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Abstract: Accurate information about forest type and distribution is critical for many scientific
applications. It is possible to make a forest type map from the satellite data in a cost effective way.
However, forest type mapping over a large and mountainous geographic area is still challenging,
due to complex forest type compositions, spectral similarity among various forest types, poor quality
images with clouds or cloud shadows and difficulties in managing and processing large amount data.
Based on the Google Earth Engine (GEE) cloud platform, a method of forest types mapping using
Landsat-8 OLI imagery and multiple environmental factors was developed and tested within Yunnan
Province (about 390,000 km2) of China. The proposed approach employed a pixel-based seasonal
image compositing method to produce two types of seasonal composite images, i.e., four 7-spectral-
band composite images and four 5-VI-band composite images associated in spring, summer, autumn,
and winter. Then, single-season feature bands and multi-seasonal feature bands were combined
with the feature bands of topography, temperature, and precipitation, respectively, and resulting in
17 feature combinations. Finally, using a random forest (RF) classifier, 17 feature combinations were
separately experimented to classify the forest type over the study area. The study area was firstly
classified into the forest and the non-forest, and then the forest was sub-classified into five forest
types (evergreen needleleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, and mixed forest). The results showed that the pixel-based multi-seasonal median
composite can produce a cloud-free image for the entire region and is suitable for forest type mapping.
Compared with a single-season composite, a multi-seasonal composite can distinguish different forest
types more effectively. The environmental factors also improve the accuracy of forest type mapping.
With the ground survey samples as reference values, the classification performance of 17 feature
combinations was compared, and the optimal feature combination was found out. For the optimal
feature combination, its overall accuracy of the forest/non-forest cover map and the forest type map
reached 97.57% (Kappa = 0.950) and 70.30% (Kappa = 0.628), respectively. The proposed approach
has demonstrated strong potential of high classification accuracy and convenient calculation when
mapping forest types over a national or global scale, and its product of 30 m resolution forest type
map is capable of contributing to forest resource management.

Keywords: forest type classification; multi-seasonal image composite; Landsat; Google Earth Engine;
random forest
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1. Introduction

As the largest biological resource bank on the Earth, forests cover about 30% of the
land surface and play an irreplaceable role in mitigating climate change, improving the
environment, and ensuring ecological security [1]. Through increasing carbon storage
and water holding capacity and decreasing soil erosion, the ecological effects of forests
contribute to the biodiversity of the Earth [2]. At the same time, the ecological function
of forest ecosystems varies with forest types, and the extent of different forest types is
significant for the ecological effectiveness of forests [3]. Yunnan Province, located in the
southwest of China, is rich in forest resources, and forest covers 65.04% of the whole area [4].
Because of the rugged terrain and diverse climates, Yunnan Province owns an extremely
rich biodiversity and a wide variety of vegetation types in China [5]. Therefore, information
about the distribution of different forest types in this area is important for a variety of
forest research.

The ground survey is a traditional method to collect forest stand and composition
information. Usually, forest field inventory data are collected and aggregated by measuring
sampling plots, and therefore the final ground survey data are generally at the forest stand
level [6]. However, most forest areas, especially in mountainous regions, are often remote
and even inaccessible [7], and thus the ground survey is costly, time-consuming, and spa-
tially restricted [6]. In recent decades, remote sensing technology has become an important
and efficient approach to obtain forest spatial distribution information at the regional and
national levels in a more efficient way and it allows a higher update frequency [6,8]. Thanks
to the free access to Landsat and Sentinel, as well as rapid improvements in data-storage
and computing capabilities, a Chinese forest type product (Forest2010) [9] and several
global land-cover products (FROM_GLC2010 [10], FROM_GLC2015 [11], GlobeLand30 [12]
and FROM_GLC10 [13]) at fine spatial resolution (30 m and 10 m) have been successfully
developed. However, the current main source of 30 m forest type data is global land cover
products, and these land cover products did not focus on forest type classification and do
not make better use of phenological information, which limits the research and application
of forest type classification.

In the research of forest type mapping, phenological characteristics of forests are
often used as useful features to discriminate forest types. Phenology includes obvious
processes such as the coloring of leaves in deciduous temperate forests in autumn due
to leaf senescence, the intense green colors of fresh leaves and needles in springtime as
well as flowering events [14]. The seasonal variation of visible spectral response in forest
species and the phenological differences in senescence among tree species could present
unique forest classification opportunities [15]. The research on forest type classification
using phenological characteristics is mainly divided into three types: (1) Identify one
forest type by the key phenology phases, which are extracted through analyzing the
vegetation index time series of different land cover types [16]. (2) Map multiple forest types
by collecting a set of cloudless images from specific phenological windows, which show
different phenological characteristics for different types. For this type of research, it not only
requires good prior knowledge about the phenological characteristics of different forests,
but also faces challenges to acquire cloudless imagery for specific phenological events,
especially in areas with frequent cloud cover [8,15]. (3) Map multiple forest types using
spectral information from time series data. This type of research does not require image
selection and good prior knowledge about the phenological characteristics of different
forests. For instance, Li et al. used forest phenological characteristics from MODIS EVI
time-series data to map forests of China [9]. However, the methods, which use dense time-
series data to map forest types over large area, usually only use one or several vegetation
index time-series to classify forests without considering the original band features; and
they will lose the multi-seasonal spectral band information that may be more effective for
forest classification. In addition, when mapping forest types on a large scale, especially
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in large mountainous areas, clouds and rain often reduce image quality and then greatly
impact the accuracy of forest type mapping.

In previous studies, topographic factors have been proven to improve the accuracy
of forest type classification [6,17]. Topographic factors can be represented by DEM or
variables derived from a DEM [18]. In addition, climate plays an important role in the
dynamic change of forests, so the impact of climate factors on forest type could not be
neglected especially in mountainous areas [8]. Among many climate factors, temperature
and precipitation are very critical for local forest types [19]. However, climate factors were
less considered in previous studies because climate factors with low spatial resolution, e.g.,
precipitation, cannot be measured or deduced easily. In addition, forest type mapping
over a large scale requires powerful geo-big data processing capabilities. The production
of products over a large scale implemented on a supercomputer or processor PC is time-
consuming and laborious and is not easy to update in time. Google Earth Engine (GEE) is a
planetary-scale platform for large-scale Earth observation data and geographical analysis,
and it can provide massive geospatial data and machine learning algorithms [20]. GEE has
the entire Landsat archive along with many free raster datasets from NASA, European Space
Agency (ESA), and other imagery [21]. The remote sensing cloud computing platforms
can effectively solve limitations such as data collection, managing, and processing [20,22].
GEE has been a study platform for many studies [23–29]. There are also many studies
on forest-type mapping based on GEE, such as extracting bamboo using Landsat time
series [30] and mapping tree species using Sentinel-2 imagery [31]. However, there are still
very limited ways to combine multiple environmental factors with a cloud platform to map
forest types in large mountainous areas using multi-seasonal composites of one year of
Landsat imagery [6].

In this context, to meet the needs of various fields for forest type maps over a large
area, this study aims to explore methods of mapping forest types over large, complicated
mountain areas by using one year of Landsat imagery and multiple environmental factors,
based on the Google Earth Engine cloud platform. The study tries to address the impact of
multi-seasonal and climate-related variables and determine the optimal feature combination
for the forest type classification.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1a, the study area is situated in the southwest of China, Yunnan
Province. With a substantially large area of 390,000 km2 and 16 administrative divisions,
Yunnan Province stretches over more than 8 latitudes between tropical and subtropical
climate zones. This region is featured as a mountainous plateau and has diversified terrain
types. The whole terrain inclines from north to the south and southeast [32], with an
elevation difference of more than 6000 m (Figure 1b). Different elevational belts can be
found within the study area (montane, alpine and sub-alpine zone, and basin). The climate
of Yunnan belongs to the plateau-type tropical monsoon climate, with annual average
temperature of 15◦ and annual mean precipitation of over 1000 mm [33]. However, the
distribution of annual precipitation dramatically decreases from west to east, with rainy
areas in the west and south and dry areas in the northwest (Figure 1d). Due to its complex
and varied terrain, the inner local climates of Yunnan vary greatly, including hot-dry,
tropical, and subtropical, temperate, and cold climates.
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Figure 1. The geography of the study area. (a) the location; (b) the elevation; (c) the annual average 
temperature (MOD11A2 V6 product [34]); and (d) the annual total precipitation (OpenLandMap 
Precipitation monthly product [35]). 

