merase chain reaction (PCR) amplification was performed with 15 µL reaction mixtures
containing 20 ng of template DNA, 1× reaction buffer, 2.5 mM MgCl2, 0.2 mM dNTPs,
0.04 µM FAM-labeled M13 (−19) sequencing primer, 0.2 µM primer mix, and 0.5 U Taq
DNA polymerase (Biofact, Daejeon, Korea). The PCR conditions included denaturation
at 94 ◦C for 5 min; 10 cycles at 94 ◦C for 60 s, 58–63 ◦C for 30–60 s, and 72 ◦C for 60 s;
25 cycles at 94 ◦C for 30 s, 51–58 ◦C for 30–60 s, and 72 ◦C for 60 s; and a final extension at
72 ◦C for 10 min. The PCR products were separated on an ABI 3730 xl Genetic Analyzer
(Applied Biosystems, Thermo Fisher Scientific, Foster City, CA, USA), and the genotypes
were determined using Gene Mapper v5.0 (Applied Biosystems, Thermo Fisher Scientific,
USA). All loci were checked for the occurrence of null alleles, large allele dropout, and
stutter bands using MICRO-CHECKER v2.2.3 software [26].

2.3. Genetic Data Analysis

Analysis of molecular variance (AMOVA) and analyses of genetic diversity indices,
namely the number of alleles (A), number of effective alleles (Ae), expected heterozygosity
(He), observed heterozygosity (Ho), and fixation index (FIS), were performed to determine
the differences in genetic variation between subpopulations. The Nei’s genetic distance
and pairwise FST value among the subpopulations were calculated. To visualize the
genetic distance among the subpopulations, the principal co-ordinates analysis (PCoA)
was performed using Nei’s genetic distance. All the analyses were performed for each
population using GenAlEx v.6.5 [27]. The significance level of deviation of FIS from zero
was determined using the FSTAT v2.9.4 software with 1000 permutations [28]. The genetic
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structure of the subpopulations was identified using the Bayesian clustering method with
the STRUCTURE v2.3.4 software [29]. Additionally, a pre-specified number of gene clusters
(K), from 1 to 6, was assumed, in which the simulations were run 40 times per K value.
All runs involved 100,000 Markov chain Monte Carlo samplings with a burn-in period of
100,000 iterations. Finally, the optimal K value was estimated by calculating ∆K, where the
K values were calculated according to the method of Evanno et al. [30] based on the mean
log probability and the standard deviation of the data using the STRUCTURE HARVESTER
program [31]. Moreover, CLUMP [32] and DISTRUCT [33] were used to align 40 replicates
and display the results separately.

Table 2. Characteristics of microsatellite markers used in the study.

No. Primer Primer (5′–3′) Repeat motif Reference

1 Aag02 F: TATTCCTCCACTTGGGTGCT
(GA)13

[23]
R: GGTGGAGATCCGTATGCAAT (Abies alba)

2 Aat04
F: CCATGTATGGTGCTCCTCCT

(CAG)11
[23]

R: CCTTCATTGCAGAAAAGCAA (A. alba)

3 Aat05
F: AGCATCCACATTCCGTAACC

(GCA)7
[23]

R: AGTTGACCGTTGGAGAGCAG (A. alba)

4 Aat12
F: ATCCATATCTCCTGCCTTGC

(AG)12
[23]

R: CTTTCCAGGTGATCTGATTGC (A. alba)

5 Aat15
F: AGGAGGAGGTTCAGCATGTC

(AGA)8
[23]

R: CTTGCTCTCTGACCCAGTTG (A. alba)

6 SF83
F: AGCAGCATAACCAAGGGTCAA

(CTT)3 . . . (GCC)5
[23]

R: TCTGAATTTCTAAAGGCGGC (A. alba)

7 NFF07
F: CCCAAACTGGAAGATTGGAC

(GA)33
[24]

R: ATCGCCATCCATCATCAGA (A. nordmanniana)

8 NFF15
F: CGCCTCCCTCCATTACTTC

(AC)15
[24]

R: TCGTCTAGAGAGGCGAAATTCT (A. nordmanniana)

9 C49
F: GACGAAGATCAGTACAAGGCACGA

(AGGAGA)7
[25]

R: GCGATCCTTCAATTTGTCCTTCTC (A. firma)

10 C28104
F: CGAGGAAGAAGCCAAGTTATCAGG

(ATA)5
[25]

R: CACAGTTAAAAAGGCGGCCTACAG (A. firma)

2.4. Spatial Genetic Structure Analysis

GeneAlEx v.6.5 [27] was used to determine the spatial genetic structure. Spatial
autocorrelation analysis was performed using the location of the individual and the genetic
distance of Smouse and Peakall [21]; Distance evaluation (distance class) was performed at
10 intervals of 5 m, and 999 permutations were performed for each evaluation. The 95%
confidence interval was calculated, and its significance was verified [21].

