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Abstract: Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key
economic species in New Zealand. Thus, the development of genomic resources for radiata pine has
been a high priority for both research and commercial breeding. Leveraging off a previously devel-
oped exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms
(SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array
(NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and
20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on
more than 8000 samples, including material from archival progenitors, current breeding trials, nursery
material, clonal lines, and material from Australia. Our analyses indicate that the array is performing
well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping
in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage
groups. Using genotypic data from this array, we were also able to differentiate representatives of the
five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe.
Furthermore, principal component analysis of genotyped trees revealed clear patterns of population
structure, with the primary axis of variation driven by provenance ancestry and the secondary axis
reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine
breeding program.

Keywords: forest tree breeding; genomics; SNP array; population structure; Pinus radiata

1. Introduction

Genomics has the potential to change forest tree breeding from traditional backward
selection approaches based on progeny test results to faster and earlier forward selections
based on genomic predictions [1]. In addition, it has the potential to increase the rate of
genetic gain through shortening radiata pine’s long generation intervals through predicting
unobserved phenotypes and early selection of superior genotypes [2–4]. The rate of genera-
tional turnover will need to accelerate as forestry encounters new economic, social, and
climatic challenges, in parallel with increasing demand for wood and fiber products [5–7]
to meet the need of a growing global population [8]. Afforestation is also being held up
as one of the key strategies for climate change mitigation, but if forests are to sequester
sufficient carbon to deliver these effects, we need to select trees that are well adapted to a
changing environment [9–12].

Radiata pine (Pinus radiata D.Don) is the primary forestry species in New Zealand,
comprising nearly 90% of the 1.7 million hectares of planted forest [13]. Globally, it is
regarded as the world’s most widely planted exotic conifer [14]. Current genetic research
in radiata pine has been focused on the development of genomic resources to enable new
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genomics-based breeding approaches for this species [15–18]. The extensive size and com-
plexity of conifer genomes (25 Gbp in radiata pine) has hindered whole genome sequencing
approaches; thus, genotyping platforms based on reduced representation of the genome
have been preferred [19–22]. In radiata pine, exome capture genotyping-by-sequencing
(GBS) [23] has allowed for the simultaneous discovery and genotyping of more than 80K
single nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) greater than
0.03 across several breeding populations [15,24,25]. It has also demonstrated the value of
using DNA marker-corrected pedigrees [26]. Reproducibility ranged from 86.9–93.3% [15],
with higher read depths generally improving the detection of heterozygotes and thus
improving reproducibility. However, maintaining sufficient read depths to detect both
alleles (if present) limits the ability to reduce genotyping costs through higher degrees of
multiplexing during sequencing.

The resulting lack of robust and affordable genotyping platforms has been one of
the biggest obstacles to wide-scale adoption of genomics into forest tree breeding [1,27].
Where such resources have been made available [28], this has stimulated innovation and
application of numerous genomic-based methods [3,29,30]. For example, forest genetic
studies have begun to unravel the genetic architecture of complex traits through genome-
wide association mapping [31–33]; find associations between changes in allelic frequencies
along gradients of important climatic variables [34]; model historical pathways in species’
demography [35]; reconstruct genealogies in both wild and captive populations through
parentage assignment [36,37]; and predict unobserved phenotypes through genomic meth-
ods [38,39]. Furthermore, access to tools to better manage population structure and retain
sufficient diversity [40] are critical for exotic species, such as radiata pine, where no further
introductions of germplasm into New Zealand are possible due to biosecurity restrictions.

Developing a suite of genotyping tools for a range of applications has therefore been
required. Higher density exome capture GBS panels still have utility when higher numbers
of markers are needed, and the larger probe size (120 nt) gives a greater tolerance for
non-target polymorphisms and a much greater level of specificity, which is key when
dealing with complex conifer mega-genomes. These panels can also detect new variants
not previously reported, and are not limited to the polymorphisms present in the initial
discovery population. However, routine testing in commercial breeding programs does
not necessarily require as many markers nor ongoing marker discovery, but does require a
much more competitive price.