2.2. Data 
2.2.1. Landsat OLI Imagery 

The research used the Landsat 8 surface reflectance (SR) Tier 1 images archived in 
the GEE platform (Table 1). According to the path/row of Landsat data, Yunnan Province 
is fully covered by 35 scenes of Landsat images. Given the frequent cloud coverage, espe-
cially in a mountainous region, all the available Landsat 8 images from 1 March 2017 to 1 
March 2018 were collected to ensure that each pixel location has as much cloud-free data 
as possible. In total, 530 valid images were collected during the study period, with 155 
images in spring, 91 images in summer, 133 images in autumn, and 151 images in winter 
(Figure 2). 

Because Yunnan is located between tropical and subtropical zones and has a large 
area, there are few cloud-free Landsat images available in the growing season. Figure 2 

Figure 1. The geography of the study area. (a) the location; (b) the elevation; (c) the annual average
temperature (MOD11A2 V6 product [34]); and (d) the annual total precipitation (OpenLandMap
Precipitation monthly product [35]).

2.2. Data
2.2.1. Landsat OLI Imagery

The research used the Landsat 8 surface reflectance (SR) Tier 1 images archived in the
GEE platform (Table 1). According to the path/row of Landsat data, Yunnan Province is
fully covered by 35 scenes of Landsat images. Given the frequent cloud coverage, especially
in a mountainous region, all the available Landsat 8 images from 1 March 2017 to 1 March
2018 were collected to ensure that each pixel location has as much cloud-free data as
possible. In total, 530 valid images were collected during the study period, with 155 images
in spring, 91 images in summer, 133 images in autumn, and 151 images in winter (Figure 2).
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Table 1. Datasets used in this study—all are available on the GEE platform. USGS represents the
United States Geological Survey.

Dataset GEE ID Dataset Provider Period Spatial
Resolution

USGS Landsat 8 Level 2,
Collection 2, Tier 1 LANDSAT/LC08/C02/T1_L2 USGS 1 March 2017–1

March 2018 30 m

OpenLandMap Precipitation
monthly

OpenLandMap/CLM/CLM_
PRECIPITATION_SM2RAIN_M/v01 EnvirometriX Ltd. 2007–2019 1 Km

MOD11A2.006 Terra Land
Surface Temperature and

Emissivity 8-Day Global 1km
MODIS/006/MOD11A2 NASA LP DAAC at the USGS

EROS Center
1 March 2017–1

March 2018 1 Km

SRTM Digital Elevation Data USGS/SRTMGL1_003 NASA/USGS/JPL-Caltech 2000 30 m
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Figure 2. The number of collected Landsat 8 surface reflectance images in 12 months with five cloud 
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have shown that rising temperatures could lead to a significant advancement of the spring 
phenology of plants in temperate and frigid zones, leading to a prolonged plant growth 
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Figure 2. The number of collected Landsat 8 surface reflectance images in 12 months with five cloud
cover percent levels. Spring is from April to May; Summer is from June to August; Autumn is from
September to November; Winter is from December to February of next year (Spring: 155, Summer:
91, Autumn: 133, Winter: 151).

Because Yunnan is located between tropical and subtropical zones and has a large area,
there are few cloud-free Landsat images available in the growing season. Figure 2 shows
the number of images with different cloud cover percentage levels in each month from 1
March 2017 to 1 March 2018. Images with a cloud coverage of less than 10% are mainly
from January to May and November to December. The five months from June to October
are the rainy season in Yunnan, so the images available in this period are less than the
rest of the months because some poor-quality images are taken as invalid. It is so cloudy
from June to October in Yunnan that most images in this period have more than 50% cloud
coverage and few have less than 10% cloud coverage and this makes it difficult to capture
the phenological change of forests during the growing season, which usually last from June
to September in Yunnan.

2.2.2. Environmental Factors

The growth of forest relies on environmental conditions, so forest types are closely
related to environmental factors. Adding environmental factors into remote sensing classifi-
cation is bound to improve the accuracy of forest type mapping. Many studies have shown
that topographic data, especially elevation, slope, and aspect, could increase the estimation
accuracy on the land cover when classifying with spectral bands. At the same time, tem-
perature and precipitation are critical for the growth of forests. Some studies have shown
that rising temperatures could lead to a significant advancement of the spring phenology
of plants in temperate and frigid zones, leading to a prolonged plant growth season [36].
Precipitation indirectly affects forest phenology by changing accumulated temperature and
radiation. Hence, environmental factors, including terrain factors (elevation, slope, and
aspect), temperature, and precipitation were also considered in the study.
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However, it is worth noting that the temperature and precipitation data used in the
study both are 1-km spatial resolution data products (Table 1). In addition, the temperature
data were introduced from the MOD11A2 V6 product [34], which provides an average 8-day
land surface temperature (LST). The monthly precipitation dataset used in the research
was from OpenLandMap Precipitation monthly product [35]. Here, topographic data were
derived from the Shuttle Radar Topography Mission (SRTM) with 30 m resolution [37]. In
addition, the two environmental factors were obtained and resampled to 30 m resolution
by the GEE platform.

2.2.3. Select of Sample Site

In order to have a reasonable coverage of samples, samples were collected from
eight sites through the evenly distributed sampling scheme, as shown in Figure 3. The
spatial locations of the eight sites are roughly located in the east, southeast, south, west,
northwest, north, northeast, and central of Yunnan Province, and they include all climate
types from the cold temperate zone to subtropical zone. There are significant differences in
temperature, precipitation, and altitude among eight sites.

There are multiple climate types in the eight counties (cities) due to the complex
geographic environment. In terms of temperature, the monthly average temperatures of
site 5 and site 6 are significantly lower than other sites; in particular, the average monthly
temperature is in the range of 12.9–22.2 ◦C; and the average monthly temperature of other
sites is in the range of 14.2–31.4 ◦C. From Figure 3d, it can be said that the precipitation of
site 2, site 3, and site 5 are higher than that of other regions in most months of a year; the
monthly averages of precipitation of these three regions are extremely uneven in different
seasons, with 208–324 mm in July and only 15–43 mm in February. Moreover, the monthly
average precipitation of site 6, with a range of 3 mm (December)–186 mm (July), is lower
than other sites. The climate of site 6 is relatively dry and cold. The eight sites also have an
obvious difference in altitude. Compared with other sites, site 1 has the smallest altitude
difference with an altitude range of 156 m–1834 m. In addition, the altitude differences
between the lowest and highest altitudes at site 2, site 3, site 5, site 7, and site 8 are in the
range of 1776–2974 m, and the altitude differences at site 4 and site 6 are 3434 m and 3894
m, respectively.

The eight sites include evergreen needleleaf forests, deciduous needleleaf forests,
evergreen broadleaf forests, deciduous broadleaf forests, and mixed forests. The tree
species of evergreen coniferous forests in Yunnan Province mainly include spruce (Picea
asperata Mast.), fir (Abies fabr (Mast.) Craib), cypress (Cupressus funebris Endl.), Chinese white
pine (Pinus armandii Franch.), Yunnan pine (Pinus yunnanensis), sikang pine (Pinus densata
Mast.), khasi pine (Pinus kesiya var. langbianensis), and so on. Deciduous broadleaf forest is
the most common forest type in the temperate zone. Evergreen broad-leaved forest is also
called Sub-tropical evergreen broad-leaved forest because it occurs in the areas dominated
by a subtropical monsoon climate [38,39]. The evergreen broad-leaved forests in Yunnan
distribute from 800 to about 3000 m and most are abundant between 1100 and 2700 m.
In Yunnan, evergreen broad-leaved forest almost covers the entire tropical mountains
and the subtropical area, except for the alpine and subalpine areas above 3000 m asl in
northwestern Yunnan [39]. The distribution of deciduous broad-leaved forests is widely
distributed, mainly distributed in the area north of 23◦39′ N, but the area is small and
sporadic [39]; this type of forest is all deciduous in winter, with obvious seasonal changes
in the community physiognomy. Mixed forests occur in the transition zone between
the evergreen broad-leaved forest belt and the subalpine coniferous forest, mainly in the
mountainous areas of 2400 m and 3100 m [40]; this type of forest is concentrated on both
sides of ditches and gentle slopes within a small area.
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Figure 3. The spatial distribution of samples and the location, temperature, precipitation, and
elevation characteristics of eight sites for sample collection. (a) 5321 sample plots for the forest/the
non-forest are depicted in Section 2.3.2; (b) 8701 sample pixels for five forest types are depicted in
Section 2.3.2. ENF means evergreen needleleaf forest; DNF means deciduous needleleaf forest; EBF
means evergreen broadleaf forest; DBF means deciduous broadleaf forest; MF means mixed forest;
(c) monthly average temperature; (d) monthly average precipitation; (e) minimum and maximum
altitude. Eight black-border regions are the location of eight administrative counties (cities) for
sample collection. Eight red rectangles are the case regions used for comparison.