2.5. Comparison between Sampling Strategies

Intervals between individuals of the samples to be extracted were based on two target
distances (5 and 10 m) inferred from the spatial genetic structure. We randomly selected up
to 40 samples in units of 5 from each subpopulation, and samples were randomly selected
from the same units of all subpopulations. According to each of the 25 sampling strategies
(8 units × 3 subpopulations + 1 population), 10 subsets were generated using the Python
script. Additionally, the number of alleles on Mt. Hallasan with a frequency ≥0.05 was
compared according to the sample size extracted based on the sampling strategy. Mean
comparison was conducted using Duncan’s test at p ≤0.05 with R [34].

3. Results
3.1. Genetic Diversity

As MICRO-CHECKER results revealed no evidence of genotyping error due to stut-
tering or large allelic dropout. The mean frequency of null alleles across loci ranged from
0.005 to 0.085. The average genetic diversity of the population on Mt. Hallasan is presented
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in Table 3. The mean number of alleles (A), effective alleles (Ae), observed heterozygosity
(Ho), expected heterozygosity (He), and fixation index (FIS) were 8.0, 4.2, 0.538, 0.614, and
0.083, respectively (Table 3). The Jindallebat subpopulation showed the highest genetic
diversity (A = 7.5, A = 4.3, Ho = 0.589, and He = 0.619) and the lowest fixation index (0.015).
However, the Bangaeoreum subpopulation showed the lowest genetic diversity (A = 6.8,
A = 3.8, Ho = 0.480, and He = 0.591) and the highest value of fixation index (0.136).

Table 3. Genetic diversity of Abies koreana subpopulations.

Subpopulation A Ae Ho He FIS

Bangaeoreum Mean 6.8 3.8 0.480 0.591 0.136 ***
SE 1.8 1.0 0.066 0.078 0.076

Yeongsil Mean 7.0 3.6 0.527 0.595 0.071 ***
SE 1.7 0.7 0.062 0.076 0.058

Jindalleabat Mean 7.5 4.3 0.589 0.619 0.015 ***
(Azalea Field) SE 2.0 1.1 0.076 0.083 0.065

Mt. Hallasan
Mean 8.0 4.2 0.538 0.614 0.083 ***

SE 2.1 1.0 0.065 0.079 0.059
A: number of alleles; Ae: number of effective alleles; Ho: observed heterozygosity; He: expected heterozygosity;
FIS: fixation index; ***: Significant deviation from Hardy–Weinberg equilibrium (p < 0.001); SE, standard error.

According to the AMOVA, the differences among the subpopulations accounted for
only 4% (p < 0.01) of the total variance, and the variability within subpopulations accounted
for 96% of the variance (Table 4). The genetic differentiation among subpopulations, as
measured using the FST value, was 0.041.

Table 4. Analysis of molecular variance.

Source
Degrees Sum Mean Estimated Percent p

of Freedom of Squares Squares Variation of Variation

Among
subpopulations 2 100.133 50.066 0.287 4% 0.001

Within
subpopulations 453 3099.492 6.842 6.842 96% -

Total 455 3199.625 7.129 100% -

Based on the Nei’s genetic distance, the genetic distance between subpopulations was
0.031–0.050 (Table 5, Figure 2). The pairwise FST estimated among subpopulations was
0.010–0.016 (Table 5).

From the STRUCTURE analysis, the value of ∆K was the highest at K = 2, based on
the theory suggested by Evanno et al. [30] (Figure 3b). When K was set at 2, the proportion
of the two clusters was visualized in all populations (Figure 3c).

Table 5. Nei’s genetic distance below the diagonal and pairwise FST values above the diagonal among
the three subpopulations of Abies koreana.

Subpopulation Bangaeoreum Yeongsil Jindalleabat

Bangaeoreum - 0.016 *** 0.010 ***

Yeongsil 0.050 - 0.013 ***

Jindalleabat 0.031 0.046 -
***: p < 0.001.
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3.2. Spatial Genetic Structure

The spatial autocorrelation analysis of the genetic variation of an individual revealed
that within the Bangaeoreum subpopulation, individuals distributed within a distance of
5 m were genetically similar and those within the range from 5 to 25 m were randomly dis-



Forests 2022, 13, 24 7 of 11

tributed. Individuals in the range of 25–30 m were genetically distinct, and those distributed
within >30 m were randomly distributed. In the Yeongsil subpopulation, genetic similarity
was observed among individuals within 10 m distance, and this subpopulation was ran-
domly distributed within >10 m. Genetic similarity in the Jindalleabat subpopulation was
observed among individuals within approximately 10 m distance, and it was randomly
distributed within 10–15 m, 20–30 m, and ≥35 m. Genetically different individuals were
found within 15–20 m and 30–35 m (Figure 4).
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the correlation between genetic distance and geographic distance. The dotted lines are 95% confidence
intervals. BO, Bangaeorum; YS, Yeongsil; JB, Jindallaebat.

3.3. Sample Size

The number of individuals randomly sampled at a distance from each subpopula-
tion containing alleles with a frequency ≥0.05 is listed in Table 6. Sampling of 20 and
35 individuals from each subpopulation led to the detection of 95% and 100% of all alle-
les, respectively. At the population level, 100% of the alleles were recorded by sampling
30 individuals, 10 from each subpopulation.
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Table 6. Comparison of allele numbers with frequency ≥0.05 in Abies koreana population on Mt. Hallasan according to the sample size extracted based on the
sampling strategy. Values with different letters are significantly different according to Duncan’s test at p ≤ 0.05.