As part of an international Conifer SNP Consortium (CSC) [27,41–43], we have devel-
oped a 36K SNP array for radiata pine using the Axiom™ platform. Fixed array platforms
are regarded as the gold standard for robust and reliable high throughput genotyping.
However, they do not allow for ongoing SNP discovery, can be impacted by off-target poly-
morphisms, and may have specificity issues because of shorter probe lengths (e.g., 30–50 nt)
compared with exome capture GBS (e.g., 120 nt). As such, greater care must be applied
with selecting SNP content, because space is limited and amendments to designs are less
trivial. We describe the development of a 440 K screening array and 36K SNP genotyping
array, and compare the performance of the latter to that of our previously reported exome
capture GBS. We also report on early applications of this tool, including distinguishing
radiata pine provenances and describing the population structure of the New Zealand
breeding program.

2. Materials and Methods
2.1. Development of the SNP Screening Array
Candidate SNPs

SNPs were derived from previous exome capture GBS across more than 4000 individ-
uals, including three progeny trials and ancestral archive material, as described by Telfer
et al. [15]. Minor allele frequencies (MAF) were estimated for 1,354,472 SNPs, which were
classified as either “common” (MAF > 0.03) or “rare” (MAF < 0.03). Flanking sequences
(35 nucleotides on either side of the target SNPs) were retrieved for all candidate SNPs,
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producing 71-mer sequences with the target SNPs in the middle. Where non-target SNPs
(termed “wobble” SNPs) were present in these flanking regions, those that were considered
common (MAF > 0.03) were retained in the flanking sequence, and those considered rare
(MAF < 0.03) were removed and replaced with the major allele. Thereafter, target SNPs
were categorized as “single” or “multi” according to the respective presence or absence of
any remaining non-target SNPs in the flanking regions (Table 1). As the draft genome avail-
able for radiata pine was still undergoing assembly and annotation, the genomic context of
the SNPs was unknown (e.g., position of SNPs within coding or promotor regions).

Table 1. Subsets of SNPs submitted for the screening array.

SNP Subset MAF Non-Target SNPs (MAF > 0.03) No. of SNPs

Common_single >0.03 No 26,142
Common_multi >0.03 Yes 95,428

Rare_single <0.03 No 269,031
Rare_multi <0.03 Yes 963,871

SNPs were excluded when non-target SNPs occurred within 20 bases of the target
SNP. Deprioritization of A/T or C/G SNPs, which require two probe sets for interrogation,
ensured maximum utility of the available space on the array. All SNPs were scored
bioinformatically by Thermo Fisher Scientific (Waltham, MA, USA) for compatibility with
Axiom array technology. This included parsing all potential probes into 8-mers and
mapping these to an unpublished draft assembly of the radiata pine genome to determine
which probes are likely to produce high background noise due to cross-hybridization. An
additional set of 3000 37-mer sequences were supplied to Thermo Fisher Scientific (hereafter
abbreviated as TFS) for the design of Dish Quality Control (DQC) probes. These probes
help assess fundamental sample quality metrics, such as the signal to background noise
ratio for each sample.

2.2. Plant Material for Testing the Screening Array

We selected a diverse range of samples (n = 480, Table 2) to evaluate the performance
of the screening array, including triplicates (to assess reproducibility) and paired samples
from different tissue types (reproducibility of genotyping results can be affected by varying
levels of background noise among different tissue types). Haploid megagametophyte
samples were included to facilitate the identification of probes with potential multiple
targets, a common risk when dealing with complex and repetitive genomes, such as radiata
pine. For example, specificity may decline when moving from longer 120 nt exome capture
probes to shorter 30 nt Axiom probes. Trios (mother, father, and progeny) and duos
(mother and megagametophyte) were included to ensure Mendelian inheritance patterns
were observed.