2.3. Methods

The methodological workflow of this study consists of the following steps (Figure 4):
(1) extracting seven spectral reflectance bands and five vegetation indexes for all the images;
(2) extracting three environmental factors; (3) implementing seasonal image composite; (4)
building 17 feature combinations using all existing features; (5) implementing forest/non-
forest classification and forest type classification using RF classifier based on the 17 feature
combinations; (6) accuracy assessment and comparison of 17 results; (7) improving forest
type classification accuracy based on the feature combination with the best accuracy in (6);
(8) analyzing the results using the information of RF feature importance and feature group
ranking; (9) comparing the forest/non-forest map and the forest type map with four public
reference products, Forest2010, FROM_GLC2015, GLC_FCS2020 and MCD12Q1.
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the Google Earth Engine cloud platform.

2.3.1. Classification Scheme

Due to the diverse climate types and topographical conditions in Yunnan Province,
its forest has a complex stand structure and environmental conditions, which makes it
difficult to improve the accuracy of forest types classification. The spectral characteristics
of forest types and other vegetation types (such as crops, shrubs and grasslands) are easy
to be confused in the classification of land cover. In addition, the spectral characteristics
of forest types and non-vegetation land cover types (such as bare land, construction land,
water body, snow and cloud) are obviously different, which is easy to classify. To reduce
the impact of other land cover types on forest classification, the study adopts two-level
classification and distinguishes forests and non-forests firstly.

For the classification of forest type, the forest areas were further classified into 5 types,
including evergreen needleleaf forest (ENF), deciduous needleleaf forest (DNF), evergreen
broadleaf forest (EBF), deciduous broadleaf forest (DBF), and mixed forest (MF). The
definitions of the five forest types are drawn from the International Geosphere-Biosphere
Program (IGBP) classification schemes [41]. Table 2 lists the forest type classification scheme
adopted by the study.
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Table 2. The classification scheme of this study, and the definitions of forest types are drawn from the
International Geosphere-Biosphere Program (IGBP) classification schemes.

First-Level Class Second-Level Class Abbreviation Description

Forest

Evergreen Needleleaf Forests ENF Dominated by evergreen conifer trees
(canopy > 2 m). Tree cover >60%.

Evergreen Broadleaf Forests EBF Dominated by evergreen broadleaf and palmate
trees (canopy > 2 m). Tree cover >60%.

Deciduous Needleleaf Forests DNF Dominated by deciduous needleleaf (larch) trees
(canopy > 2 m). Tree cover >60%.

Deciduous Broadleaf Forests DBF Dominated by deciduous broadleaf trees
(canopy > 2 m). Tree cover >60%.

Mixed Forests MF
Dominated by neither deciduous nor evergreen

(40–60% of each) tree type (canopy > 2 m).
Tree cover >60%.

Non-forest - -

2.3.2. Sampling Strategy

Supervised classification methods rely on training samples [42]. The influence of
training sample size on classification accuracy is greater than that of the adopted algo-
rithm [42,43]. Thus, the size and quality of training samples are the key to classification [42].
Representative samples were collected in the above eight counties (cities) (Figure 3) from
Chinese Forest Management Inventory (FMI) data and high-resolution images from Google
Earth. Chinese FMI is a ground survey of every ten years at forest stand level. FMI collects
forest information about forest management type, dominant tree, average height, the av-
erage diameter at breast height, age, canopy density, topographic factors, and soil type,
etc. [1,44]. FMI is extremely laborious and time-consuming, and the latest one was carried
out in 2016. Here, it is assumed that there were no dramatic changes in the forest types
from the year of FMI data (2016) to the year of acquisition of remote sensing images (March
2017–March 2018). Moreover, with exhaustive comparison with high-spatial-resolution
images from Google Earth, the quality of reference samples can be guaranteed.

Based on the consideration of spectral characteristics of different classes involved in
the classification scheme (Table 2), two levels of samples with different sample size were
collected in the research. For the first level, the non-forest classes consisted of multiple land
cover types, which involved multiple spectral. Therefore, samples of non-forest types are
needed to fully mix the spectra of multiple land cover types, and a large sample plot with
300 m× 300 m was employed. For the forest-type classification level, the aim is the division
of internal natural attributes of the forest land. The sample unit with a larger coverage area
may lead to more mixed pixels, which represent the spectral mixture of different forest
types. Hence, 30 m × 30 m sample pixels, rather than 300 m × 300 m, were involved in the
classification of forest type.

The 300 m × 300 m sample plots were produced by buffering sample points that
generated randomly and distributed evenly in the eight sites (Figure 3a). Each sample
plot was reviewed and categorized into the forest and the non-forest using high-resolution
images from Google Earth. Sample plots that caused the problems with spectral confusion
would be removed or manually modified. Sample pixels for five forest types were also
generated randomly, and the forest type of each pixel was specified according to the
dominant tree information of FMI. An internal of at least 90 m was set for adjacent sample
pixels (3 pixels at least on Landsat 8 images). At the same time, sample pixels located
within 600 m (20 pixels) of the adjacent area of different forest types were eliminated. The
remaining sample pixels were also reviewed using field work data, high spatial resolution
Google Earth images, and the Landsat NDVI time series curve. Unfortunately, it is not easy
to check every forest type sample due to the huge quantity of samples and only parts of
the forest type sample pixels were randomly selected for checking. Finally, the remaining
sample plots and pixels were randomly divided into training and validation sets according
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to the ratio of 7 to 3, respectively (Table 3). There is no overlap between the training sample
and validation sample sets.

Table 3. The number of samples in the two classification levels. The sample unit are with size of 300-m
by 300-m for the forest/non-forest classification and 30-m by 30-m for the forest type classification.

Class Name
Forest/Non-Forest (Plot) Forest Types (Pixel)

Non-Forest Forest Total ENF DNF EBF DBF MF Total

Train Samples 1750 1988 3738 1240 914 1315 1346 1478 6293
Test Samples 772 861 1633 451 441 530 484 502 2408

2.3.3. Image Composite and Feature Extraction

Although the long-term plans for periodic and systematic data acquisitions have
guaranteed large amounts of Landsat data available, the availability of Landsat data is
not ideal for persistently cloud-contaminated areas, i.e., the mountain area, is less than
ideal [45,46]. Most of the Landsat 8 images for Yunnan are not free of clouds, and images
from June to September are practically affected by clouds and cloud shadows (Figure 2).
In this research, pixels affected by cloud and cloud shadows in each Landsat imagery
(530 images in total) were identified and eliminated by Pixel Quality Assessment (QA)
band from Landsat 8 SR collection [47–49]. The QA band generated from the CFMASK
algorithm [48], and each pixel in the QA band contains a value that represents bit-packed
combinations of conditions, such as cloud, cloud shadow, snow, and water, that can affect
the given pixel [50]. Therefore, cloud and cloud shadow-affected pixels were masked.

After the elimination of cloud-affected pixels, seven spectral bands were derived for
each image from the nine bands of original OLI image. Seven spectral bands are blue, green,
red, NIR, SWIR1, SWIR2, and NIR_SWIR1. Because the spectral reflectance difference of
different forest types in the NIR and SWIR1 is obvious, a compound band, NIR_SWIR1, is
calculated by adding NIR and SWRI1. Phenology is a useful trait for forest type mapping
by using the multi-temporal vegetation index approach [51]. The link between vegetation
indexes (VIs) and vegetation phenological variability is more robust than that of original
single spectral bands and vegetation phenological variability [52]. Therefore, five vegetation
indexes, NDVI [53], EVI [54], SAVI [55], LSWI [56,57], and NBR2 [21] were calculated for
each image using formulas shown in Table 4.

Table 4. Vegetation indexes used in the study.