Subpopulation
No. of Samples

5 10 15 20 25 30 35 40

Bangaeoreum (%) 70 ± 3.9 e 89 ± 3.0 d 93 ± 5.3 c 95 ± 3.6 bc 98 ± 1.6 ab 99 ± 1.2 a 100 a 100 a

Yeongsil (%) 73 ± 4.6 d 86 ± 5.6 c 93 ± 5.5 b 97 ± 2.8 a 99 ± 2.8 a 99 ± 1.2 a 100 a 100 a

Jindalleabat (%) 75 ± 3.6 e 90 ± 4.0 d 95 ± 4.4 c 97 ± 2.1 bc 98 ± 2.1 ab 100 a 100 a 100 a

Population
No. of Samples

9 15 24 30 39 45 60 69 75 84 90 99 105 114 120

Mt. Hallasan (%) 87 ± 6.0 c 95 ± 1.6 b 98 ± 2.8 ab 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a 100 a
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4. Discussion

The genetic diversity of A. koreana on Mt. Hallasan (He = 0.614) was lower than that of
the other large populations on Mt. Jirisan and Mt. Deogyusan (He = 0.672, 0.655) [35,36]
and similar to that of a small population on Mt. Geumwonsan (He = 0.612) [35]. Mt.
Jirisan and Mt. Deogyusan are located in the Korean peninsula, and the population on
Mt. Geumwonsan comprises a small group of less than 20 individuals with a low genetic
diversity. Individual movement on Mt. Hallasan, which is an island, is limited, and as its
population diversity is lower than that of other populations of similar size, it is necessary
to prioritize the conservation of the large populations during restoration.

The AMOVA results showed that the degree of differentiation among the subgroups
of Mt. Hallasan was significantly higher than that in the population Mt. Jirisan (0.4%) [34].
However, low value in pairwise FST and Nei’s genetic distance, indicates that there is
no differentiation between subpopulations. Additionally, according to the STRUCTURE
results, there was no strong evidence of differentiation between subpopulations. The
two clusters seem to indicate some mixing of genotypes, but genetic variation is equally
distributed in all three subpopulations. Although the number of clusters, K = 2, had the
highest log probability based on the data, it was not significantly more supported than
K = 1 based on the theory suggested by Pritchard et al. [30] (Figure 3a). Moreover, it is a
common and well-known bias of STRUCTURE to show K = 2, even without population
subdivision [37,38]. These results evidently indicate that there is no difference between
subpopulations of A. koreana in Mt. Hallasan. Therefore, it is thought that the optimal
sampling method for restoration of A. koreana population on Mt. Hallasan is to extract
samples from all locations, regardless of subpopulations.

The minimum distance between individuals with random distribution on Mt. Hal-
lasan population was 5 m in the Bangaeorum subpopulations and 10 m in the Yeongsil
and Jindallaebat subpopulations. The topography and average height of individual trees
contributed to the differences in each subgroup. In the Bangaeorum subpopulation, the
topography affected the scattering distance of the seeds into the valley and prevented their
spread over a wide range. The tree height and topography in the Yeongsil subpopulation
were similar to those in the Bangaeorum subpopulation. However, the trees in the Jindal-
laebat subpopulation were 5 m taller than those in the other two subpopulations, and this
increased the scattering distance of the seeds, and thereby the seed distribution.

Sample size, which is the number of randomly sampled trees in each subpopulation,
will ensure the detection of all common alleles (frequency of ≥0.05) of each subpopulation.
A sample size of 20 individuals was sufficient to identify 95% of the alleles, and extraction
from 35 individuals covered 100% of the alleles. Additionally, 100% allele coverage was
possible by 30 individuals, 10 from each subpopulation. Similar to the previous results,
which demonstrated that there was little differentiation between subpopulations in the Mt.
Hallasan, the results of the sample size simulations showed that genetic diversity could be
captured by samples of more than 35 individuals, regardless of locations. Therefore, as an
optimal sampling strategy for restoration material, collecting at least 35 samples regardless
of subpopulations can capture the genetic diversity of the A. koreana in Mt. Hallasan.

5. Conclusions

Abies koreana, endemic to the Republic of Korea, is distributed in sub-alpine regions
with declining populations under current environmental changes. Appropriate restoration
and conservation measures are urgently needed to conserve the stability of the declining
A. koreana population on Mt. Hallasan. In this study, we estimated the genetic diversity,
genetic differentiation, and spatial genetic structure of A. koreana population on Mt. Hal-
lasan. Based on the results, we proposed sampling 35 individuals, as an optimal sampling
strategy to capture the genetic diversity of A. koreana on Mt. Hallasan. Future analysis in-
cluding crossbreeding rate, effective population size, and seed dispersal patterns would be
helpful to estimate the effect of the mating system on genetic variation in the progeny of the
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analyzed populations. Our study thus provides insights for the development of strategies
to restore and conserve this endangered species in future climate change scenarios.
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