Table 2. Types of samples tested on the radiata pine screening array.

Category * No. of Samples (Total = 480) * Purpose

Haploids 50 Identify multilocus (off-target) binding

Paired samples from needle and cambium 34 (17 pairs) Identify probes affected by tissue type,
assess reproducibility

Triplicates 72 (25 sets) Assess reproducibility

Breeding program and client favourites 334
Assess general probe performance and
allele frequencies, compare to exome

capture data

Trios/duos 79 Assess inheritance pattern of SNPs

* Note—several samples appeared in more than one category.
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DNA for all samples was extracted using previously described methods [44], namely
Nucleospin 96 Plant II (Machery-Nagel, Düren, Germany) for needle and cambium tissue,
and a modified CTAB method for megagametophytes. Samples were required to meet
TFS’s minimum quantity threshold of 500 ng, at a concentration of no less than 10 ng/µL
in a minimum volume of 15 µL. Samples were placed into 96-well barcoded plates, and
dried down prior to shipping to minimize the risk of cross-contamination. Sealed plates
were shipped via courier on frozen icepacks to TFS’s facility in Santa Clara, CA, USA.

On arrival, samples were resuspended for 2 h on a shaking incubator (1100 rpm,
55 ◦C) in 50 µL nuclease-free water. However, subsequent quantification checks indicated
that about half the DNA had not resuspended. Thus, multiple samples did not pass
threshold requirements. These samples were re-extracted shipped frozen in Nucleospin
elution buffer.

2.3. Genotyping Array Design and Testing
2.3.1. SNP Selection

Data from the screening array were processed as a service by TFS in consultation
with Scion, using default settings. Candidates for the genotyping array were chosen
based on SNP performance on the screening array. Markers that produced heterozygous
calls in two or more of the haploid samples were removed from further consideration, as
well as markers that did not satisfy expected Mendelian inheritance patterns in trios or
duos. Remaining SNPs that fell within the following Axiom classification categories (https:
//tools.thermofisher.com/content/sfs/manuals/SNPolisher_User_Guide.pdf, accessed on
15 December 2021) were deemed suitable candidates for the genotyping array (~80K SNPs):
Poly High Resolution (PHR); homozygous but with cluster variance in the X or Y dimension
(AA/BB variance X/Y); heterozygous but with variance in the X dimension (AB var X);
and No Minor Homozygote (NMH) with a minimum of 5 heterozygous calls.

The genotyping array could accommodate a maximum of 50–55K probe sets; therefore,
further exclusions were necessary. As the draft genome was still highly fragmented, the
relative positions of SNPs were known only to the contig level. However, where there were
SNPs that appeared to be within 200 nucleotides of another SNP according to their contig
positions, only one was retained. A/T or C/G SNPs require two probe sets for genotyping,
and some SNPs required a second probe set to give additional confidence in genotype calls.
Thus, candidate SNPs could have 1, 2, or 4 probe sets required for successful genotyping.
No SNPs have to date been identified as “must haves”; therefore, to maximize efficient
use of space on the array, we removed all SNPs that required 4 probe sets. The remaining
candidate SNPs were ranked based primarily on their frequency (MAF > 0.03) and number
of probe sets required (i.e., 1 or 2). After several iterations, 36,285 SNPs were selected for
the final genotyping array, NZPRAD02 (Table 3).

Table 3. Subsets of SNPs included on the genotyping array (NZPRAD02).

SNP Category MAF Probe Sets No. of SNPs

Common >0.03 1 16,608
Common >0.03 2 11,625

Rare <0.03 1 6748
Rare <0.03 2 1304

TOTAL 36,285

2.3.2. Plant Material for Testing on the Genotyping Array

Samples for testing on the genotyping array (NZPRAD02) are summarized in Table 4.
Samples were collected from a subset of progenitors in Scion archives and DNA isolated
from either needle tissue or cambium tissue, depending on canopy height and accessibility
of the foliage, using Nucleospin 96 Plant II kits as described in Telfer at al. [44].

https://tools.thermofisher.com/content/sfs/manuals/SNPolisher_User_Guide.pdf
https://tools.thermofisher.com/content/sfs/manuals/SNPolisher_User_Guide.pdf
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Table 4. Samples tested on the genotyping array. Progenitors are breeding program first-generation
selections and progeny are their advanced-generation progeny.