Index Abbreviation Formula

Normalized Difference Vegetation Index NDVI (ρNIR − ρred)/(ρNIR + ρred)

Enhanced Vegetation Index EVI 2.5× (ρNIR−ρRed)
ρNIR−6.0×ρRed−7.5×ρBlue+1

Soil-adjusted Vegetation Index SAVI 1 (ρNIR − ρRed)(1 + C)/(ρNIR + ρRed + C)
Land Surface Water Index LSWI (ρNIR − ρSWIR1)/(ρNIR + ρSWIR1)

Normalized Burn Ratio 2 NBR2 (ρSWIR1 − ρSWIR2)/(ρSWIR1 + ρSWIR2)

1 C= 0.8.

Then, a pixel-based multi-seasonal composite method was used to produce two types
of seasonal composite images, i.e., four 7-spectral-band composite images and four 5-VI-
bands composite images corresponding to spring, summer, autumn and winter, respectively.
Firstly, the time series were divided into four seasonal periods according to the seasonal
characteristics of forest phenology and seasonal climate of Yunnan. Next, an annual com-
posite was generated using all images in a year (from 1 March 2017 to 1 March 2018), and
four seasonal composites for spring, summer, autumn, and winter were also respectively
produced using temporal statistic operators. As for the production of four seasonal com-
posites, if there was no observation due to the elimination of cloud-affected pixels, pixel
values from the annual composite would be used instead. The temporal statistic operator,
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the mean, and median values of time series pixels were explored to perform the seasonal
image compositing. Here, the seasonal pixel-based composite method was applied to the
time series of 7-spectral-band images and the time series of 5-VI-band images, respectively.
As a result, four seasonal 7-spectral-band composites (Spr_Ref, Sum_Ref, Aut_Ref, and
Win_Ref) and four seasonal 5-VI-band composites (Spr_VI, Sum_VI, Aut_VI, and Win_VI)
were generated in the GEE cloud platform, respectively (shown in Table 5).

Table 5. Features, including four seasonal of spectral reflectance images and four seasonal vegetation
index images, three terrain factors, temperature, and precipitation in 12 months, used in the research.

Data Number of
Feature Bands Description

Ref_spr 7 A 7 reflectance-band seasonal image composited from the images of spring.
Ref_sum 7 A 7 reflectance-band seasonal image composited from the images of summer.
Ref_aut 7 A 7 reflectance-band seasonal image composited from the images of autumn.
Ref_win 7 A 7 reflectance-band seasonal image composited from the images of winter.
VI_spr 5 A 5-VI-band seasonal composited from the images of spring.
VI_sum 5 A 5-VI-band seasonal composited from the images of summer.
VI_aut 5 A 5-VI-band seasonal composited from the images of autumn.
VI_win 5 A 5-VI-band seasonal composited from the images of winter.

DEM, Slope, Aspect 3 Elevation, slope, aspect
T_12s 12 The monthly mean temperature for 12 months.
P_12s 12 The monthly mean precipitation for 12 months.

In addition, three commonly used terrain factors, elevation, slope, and aspect, were
derived from the SRTM image. The average monthly temperature and average monthly
precipitation data for 12 months were also produced from MOD11A2 Terra Land Sur-
face Temperature and Emissivity and OpenLandMap Precipitation monthly data, respec-
tively. The temperature and precipitation data were resampled from 1 km to 30 m res-
olution using nearest neighbor resampling to match the spatial resolution of other data.
In summary, three types of feature sets, a total 75 bands, were derived, including four
seasonal spectral bands sets, four seasonal vegetation index sets, and environmental factors
(Table 5). The code for the implementing multi-seasonal image composite is provided in
Supplementary Materials.

2.3.4. Random Forest Classification

Random Forest (RF) is an integrated learning method based on a decision tree, which
is combined with many ensembles regression or classification trees [58], and has become in-
creasingly common in remote sensing applications due to its flexible, nonparametric nature
and ability to limit overfitting [59,60]. Bremian found that this method performs better than
many other classifiers, such as discriminant analysis, support vector machines, and neural
networks [58]. Many studies have shown that the RF classifier can successfully process
high-dimensional data with fast calculating speed and is insensitive to over fitting [61]. In
the past 20 years, RF classifier has attracted much attention and has been widely used in
the processing remote sensing images [21,61].

Different features make the final result of classification different in accuracy [62]. In this
study, based on the RF classifier, 17 feature combinations were built to perform hierarchical
classification. As shown in Table 6, 17 feature combinations can be included in several
types, which consist of single season features (RSS, VISS, and RVISS), multi-seasonal features
(R4S, VI4S, and RVI4S), and the combination of multi-seasonal features and environmental
factors (RVI4ST and RVI4STTP).
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Table 6. The 17 feature combinations for RF classification experiments.

No. Set Name Feature Description Dimension of
Features Set Type (Abbreviation)

1 Ref_spr 7 spectral reflectance 1 in spring.

7
Reflectance in Single Season

(RSS)
2 Ref_sum 7 spectral reflectance 1 in summer.
3 Ref_aut 7 spectral reflectance 1 in autumn.
4 Ref_win 7 spectral reflectance 1 in winter.

5 VI_spr 5 vegetation Indexes 2 in spring.

5
Vegetation Index in Single

Season (VISS)
6 VI_sum 5 vegetation Indexes 2 in summer.
7 VI_aut 5 vegetation Indexes 2 in autumn.
8 VI_win 5 vegetation Indexes 2 in winter.

9 Ref_VI_spr 7 spectral reflectance and 5 vegetation
Indexes in spring.

12
Reflectance and Vegetation

Index in Single season (RVISS)
10 Ref_VI_sum 7 spectral reflectance and 5 vegetation

Indexes in summer.

11 Ref_VI_aut 7 spectral reflectance and 5 vegetation
Indexes in autumn.

12 Ref_VI_win 7 spectral reflectance and 5 vegetation
Indexes in winter.

13 Ref4S
7 spectral reflectance in spring, summer,

autumn and winter, respectively. 28 Reflectance in 4 seasons (R4S)

14 VI4S
5 vegetation Indexes in spring, summer,

autumn and winter, respectively. 20 Vegetation Index in 4 seasons
(VI4S)

15 Ref_VI4S

7 spectral reflectance and 5 vegetation
Indexes in spring, summer, autumn and

winter, respectively.
48 Reflectance_Vegetation

Indexes in 4 seasons (RVI4S)

16 Ref_VI4S_T
7 spectral reflectance and 5 vegetation

Indexes in spring, summer, autumn and
winter respectively & 3 terrain factors 3.

51
Reflectance_Vegetation

Indexes in 4 seasons & Terrain
(RVI4ST)

17 Ref_VI4S_TTP

7 spectral reflectance and 5 vegetation
Indexes in spring, summer, autumn and
winter respectively & 3 terrain factors &

12 months Temperature & Precipitation 4.

75

Reflectance_Vegetation
Indexes in 4 seasons & Terrain
& Temperature & Precipitation

(RVI4STTP)
1 Blue, Green, Red, NIR, SWIR1, SWIR2, NIR_SWIR1. 2 NDVI, EVI, SAVI, LSWI, NBR2. 3 Elevation, Aspect and
Slope. 4 The monthly mean temperature and the monthly mean precipitation for 12 months.

The hierarchical classification process was performed on GEE. In the first level, 17
feature combinations were separately carried out the forest/non-forest classification, and
the accuracy of 17 forest/non-forest classification results were evaluated by the overall
accuracy (OA) and Kappa. Then, the forest area of the result with the highest classification
accuracy was taken as the final forest distribution area. In the second level, based on the
forest cover produced from the first classification level, the forest was subdivided into
five forest types (Table 2). Forest type classification was also conducted on 17 feature
combinations, respectively, and the classification accuracy of 17 results were also evaluated
and compared by OA and Kappa.

The classification accuracy of RF classifier is insensitive to two adjustable parameters:
the number of trees and the number of prediction variables [45,63]. Based on the balance
between classification accuracy and computation time, a final RF model with 100 trees for
forest/non-forest classification and 200 trees for forest type classification was set up in
the study. The number of selected prediction variables were set to the square root of the
number of variables for both forest/non-forest classification and forest type classification.



Forests 2022, 13, 135 13 of 31

2.3.5. Feature Importance Assessment

Feature importance assessment is a vital step when high-dimensional datasets are
used [64]. In the research, in addition to considering the impact of different feature combi-
nations on forest classification, we also used “Gini importance” to find out which spectral,
vegetation index, and environmental factor features were most important for classification
of different forest types. “Gini importance” is a feature importance measure method em-
bedded in Random Forest classifier [58]. The Gini importance score describes the relative
importance of features after comparing the input features, and it corresponds to features
that are consistently found more often and higher up in the split of individual decision
trees [64]. Therefore, based on GEE, feature importance score was calculated by an addi-
tional RF classification with all the 75 features (The set Ref_VI4S_TTP shown in Table 6)
using “Gini importance”.