Sample Category No. of Samples

NZ progenitors (archive) 784
NZ progeny (clonal trials) 2863

NZ progeny (control pollinated trials) 1309
NZ progeny (open-pollinated trials) 1182

Australian progeny (clonal and open-pollinated trials) 2110
Quality control samples (miscellaneous) 200

TOTAL 8448

Needle tissue was collected from stoolbeds at two nurseries in New Zealand and
DNA was extracted by Slipstream Automation (Palmerston North, New Zealand) using
their proprietary methods. These samples represented genotypes currently being tested
in various progeny trials across New Zealand. Selected industry clonal lines and several
older control-pollinated and open-pollinated progeny trials were also included. A selection
of clonal and control pollinated progeny trials were also sampled from a third nursery
and other industry partners in Australia, with DNA isolated from these samples by the
Australian Genome Research Facility (University of Adelaide, Australia).

The DNA concentration requirements for the genotyping array were slightly higher
due to the array format (i.e., 384 wells vs 96 wells for the screening array). Thus, a minimum
concentration of 17.2 ng/µL and a minimum volume of 25 µL were applied.

A set of pooled DNA samples was included for which one pair of unrelated individuals,
and one pair of full-sibs, were deliberately combined in various DNA ratios (20:1, 15:1, 12:1,
10:1, 8:1, 5:1, 2:1, and 1:1) to determine the point at which the second contributor could no
longer be detected. This was performed in duplicate for each of the two pairs of samples,
and the total DNA concentration kept at 40 ng/µL. For each of the pure samples, markers
that were inconsistent between replicates were removed, and initially only markers that
were homozygous and different for each of the contributors were used in the analysis.
The occurrence of heterozygous calls for these markers thus indicated the detection of
the contaminant. We considered contamination to be detected once 1% or more of these
markers had changed from homozygote in the original pure sample to heterozygote in the
pooled sample.

DNA from all extraction service providers was collated by Scion into 96-well barcoded
plates and shipped frozen and on ice packs for genotyping at TFS’s Santa Clara facility.

2.4. Genotyping Array Data Analysis

Raw SNP data and associated files were downloaded from TFS, loaded into the Axiom
Analysis Suite v4.0.1 and the Best Practices Workflow was performed. All default settings
were used, apart from the call rate threshold, which was reduced to 80%.

Population Structure Analysis

The population structure was assessed through an individual-based principal com-
ponent analysis (PCA) of data from the genotyping array, using the smartpca.perl script
of the EIGENSOFT package [45]. We also estimated ancestries as admixture proportions
using fastStructure [46], varying the assumed number of genetic groups (K) from 3 to 20.

3. Results
3.1. Design and Performance of the Screening Array
3.1.1. SNP Selection

All 1,354,472 submitted SNPs were ranked as potential targets and assigned by TFS
to the following categories: recommended, neutral, not recommended, and not possible
(Figure 1). There were a large proportion of markers in the “not recommended” cate-
gory; however, this is common with species with complex genomes, such as radiata pine.
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Therefore, we used TFS’s secondary conversion (i.e., pconvert) scores, which relaxes the
threshold for repetitive sequence.
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Figure 1. Flow diagram showing number of SNPs submitted, scored, and selected from common and
rare SNP pools, with and without SNPs in the flanking regions, for the screening and genotyping
arrays. Values in parentheses indicate how many SNPs from each sub-category were selected for the
genotyping array. PHR indicates how many SNPs were deemed as high resolution polymorphic on
the genotyping array.