Furthermore, although including more predictor variables potentially adds additional
information to separate classes, this increased dimensionality and complexity may result
in a decrease in classification accuracy [42]. Using only the most important features may
result in higher classification accuracies than using all available features [8]. Even if the
accuracy is not improved by only the most important features, some studies have shown
that the loss of the overall classification accuracy is relatively small when the number
of features was reduced, during mapping land cover with RF [42,65]. In addition, the
reduction of predictor variables may help to simplify the model, shorten data processing
times, and make the experiment reproducible. In this study, the Random Forest recursive
feature elimination (RFRFE) algorithm was used to perform feature selection (the algorithm
principle is demonstrated in [18,66]). We performed RFRFE on GEE.

2.3.6. Accuracy Evaluation and Comparison

Accuracy assessment of our resultant forest maps include two aspects: (1) evaluation
by calculating confusion matrix with the test samples collected from FMI, and (2) visual
and quantitate comparison with four public forest maps.

The confusion matrix is often used to evaluate the classification accuracy of remote
sensing image, and it is able to identify the confusion among categories and the possible
sources of errors. In this study, the confusion matrix was calculated by using the test
samples that came from FMI, which is built through a field survey. The overall accuracy
(OA), user accuracy (UA), producer accuracy (PA), commission error (CE), omission error
(OE), and Kappa coefficient were calculated for the classification results of both levels.

Furthermore, the forest/non-forest classification result with the best OA and the
forest type classification result with the best OA were selected to compare with four
commonly used forest type products, including Forest2010 [9], FROM_GLC2015 [11],
GLC_FCS2020 [67], and MCD12Q1 [68], to assess the quality of the forest type mapping
product of this study. Among them, Forest2010 is a product focusing on mapping forest
types over China, and the others are global land cover products with 30 m resolution and
500 m resolution. Forest2010 and FROM_GLC2015 also use IGBP classification schemes
to define their six types of forest [9,11,68]. Compared to the five forest types in this
study, Forest 2010 has one more type of bamboo forest, while FROM_GLC2015 divides
mixed forest into evergreen mixed and deciduous mixed forests. GLC_FCS2020 has ten
forest types according to forest canopy density and forest types (Table 7). In this study,
the ten forest types of GLC_FCS2020 has been categorized into five forest types used in
this study for comparison. MCD12Q1 includes a land cover classification scheme from
IGBP classification, and this research used the MCD12Q1 products produced in 2017. The
comparisons were conducted on the Yunnan Province as a whole and eight selected case
regions (Figure 3a, red rectangle), respectively.
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Table 7. Forest type comparison of different products.

Products Forest Type

This study evergreen needleleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest and mixed forest

Forest2010 evergreen needleleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, mixed forest, and bamboo forest

FROM_GLC2015 evergreen needleleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, evergreen mixed forest, deciduous mixed forest

GLC_FCS2020

open evergreen broadleaved forest (0.15 < fc 1 < 0.4), closed evergreen broadleaved forest (fc 1 > 0.4),
open deciduous broadleaved forest (0.15 < fc 1 < 0.4), closed deciduous broadleaved forest (fc 1 > 0.4),

open evergreen needle-leaved forest (0.15 < fc 1 < 0.4), closed evergreen needle-leaved forest
(fc 1 > 0.4), open deciduous needle-leaved forest (0.15 < fc 1 < 0.4), closed deciduous needle-leaved

forest (fc 1 > 0.4), open mixed leaf forest (0.15 < fc 1 < 0.4), closed mixed leaf forest (fc 1 > 0.4)

MCD12Q1 evergreen needleleaf forest, deciduous needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, and mixed forest

1 fc = forest canopy.

3. Results

In order to evaluate the effectiveness of the proposed method, many experiments
were conducted. Firstly, the mean and median statistical operators were tested on four
seasonal composites and a multi-seasonal composite image by comparing forest/non-forest
classification accuracy and forest classification accuracy, to determine the optimal statistics
operator (Section 3.1). Secondly, based on the optimal multi-seasonal image composite, by
comparing the accuracies of hierarchical classification of 17 feature combinations, the fea-
ture combination obtained the best accuracy was fixed (Section 3.2). Thirdly, by performing
feature importance analysis, an optimal feature subset for forest type classification were
selected from the feature combination (Section 3.3). In addition, finally, the forest and the
non-forest classification and forest type classification results were produced by using the
optimal feature combination and subset, respectively (Section 3.4).

3.1. Input Seasonal Image Composite

As highlighted by Phan et al. [69], the choice of the image composite method can
influence the accuracy of the classification process. Different statistical operation leads
to different accuracy values at the end of the classification process. As mentioned in
Materials and Methods, the mean and median statistical operators were tested on four
seasonal composites with 7-spectral-band composites (Spr_Ref, Sum_Ref, Aut_Ref, and
Win_Ref) and a multi-seasonal 28-spectral-band composite (R4S), and the two operators
were compared by assessing the forest type classification accuracy of their corresponding
composites.

Table 8 reports the main results of two statistical operations on four seasonal com-
posites. In the first level where forest and non-forest classification was performed, the
median-based composites achieved higher accuracy than mean-based composites, and
the best result of forest/non-forest classification was obtained using the median-based
multi-seasonal composite image, with a Kappa of 0.945, and OA of 97.33%. As far as the
forest type classification was concerned, the results of mean-based composites in spring,
summer, and autumn obtained better accuracy than that of median-based composites;
however, the median-based multi-seasonal composite performed better than mean-based
multi-seasonal composite, with a Kappa of 0.442, and OA of 58.81%. Therefore, a median
statistic operator was finally chosen to produce four seasonal 7-spectral-band composites
and a multi-seasonal 28-spectral-band composite image.



Forests 2022, 13, 135 15 of 31

Table 8. The classification accuracy (OA and Kappa) comparison of composite images produced by
two statistical operators (mean and median) of image composites tested in the proposed method.

Input
Image

FNF Forest Type

Mean Median Mean Median

Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%)

Spr_Ref 0.917 95.94 0.922 96.22 0.325 50.26 0.323 50.25
Sum_Ref 0.836 92.01 0.839 92.12 0.286 47.37 0.279 46.90
Aut_Ref 0.886 94.44 0.890 94.63 0.320 49.84 0.314 49.44
Win_Ref 0.920 96.10 0.924 96.29 0.388 54.94 0.389 55.02

R4S 0.944 97.28 0.945 97.33 0.438 58.48 0.442 58.81

3.2. Random Forest Classification Results

Different features lead to different accuracy values at the end of the classification
process. To assess the best achievable accuracy, based on the RF classifier, 17 feature
combinations were separately carried out the forest classification on GEE (Table 6). Table 9
compares the classification accuracy of all the experimental results with OA and Kappa
coefficient. For the forest/non-forest classification, RVI4STTP obtained the best accuracy
with OA and Kappa values of 97.64% and 0.952. Therefore, the forest/non-forest map from
set RVI4STTP was used as the basis of forest type classification.

Table 9. The OA and Kappa obtained with different feature combinations.

Set Type Set Name Season
Forest/Non-Forest Forest Type

Kappa OA (%) Kappa OA (%)

RSS

Ref_spr Spring 0.922 96.22 0.387 51.12
Ref_sum Summer 0.839 92.12 0.335 46.78
Ref_aut Autumn 0.890 94.63 0.410 53.03
Ref_win Winter 0.924 96.29 0.466 57.46

VISS

VI_spr Spring 0.893 94.76 0.365 49.45
VI_sum Summer 0.791 89.81 0.303 44.59
VI_aut Autumn 0.85 92.70 0.365 49.50
VI_win Winter 0.885 94.39 0.415 53.41

RVISS

RVI_spr Spring 0.937 96.91 0.402 52.46
RVI_sum Summer 0.866 93.47 0.362 49.26
RVI_aut Autumn 0.913 95.77 0.416 53.55
RVI_win Winter 0.926 96.64 0.470 57.80

R4S R4S Multi-Seasonal 0.945 97.33 0.513 61.23

VI4S VI4S Multi-Seasonal 0.929 96.52 0.524 62.09

RVI4S RVI4S Multi-Seasonal 0.946 97.10 0.538 63.28

RVI4ST RVI4ST Multi-Seasonal 0.949 97.51 0.564 65.28

RVI4STTP RVI4STTP Multi-Seasonal 0.950 97.57 0.638 71.14

For the forest type classification, the best accuracy value was reached when using
75-feature set RVI4STTP again (71.14% and 0.638 of OA and Kappa, respectively). Using
only single season features (RSS, VISS, and RVISS) resulted in their OA and Kappa lower than
60% and 0.500. The usage of multi-seasonal spectral reflectance features (R4S) achieved an
OA of 61.23%, Kappa of 0.513, and RVI4S, which was formed by adding vegetation indexes
to R4S, displayed an OA to 63. 82%. Moreover, RVI4ST, which had three additional terrain
features (elevation, slope, and aspect) than RVI4S, resulted in an obvious improvement
in accuracy (65.28% and 0.564 of OA and Kappa, respectively), so it could be concluded
that the additional environmental factors also improved the OA and Kappa of RVI4STTP.
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The lowest accuracy found in the result from VI_sum which has five VI bands in summer,
showing 44.54% and 0.304 of OA and Kappa, respectively.

3.3. Feature Importance

Feature importance score was used to find out which features contributed more in the
classification of forest types. In addition, it was performed using the Gini criterion in the
RF algorithm of GEE platform. Figure 5 shows the feature importance of 75 features in the
classification of five forest types. The variables are ranked by the score of importance. Ac-
cording to feature importance score, vegetation index features and environmental features
show significant importance. The top 10 features were six vegetation index features and
four environmental features, and the elevation contributed the most to the classification,
which is consistent with [6]. Among all the vegetation index features, the VI features in
winter composite image and autumn composite image contributed the most to the clas-
sification of five forest types. Furthermore, the top 36 features were 14 vegetation index
variables, 12 temperature features, six precipitation features, three terrain features, and only
one spectral reflectance feature. Therefore, besides vegetation index features and terrain
features, the monthly mean temperature and monthly mean precipitation over 12 months
also show their importance. It could be found that spectral reflectance features (blue in
Figure 5) show less importance since they mainly ranked in the last 30 variables.
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Figure 5. The feature importance score for five forest types classified using the combination of multi-
seasonal spectral reflectance and vegetation index, terrain (elevation, slope, and aspect), temperature,
and precipitation features. The features are colored according to the feature type: orange indicates
environmental factors (27 variables), green indicates vegetation indexes (20 variables), and blue
indicates spectral reflectance features (28 variables).

From the feature with the highest score to the one with the lowest score, RFRFE
starts with all the features to execute forest type classification and recursively removes one
insignificant feature each time. Figure 6 shows how the OA and Kappa in the forest type
classification increase with the increase in the number of features. According to Figure 6,
the highest accuracy was obtained when using 44 variables. The accuracy obviously
increases from using four features (60.63% of OA) to using 16 features used (70.03% of
OA). After reaching the peak when 44 features are used (72.17% and 0.657 of OA and
Kappa, respectively), the resulting differences among the following results are minor,
with OA values oscillating between 69.33 and 72.17%. Considering achieving a better
OA with a faster process speed on GEE, the forest type mapping result from 16 features
were used. The 16 features are elevation, Winter_LSWI, Winter_NBR2, Winter_NDVI,
Autumn_NDVI, Autumn_LSWI, Autumn_NBR2, LST_12, Slope, Precip_7, Precip_8, LST_7,
Precip_4, Spring_NBR2, Summer_LSWI, Precip_6.
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Figure 6. Results of Random Forest recursive feature elimination: number of variables and OA
and Kappa of the mode. Three vertical red lines represented 16 variables (the minimum number of
features to achieve an accuracy higher than 70%), 44 variables (the number of features to obtain the
highest OA and Kappa), and 75 variables (all the features) were considered, respectively.

3.4. Final Maps of Forest/Non-Forest and Forest Type

Figure 7 illustrates the final classification outputs of this study. The forest/non-forest
classification results were finally produced by using 75 features since the highest accuracy
was achieved when using 75 variables according to Table 9. Specifically, 28 features are
multispectral bands from seasonal composite images in four seasons, 28 features are VIs
from seasonal composite images in four seasons, 3 features are from terrain features,
and 24 features are from monthly mean precipitation and monthly mean temperature
over 12 months. The forest type classification results were finally produced by using 16
features, considering achieving a better OA and a faster process speed on GEE (depicted in
Section 3.3).
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Figure 7. The classification results of this study. (a) the forest/non-forest map of Yunnan; (b) the
forest type map of Yunnan.

Through the evaluation of sufficient forest and non-forest sample plots that covers
more than 150,000 pixels, the results show that these features can get 97.64% OA for
distinguishing the forest and non-forest area (Table 10), and the class of forest also obtained
high UA (97.72%) and PA (98.22%) for the class of forest. Therefore, the identified forest
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cover could be the basis of forest type classification. Figure 7a shows the final map result of
forest/non-forest mapping in the southwest of Yunnan Province. We can see that the non-
forest land covers, including urban, cropland, water, and grass types, are mainly located in
the flat areas and valleys, while the forests are mainly located in the mountainous areas with
an altitude of less than 4000 m. The area of forest cover in the southwest half of Yunnan is
more than that of the northeast half, and this is consistent with the precipitation trend. Most
of the forests are distributed in the mountainous areas where the precipitation is more than
400 mm. Table 11 reports the confusion matrix for the second stage classification. Forest
type classification achieved an overall accuracy of 70.30% and a Kappa coefficient of 0.628.
The PA of the five forest types ranged from 56.99% (mixed forest) to 95.44% (deciduous
needleleaf forest), while UA ranged from 62.21% (mixed forest) to 94.49% (deciduous
needleleaf forest). The identification of deciduous needleleaf forest is better than other
forest types. Mixed forests had the highest CE (37.79%) and OE (43.01%), and it had been
found to be mostly misclassified as evergreen needleleaf forest and evergreen broadleaf
forest. In addition, there was confusion among evergreen coniferous forests and evergreen
broad-leaved forests, probably due to these two forest types belong to evergreen forests,
and the seasonal variation of phenology between the two forest types is relatively small.

Table 10. Confusion matrix for the forest/non-forest classification map in Yunnan.

True Class

Forest Non-Forest Total UA (%) CE (%)

Pr
ed

ic
ti

on
cl

as
s

Forest 86,330 1909 88,239 97.84 2.16
Non-forest 1568 61,779 63,347 97.52 2.48

Total 87,898 63,793 151,691
PA (%) 98.22 96.68
OE (%) 1.78 3.32

OA = 97.57% Kappa = 0.950

Table 11. Confusion matrix for the forest type classification map in Yunnan.

True Class

ENF DNF EBF DBF MF Total UA (%) CE (%)

Pr
ed

ic
ti

on
cl

as
s

ENF 281 7 58 29 67 442 63.57 36.43
DNF 5 377 7 2 8 399 94.49 5.51
EBF 45 10 311 30 75 471 66.03 33.97
DBF 27 0 37 229 50 343 66.76 33.24
MF 53 1 77 30 265 426 62.21 37.79

Total 411 395 490 320 465 2081
PA (%) 68.37 95.44 63.47 71.56 56.99
OE (%) 31.63 4.56 36.53 28.44 43.01

OA = 70.30 Kappa = 0.628

Figure 7b shows the result of forest type classification. The forest type distribution
map shows that needleleaf forests are mainly distributed in northwestern and northeast
of Yunnan, and mixed forests are mainly distributed in southern Yunnan and the western
boundary of Yunnan. It also displays that the forest types in Yunnan Province gradually
change from coniferous forests in the northwest to broadleaf forests in the middle, and
then to mixed forests in the south. Deciduous needleleaf forest is mainly distributed in
the northwestern part of Yunnan Province and less in other regions. Comparing the forest
type map (Figure 7b) to the elevation map of Yunnan (Figure 1b), it could be found that the
transition of forest types is consistent with the transition trend of altitude.
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4. Discussion
4.1. Seasonal Composite Image

A key challenge in mapping forest type over a large region with remote sensed data
is that the coverage of valid data is limited both time and in area due to the presence of
clouds. Due to the complex topography and climate of Yunnan Province, there are more
clouds and rain from June to October, which leads to fewer high-quality images (Figure 2).
Except for the overlapping area of the adjacent scenes, the original observation frequency
of 35 scenes of images covering Yunnan is in the range of 10 to 20 times from 1 March 2017
to 1 March 2018 (Figure 8a). However, after cloud elimination, the number of observations
per pixel in a 12-month period is mostly in the range of 0 to 10 times (Figure 8b). Therefore,
it is difficult to obtain a high-quality single-date image at every location of 35 scenes within
a season, especially in summer and autumn (Figure 9a–d). In addition, for a large research
area, it takes more time to select the images with less amounts of clouds.