We selected all recommended and neutral markers (see Figure 1) for inclusion on the
screening array. Thereafter, we prioritized markers within the not recommended category
in terms of MAF (MAF > 0.03 with no flanking SNPs, followed by those with flanking SNPs).
Only those markers with a secondary conversion (p-convert) score > 0 were considered.

3.1.2. Screening Array Genotyping

We included 438,744 SNPs on the screening array, NZPRAD01, and assayed 480 sam-
ples (Table 2). Using the default Affymetrix QC settings, 411 (95.6%) of the 430 diploid
samples passed sample QC thresholds, and of the 50 haploid samples, 48 (96%) passed
sample QC thresholds. SNPs were categorized based on the allele clusters from these
480 samples (Table 5). Generally, the most desirable category is PolyHighResolution (PHR)
as this class represents SNPs for which all three combinations of alleles have been detected
within the population (AA, AB, BB), with good signal separation between the clusters. The
second most desirable category is the NoMinorHom (NMH), for which there are less than
two observations of homozygotes for the minor allele, and predominantly AA and AB
clusters. The high frequency (38.7%) of MonoHighResolution (MHR) SNPs (only one allele
observed) could have resulted from the small number of individuals sampled combined
with the fact that the majority of SNPs are likely to be rare, resulting in the alternative allele
not being detected. The high number of SNPs falling within the CallRateBelowThresh-
old, OffTargetVariant, and Other categories could be due to off-target binding and other
probe performance issues that result in spurious clustering patterns and preclude the
generation of usable data. These categories were not further investigated at this stage
as there were sufficient SNPs in the PHR, NMH, and MHR categories. Descriptions of
all SNP categories are available in the Axiom™ Genotyping Solution Data Analysis User
Guide (https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_
solution_analysis_guide.pdf, accessed on 15 December 2021).

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf
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Table 5. Categorization of SNPs detected in 115 diploid samples using the screening array (NZPRAD01).

SNP Category * Total Percentage

PolyHighResolution 21,078 4.8%
NoMinorHom 29,245 6.7%

MonoHighResolution 169,582 38.7%
CallRateBelowThreshold 16,532 3.8%

OffTargetVariant 5118 1.2%
Other 195,885 44.7%

AAvarianceX 91 0.02%
AAvarianceY 148 0.03%
ABvarianceX 213 0.1%
ABvarianceY 180 0.04%
BBvarianceX 149 0.03%
BBvarianceY 186 0.04%

HomHomResolution 337 0.1%
TOTAL 438,744 100.0%

* https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf,
accessed on 15 December 2021.

For the PHR SNPs, the average call rate for diploid samples was high at 99.4%, with
an average sample reproducibility of 99.8%. These analyses included 115 samples and
46 sets of either needle triplicates or needle/cambium pairs. Average sample Mendelian
inheritance accuracy, determined by TFS over these PHR SNPs, was also high at 99.9%.

3.2. Design and Performance of the Genotyping 50K Array
3.2.1. Selection of SNPs for the Genotyping Array

To confirm even distribution of these markers across the genome, we examined the
SNPs that had been previously mapped from exome capture data in either of the two
mapping populations (Wilcox et al.; in prep). Supplementary Data Figures S1 and S2 show
the number of SNPs that mapped per cM for each of the 12 linkage groups, which shows
relatively even representation across the genome for this subset of mappable SNPs. The
SNPs included on the genotyping array aligned to 15,372 scaffolds from the Pinus taeda L. v.
1.01e assembly [47], and 20,039 contigs from the radiata pine transcriptome assembly [16].

3.2.2. Sample and SNP Performance

Needle and cambium samples performed comparably (Table 6), with most samples
passing the sample concentration and quality criteria. Sample reproducibility, assessed by
looking at a subset of the PHR markers in 31 sets of duplicate samples, was high for both
cambium and needles.

Table 6. Sample quality control summary and genotyping metrics using Affymetrix default settings
with an adjusted call rate threshold of 80%.