Different from the traditional way, there is no valid image selection in the production of
the median-based seasonal/annual composite images on GEE. All images in the 12-month
period were used to produce the composite images, making sure all cloud-free pixels can
be used. As shown from Figure 9e–h, four seasonal cloud-free images covering the whole
area were generated using the pixel-based median composite method. The colors of spring,
autumn, and winter composite images look much smoother across the whole area, while
the summer composite image has obvious color boundaries. This is mainly because all
the images for summer composition have clouds or cloud shadows in some specific areas,
and thus the summer composite output values in these areas are derived from the annual
composite image rather than the median values from the images for summer. As a result,
the large spectral differences of some land covers between summer and other seasons make
the color boundaries in the summer composite image. In summary, the seasonal image
composite method using 12-month time series images offers an opportunity to overcome
the limited availability of valid data.
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Figure 9. Single-date images and median-based seasonal composite images of four seasons. Four
seasonal single-date images were obtained by selecting and mosaicking 35 images with the least
amount of clouds in each season and the pixels with cloud were eliminated during mosaicking. False
color composite of SWIR1/NIR/Red as RGB. (a) Single-date image of spring, (b) Single-date image
of summer, (c) Single-date image of autumn, (d) Single-date image of winter, (e) Median composite
of spring, (f) Median composite of summer, (g) Median composite of autumn, (h) Median composite
of winter.

Figure 10 shows the spectral reflectance curves of five forest types in a summer single-
date image and summer composite image. As shown in Figure 10, due to the median
statistic operation for the composite image, the spectral reflectance values of five forest
types from composite image are lightly lower than that of from the single-date image. In
general, the spectral reflectance values of five forest types in the summer composite image
are close to the corresponding values in the cloudless single-date image for five forest types.
Analysis of these spectral curve suggests that the median-based seasonal composite values
are credible.
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Figure 10. The spectral reflectance curves of five forest type from the summer composite image and
the single-date image for summer. The squares represent the values from the single-date image of
summer, while the asterisks are the summer reflectance from the composite image.
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4.2. The Analysis of Different Feature Combinations

(1) The influence of different single-season composite images

In the experiments of RSS, VISS and RVISS, four single-season composite images were
separately used to classify forest types. Through the analysis of the OA and Kappa of the
three sets of experimental results, it is found that the season of input image has a significant
impact on the forest classification accuracy. All the experimental results from RSS, VISS and
RVISS showed a similar pattern that the composite images from winter had the highest OA,
followed by the autumn composite images, and the classification accuracy of the summer
composite images were the lowest (Table 9). The OAs of forest type classification using
winter composite in RSS, VISS and RVISS are 8.82%, 9.54%, and 10.21%, higher than that of
the summer composites, respectively (Table 9). Given the best season of composite image
to extract each forest type may vary with forest type, the PA and UA of five forest types
were compared in Figure 11. For deciduous needleleaf forests, composite images from
autumn produced the highest PA and UA in all the single-season feature combinations.
In addition, when classifying evergreen needleleaf forests, deciduous broadleaf forests,
and mixed forests, composite images from winter produced the highest PA and UA in all
single-season feature combinations. The results of this study are different from that of [18]
who found forest species can be best separated using image in the growing season. One
of the reasons is that the levels of forest type classification focused on the two studies are
different. For example, we classified the forest area into five broad forest categories and [18]
classified forest types in more detail and determined the forest types at the individual
tree level. Another possible explanation for the inconsistent result is that the study areas
adopted by the two studies have different climates characteries. Yunnan Province located
in the tropical and subtropical climate zones and the phenological difference of different
forest types are more obvious in the leaf-off season. For instance, the length of season life of
broad-leaved forest is longer than that of needleleaf forest; therefore, the vegetation index
value of broad-leaved forest decreases later than that of needleleaf forest. Furthermore, the
vegetation index values of deciduous forests are significantly reduced in winter, while that
of evergreen forests decreased only slightly in winter.
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(2) The influence of multi-seasonal

Previous research has clearly demonstrated the effectiveness of using multi-seasonal
images to distinguish among forest types [1,15,64,70]. It was found that that multi-seasonal
feature sets consistently and significantly outperformed all single season feature sets
across the result comparison between R4S, VI4S, RVI4S and RefSS, VISS, RVISS. For all the
classifications using spectral reflectance features alone, vegetation index features alone, or
a combination of spectral reflectance and VI features, their OAs showed that the combined
use of multi-seasonal images features (R4S, VI4S, RVI4S) could achieve higher accuracy than
using single-season image features alone (RefSS, VISS, RVISS). From R4S to RefSS, VI4S to
VISS, RVI4S to RVISS, their accuracy improvements of three feature sets are 4.86–15.07%,
8.68–17.50%, and 4.96–14.50%, respectively, reaffirming the importance of phenological
information contained in multi-seasonal images for forest type mapping.

Furthermore, the strategy of using multi-seasonal images varies in different research.
Ref. [1] selected images from the leaf-off, growing, and leaf-on season, and then extracted
spectral reflectance and vegetation index features from these images. Ref. [15] screened the
image from the period which is the best phenological state for the classification of different
tree species; therefore, five images in different seasons were used. Ref. [64] collected
all available Landsat observations from 1985 to 2015 and then extracted harmonic and
phenology features from time series of all cloud-clear observations. For the forest type
mapping over a large region, as suggested in [64], multi-seasonal feature composites tend
to show more spatial variability compared to individual date images.

(3) The influence of spectral reflectance and vegetation index

The influence of spectral band and vegetation index on forest type classification accu-
racy is related to the season of the image. For example, the specific single-season spectral
reflectance features in RSS performs better than their corresponding single-season vegeta-
tion index features in VISS, and the OAs of four single-season experiments from set RSS are
1.81–3.58% higher than that of from VISS. In contrast, the OA of multi-seasonal spectral
reflectance composite (R4S) is 2.04% lower than that of multi-seasonal VI composite (VI4S).
This indicates that multi-seasonal VI features are crucial for the forest type classification
because multi-seasonal VI can reflect the seasonal phenology differences of different forests.
In general, the combination of the spectral reflectance and vegetation index features has a
better classification result than either of them alone, regardless of whether the combination
is used in a single season or multiple seasons, i.e., RVISS is better than RSS or VISS, and
RVI4S is better than R4S or VI4S.

(4) The influence of environmental factors

In this research, three topographic features, elevation, slope, and aspect were chosen as
features to classify forest. According to the feature importance score, elevation is the most
important features among all features involved in forest type classification (Figure 5). In the
classification of five forest types, the addition of three terrain features into the feature com-
bination for forest type classification resulted in an improvement of PA of 2.54–3.65%, and
UA of 0.44–3.71% (Figure 12). Elevation and slope are also reported as important features
in mapping tree species distribution in [1,8] as they can provide geographical character-
istics. In addition, topographic data, especially elevation and slope, are frequently used
in mapping land use and land cover over a regional or global scale [10,45,71]. Therefore,
topographical features should also be considered when mapping global forest types.

Temperature and precipitation are crucial factors that cause the change of phenol-
ogy with time [72]. Our results show that the features of precipitation and temperature
characteristics also have obvious effects on improving forest type classification accuracy.
Figure 12 compared RVI4S and RVI4STTP, and it could be found that the addition of the
features of precipitation and temperature factors brought a significant improvement of PA
of 3.37–12.28%, and UA of 4.85–10.01% on evergreen broadleaf forest, deciduous broadleaf
forest, and mixed forest. The accuracy increases of the classification results on evergreen
needleleaf and deciduous needleleaf forest are not obvious. This is because the distribution
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of forest types is related to the distribution of the trend of temperature and precipitation
and broad-leaved forests require more water and are more sensitive to the variation of
precipitation. In the research, due to the lack of temperature and precipitation data with
30 m resolution over a large region, the 1-km temperature and precipitation data were
to resample by the reproject function embedded in GEE. This processing might influence
the classification accuracy. In this study, the impact of resampling method on forest type
classification was not discussed.
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4.3. Comparisons to Other Products

As mentioned in the Introduction, there are some 30 m resolution products with
fined forest types, including Forest2010 [9], FROM_GLC2015 [11], GLC_FCS2020 [67], and
MCD12Q1 [68]. The methods of forest type mapping or land use and cover mapping
were compared, and there are four products adopting different strategy to select remote
sensing data and features (Table 12). The early product, Forest2010, was derived from
single-date Landsat images circa 2010 [9]. FROM_GLC2015 was produced after the launch
and free access of Landsat 8, and therefore it could use multi-seasonal Landsat images [11].
FROM_GLC2015 chose one image with the least cloud for each season (spring, summer,
autumn, and winter) and the vegetation growing season, so there are five multi-seasonal
images for each path/row position, which can better distinguish vegetation types with
similar spectral characteristics in a particular season and improve mapping accuracy.
GLC_FCS2020 adopted a new data selection method, time series Landsat data, which
uses all Landsat imagery from specific period [45,67]. With the advancement of computer
computing ability, the production of forest type mapping over large areas has also shifted
from local computers to cloud computing platforms. Taking FMI as “true” data, the
forest/non-forest classification and the forest type classification results of this study were
further compared with four reference products, respectively.