Statistic Cambium and Needles Cambium Needles

Total sample number 8448 366 8082
Passed samples 8397 (99.4%) 365 (99.7%) 8032 (99.4%)
Failed samples 51 1 50

Average Cluster Call Rate 98.5% 98.8% 98.5%
Sample Reproducibility 99.9% 99.7% 99.9%

The performance of the array across this batch of samples is summarized in Table 7.
More than 80% of the markers are delivering usable data (PHR, NMH, and MHR) using
the default software settings with an adjusted call rate threshold of 80%, with 70% of the
markers in the preferred categories of PHR and NMH.

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf
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Table 7. SNP quality control summary using an adjusted 80% call rate threshold.

SNP Category No. of Markers % of Markers

PolyHighResolution 16,498 45.5
NoMinorHom 8802 24.3

MonoHighResolution 4044 11.1
CallRateBelowThreshold 5 0.0

OffTargetVariant 346 1.0
Other 6590 18.2

TOTAL 36,285 100.0

3.2.3. Minor Allele Frequencies and Heterozygosity

Minor allele frequencies for all PHR, NMH, and MHR SNPs across the full dataset
(average MAF 0.098) are summarized in Figure 2. Observed sample heterozygosity ranged
from 8.0% to 30.3% across the samples tested in this dataset, with an average of 18.8 ± 1.0%.
This was within range of the expected heterozygosity of 18.6 ± 0.1%. The samples from
Australian populations were comparable with an average observed heterozygosity of
18.5 ± 0.9%.
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3.2.4. Detection of Contaminating DNA

We deliberately introduced DNA from one sample to another in increasing proportions
to ascertain the point at which alleles contributed by this contaminant could be detected.
In our two sets of pooled samples, detection of contamination was only possible where
samples were pooled at ratios of 8:1 or less for both related and unrelated pairs (Table 8,
column 2 and 5). There was a noticeable shift in the number of contaminating alleles
detected as heterozygous calls when more than ~30% of the DNA was derived from
the second genotype (i.e., diluted at 2:1 or 1:1) (Table 8). We subsequently explored
cases where markers were homozygous in the original sample but heterozygous in the
contaminant, or vice versa (Table 8, columns 3–4 and 5–6). These mixtures effectively
halved the concentration of the contaminating allele that we were trying to detect. In both
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cases, contamination had to exceed 17% (dilution ratio of 5:1) to be detectable (i.e., for more
than 1% of SNP genotypes to be affected). There was no apparent difference in any of the
scenarios between the related and unrelated pairs, apart from there being fewer than half
the number of SNPs that varied between the related individuals.

Table 8. Percentage of heterozygous SNP genotypes in samples of DNA mixed in proportions
of 1:1 to 20:1 original (O) to contaminating (C) DNA (averaged across duplicates) (pure sample
genotype:contaminant).

Unrelated Samples Related Samples

(1) (2) (3) (1) (2) (3)

DNA Mixture
(O:C)

O = AA
C = BB

O = AA
C = AB

O = AB
C = AA

O = AA
C = BB

O = AA
C = AB

O = AB
C = AA

1:1 99.7% 49.3% 52.9% 98.2% 48.9% 39.1%
2:1 91.3% 9.1% 87.9% 88.3% 11.8% 84.6%
5:1 4.9% 0.3% 99.4% 5.6% 0.5% 99.0%
8:1 1.0% 0.2% 99.5% 1.9% 0.3% 99.6%

10:1 0.0% 0.3% 99.5% 0.4% 0.2% 99.8%
12:1 0.0% 0.1% 99.7% 0.3% 0.2% 100.0%
15:1 0.0% 0.2% 99.8% 0.1% 0.2% 99.8%
20:1 0.0% 0.1% 99.8% 0.1% 0.3% 100.0%

3.2.5. Native Provenance Performance

We evaluated the performance of the array across material that represented the five
native provenances of radiata pine. Compared to the other samples we genotyped, these
provenances are regarded as more distant from the New Zealand landraces and breeding
populations used for initial SNP discovery. The average sample heterozygosities for the Ce-
dros and Guadalupe provenances were lowest (13.5 ± 0.8% and 15.3 ± 0.4%, respectively),
Cambria was moderate (16.7 ± 0.6%), and Año Nuevo and Monterey (from which the New
Zealand landraces are derived) showed the highest average heterozygosities at 17.1 ± 0.6%
and 18.1 ± 0.2%, respectively.

3.3. Population Structure

SNP-based principal component analysis (PCA) of all trees genotyped with the geno-
typing array (Figure 3) revealed several important patterns. There was clear separation
of the native provenances, in particular, the more geographically and morphologically
distant Cedros and Guadalupe provenances. As previously reported [48], the ancestries of
some of New Zealand’s founder populations were roughly equally balanced between the
Monterey and Año Nuevo provenances, with as much as 10% of the founder individuals
showing second-degree or higher levels of relatedness. The breeding population is well
distributed across the y-axis (PC1 in Figure 3), indicating a substantial amount of genetic
variation has been captured compared with the native radiata pine provenances in North
America. Genotypes with “island ancestry” (i.e., Cedros or Guadalupe) were surprisingly
widespread in the progeny trials. Finally, while the overall genetic variation of the histor-
ical/landrace populations is adequately captured by the new generation of trials, there
are some individual ‘extreme’ genotypes from these groups, which should receive special
consideration to ensure this diversity is retained within the breeding program. These results
indicate that the SNP genotyping array will be highly informative when reconstructing the
ancestries of genotypes included in breeding populations, helping to improve the accuracy
of germplasm records and guide interpretation of results from genomic predictions.
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4. Discussion

We successfully designed and validated a 36K SNP array for radiata pine using
Axiom array technology. Taking advantage of TFS’s screening array option, we first tested
438,744 SNPs from a starting pool of 1,354,472 SNPs, that were discovered using exome
capture GBS, to deliver a genotyping array of 36,285 gene-based SNPs. The primary driver
behind the design of this array was to deliver a robust and affordable genotyping solution
for commercial application in the New Zealand radiata pine breeding program. As such,
all samples were selected to give good representation of the genetic diversity available in
New Zealand for this exotic species. This is the first reported medium-density array for this
species, and will be an efficient tool for understanding the connectedness of radiata pine
populations within New Zealand and Australia. The excellent performance of both needle
and cambium tissue DNA, with call rates in excess of 98.5%, and reproducibility of 99.9%,
is a substantial improvement over the exome capture GBS panel, with reproducibility rates
of 86.9%–93.3% [15]. Reproducibility of genotyping results can be affected by varying levels
of background noise among different tissue types, however we see no evidence of this in
our cambium and needles samples.

4.1. Performance of the Genotyping Array

The presence of non-target SNPs in the flanking region resulted in many SNPs not
progressing from the original SNP pool through to the genotyping array, which is to
be expected as bioinformatic screening would automatically eliminate many of these
markers. However, with highly polymorphic species, finding SNPs without nearby flanking
SNPs can be difficult. This makes SNP discovery particularly important, to deliver a
sufficiently large starting pool of SNPs such that enough suitable SNPs can be identified.
Understanding which SNPs are more common and therefore likely to be polymorphic in
tested populations was an important factor when weighting which markers to progress to
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the final genotyping array. As shown in Figure 1, the common SNPs delivered far more PHR
SNPs than the rare SNPs, despite having many fewer SNPs to begin with. The bioinformatic
scoring of SNPs by TFS (i.e., recommended, neutral, and not recommended) was less
informative for predicting which SNPs would perform well, with many SNPs classed
as neutral or not recommended performing well in both the screening and genotyping
arrays. The conversion rate of SNPs on the screening array (i.e., SNPs categorized as PHR,
NMH, and MHR) was 50.2%, which is comparable to what has been reported for several
other forest tree arrays [42,49–51]. After refining the selection of SNPs to include on the
genotyping array, and with a reduced call rate threshold of 80% as per Howe et al. [51],
the conversion rate improved substantially to 80.8%. More than 45% of SNPs are within
the PHR category, which are considered the most informative markers. This highlights the
benefit of prior evaluation of candidate SNPs on a screening array, similar to what has been
reported by other conifer groups [27,42,43] where conversion rates have improved from
39% on the screening array to 96% on the genotyping array.