4.3.1. Comparisons on Forest/Non-Forest

The forest/forests classification result of this study were compared with the reference
products in two aspects. On one hand, the comparison was made at the administrative
division level of Yunnan Province; and on the other hand, it was carried out on the
eight selected case regions selected from Forest Management Inventory. Because the four
reference products have many forest types and non-forest types, all the non-forest types of
each of the four products were combined into one type named as non-forest, and different
forest types were combined as forest.

Yunnan Province has a total of 16 administrative divisions. This study calculated the
forest area of each division in the products of this study and the four references. Taking



Forests 2022, 13, 135 24 of 31

FMI data as a standard, the forest area of 16 divisions in each product were respectively
compared to FMI. As shown in Figure 13, the estimated forest area of this study had the
best correlation with FMI with R2 = 0.9816, followed by Forest2010 with R2 = 0.977 and
GLC_FCS2020 with R2 = 0.9742. FROM_GLC2015 has the lowest correlation with FMI with
an R2 = 0.8341.

Table 12. Comparisons of four public products.

Product Name Classifier Parameters Landsat/MODIS Images Environmental
Factors Platform

Forest 2010 Random Forest Ntree = 200
520 Landsat TM with fewer

clouds obtained in the
growing season

DEM (90 m) -

FROM_GLC 2015 Random Forest Ntree = 200

60,998 multi-seasonal
Landsat images primarily
acquired with Landsat 8

between 2013–2015;

Geographical
coordinate,

elevation (30 m)
Supercom-puter

GLC_FCS30 2020 - - Landsat surface reflectance
imagery from 2019–2020 DEM (30 m); GEE

MCD12Q1 Random Forest -

C6 MODIS Normalized
BRDF-Adjusted Reflectance

(NBAR) product
(MCD43A2, MCD43A4)

Worldclim
climatology -
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Figure 13. Comparison of forest coverage area between FMI and the products of this study and four
references. (a) This study; (b) Forest 2010; (c) FROM_GLC2015; (d) GLC_FCS2020; and (e) MCD12Q1
2017. FMI: Forest Management Inventory statistics.

Besides the above quantitative assessment, Figure 14 showed the comparisons of the
classification performance of each product with FMI over eight case regions (Figure 3a),
which covers various climate and landscape environment. The forest/non-forest map of
this study has great performance in Regions 3, 4, 5, 6, and 8. In Regions 1, 2, and 7, there are
some obvious non-forest cover lands that were classified as forest in this study. As for Forest
2010, it performs well in Regions 4, 6, 7, and 8, but its forest distribution is significantly
sparser than FMI in Regions 1, 2, and 3, and some of the forest on the 8 side of the its Region
5 has not been identified. The distribution of forests in FROM_GLC2015 is significantly
more than FMI, which is obvious in Regions 1, 2, and 7. Compared with FMI, FLC_FCS2020
also has great performance in Regions 4, 5, 6, and 8, and forest distribution is significantly
more than FMI in Regions 1, 2, and 7, and the details of Region 3 are not as good as our
products. Because of the coarse resolution, MCD12Q1 shows less detail in all eight case
regions. Based on the above comparisons, it could be found that the forest/non-forest
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mapping result of this study is superior to other existing products, and therefore it can be
used as the basis for forest type classification.
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4.3.2. Comparisons on Forest Types

By comparing the distribution of forest types of different products over the whole
Yunnan Province, it can be found that the differences between different products are very
large [73]. Due to the lack of FMI statistical data on the distribution area of different forest
types in the Yunnan Province, we only compared the classification details of this study and
the reference products in eight case regions. Figure 15 shows that: (1) In the results of this
study, Regions 3, 4, and 8 have achieved satisfactory classification results, while Region 2
and Region 7 have serious confusion between DBF and MF, the classification in Region 5 is
not as good as the result in Forest2010, and, in Region 6, some ENF are divided into EBF.
(2) As for Forest2010, it works well in Region 5 and Region 8, but the difference between
Forest2010 and FMI is obvious in the other six regions. In addition, there is no deciduous
needleleaf forest in Yunnan Province in Forest2010. (3) The pattern of FROM_GLC2015
is relatively fragmented, which is quite different from FMI. The most obvious differences
between FROM_GLC2015 and FMI occur in Regions 2, 3, 4, and 8. In Region 2, many pixels
with deciduous broadleaf forest are classified as evergreen broadleaf forest or evergreen
deciduous forest. In Region 3, the mixed forest is not distinguished. In Region 4, the mixed
forest is classified as evergreen broadleaf forest. In Region 8, evergreen coniferous forest
is classified as mixed forests. (4) GLC_FCS2020 works well in Region 6 and Region 8,
and obvious difference exists in other six regions by comparing with FMI. (5) MCD12Q1
product has poor visual effects due to its low resolution. It could be found that the forest
product of this study is better than that of others by comparing with FMI. This study and
Forest 2010 are forest products that focus on forest type mapping. FROMGLC 2015 and
MCD12Q1 are land cover products that focus on the classification of all land cover types,
and forest cover or forest types is one of all types. Therefore, the results of this study and
Forest2010 are more accurate that FROM_GLC2015 and MCD12Q1. Since FMI is a ground
survey result, it is taken as a correct data for comparison. Overall, the result of this study
has a better performance.

In addition, the samples in this study are distributed in eight sites instead of the entire
Yunnan Province because it is difficult to obtain samples from the entire study area. As a
result, the classification is inevitably affected by the local distribution of samples. Therefore,
we will use samples evenly distributed in the entire study area for further research. GEE
provides great convenience for massive data managing, processing, and analysis. The
large amount of calculation that originally took several days can be completed in a few
hours, which greatly saves work time. The using of Landsat time-series imagery and GEE
provides a new direction for the improvement of large-scale forest type mapping.
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5. Conclusions

In the research, a method of forest types mapping using Landsat-8 OLI imagery and
multiple environment factors has been developed and tested within Yunnan Province
of China, a large mountainous region with landscape of high geographic and climate
heterogeneity. The approach employs a seasonal image compositing methodology adapted
for incomplete annual data availability and frequent cloud cover. By comparing with a
single-date image, the multi-seasonal image composite method could generate a cloud-free
image over the whole mountainous region, Yunnan Province. The results of comparative
experiments, based on a two-step classification strategy combining a feature combination
procedure, confirmed that the multi-seasonal features can distinguish forest types more
accurately than only single-seasonal feature. Seasonal characteristics quantify meaningful
spectral and temporal variability in the complex forested landscape of Yunnan Province.
Our results also demonstrated that adding environmental factors can significantly improve
the classification accuracy of forest types. The feature combination of multi-seasonal
spectral reflectance features, and vegetable index features, and three environmental factors
(topography, temperature data, and precipitation data) obtained the highest accuracy on
both forest/non-forest and forest type classification. Through the method of this study, an
updated annual forest type distribution product with a resolution of 30 m can be obtained.
In addition, benefitting from the powerful computing abilities and archive of Google Earth
Engine cloud platform, the production of the products in this study is convenient and
conducive to the real-time update of future data. Based on Google Earth Engine, the
approach has the potential to be used in other areas and applied to remotely sensed images
from different sources to map forest types at regional or global scales.

Supplementary Materials: The code for implementing median-based multi-seasonal image compos-
ite for forest type mapping using Landsat 8 images is available in GEE: https://code.earthengine.
google.com/d47a5f8e8489f866c916ec211119ac01 (accessed on 25 November 2021).
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