Because conifers have large, complex, and repetitive genomes, they are highly prone
to off-target hybridization. We used in silico mapping of potential probes to an unpub-
lished draft genome assembly of radiata pine to check for multi-locus interference. We also
tested haploid megagametophyte tissue on the screening array to identify and eliminate
probes with off-target hybridization. Finally, we used trios and duos to test for anoma-
lies in Mendelian inheritance patterns. To identify and remove problematic probes, we
highly recommend that both haploid samples and confirmed trios be used to develop new
genotyping tools.

4.2. Native Provenances

We clearly distinguished five native provenances of radiata pine using the SNP geno-
typing array. Two samples labelled as Cedros clustered with the Guadalupe material.
However, informal investigations into the origins of these samples revealed the original
seed had been supplied by a group that was working with both provenances at the time,
making it likely that Guadalupe seed was mislabeled as Cedros. Without the SNP array,
such errors would remain undetected. Although our sample sizes for the provenances were
small, some SNPs failed more frequently in some provenances than others. These SNPs
likely represent regions of the genome that are more diverged in some provenances. Marker
discovery focused on the New Zealand landraces, which are considered an admixture of
Monterey and Año Nuevo provenances. This almost certainly introduced ascertainment
bias, which likely explains the lower rates of heterozygosity for more distantly related
native provenances.

4.3. Population Structure within the Breeding Program

In general, forest tree species occupy geographically extensive and environmen-
tally heterogeneous environments. Studies of genotypes from across species’ natural
distributions have demonstrated clinal variability in adaptive traits along environmental
gradients ([52,53]. Therefore, to fully exploit a species’ adaptive potential for conservation
or domestication, it is important to capture as much genetic diversity as possible [32,54,55].
We used the SNP genotyping array to study population structure in the New Zealand
radiata pine breeding program and found a substantial amount of genetic variation has
been captured. Clear patterns of population structure were evident in the principal compo-
nent analysis, with the primary axis of variation driven by provenance ancestry and the
secondary axis reflecting breeding activities. As expected, the Monterey and Año Nuevo
provenances were the main contributors to the current breeding population [14], however,
there was surprisingly high representation of the island provenances (i.e., Cedros and
Guadalupe) in the latest breeding material. In addition, about 10% of the founders showed
second-degree or higher levels of relatedness. These analyses will inform ongoing conser-
vation management decisions in terms of which material to retain and which material to
cull from clonal archives [40,56].
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5. Conclusions

We successfully developed a radiata pine screening array using SNP markers discov-
ered using exome capture GBS. Next, we developed the first medium-density SNP array
for radiata pine, containing 36,285 SNPs. The accuracy and quality of the SNP data from
the Axiom genotyping array greatly outperformed our original GBS data. For the Axiom
data, reproducibility between replicates was 99.9%, which should help overcome problems
with pedigree reconstruction that occur when higher levels of genotyping error are present.
The Axiom genotyping array can also be accessed at a highly competitive rate, negotiated
through the CSC. The ability to access robust and affordable genotyping is enabling the
commercial implementation of genomic selection and improved management of genetic
diversity for New Zealand’s radiata pine breeding program.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/f13020176/s1, Figure S1: Distribution of genotyping array SNPs that map to linkage groups in
radiata pine mapping population 268,405 × 268,345, and Figure S2: Distribution of genotyping array
SNPs that map to linkage groups in radiata pine mapping population 850,055 × 850,096.
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