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Abstract: Sustainability issues are driving the civil construction industry to adopt and study more
environmentally friendly technologies as an alternative to traditional masonry/concrete construction.
In this context, plantation wood especially stands out as a constituent of the cross-laminated timber
(CLT) system, laminated wood glued in perpendicular layers forming a solid-wood structural panel.
CLT panels are commonly connected by screws or nails, and several authors have investigated the
behavior of these connections. Glass-fiber-reinforced polymer (GFRP) dowels have been used to
connect wooden structures, and have presented excellent performance results; however, they have
not yet been tested in CLT. Therefore, the objective of this study is to analyze the glass-fiber-reinforced
polymer (GFRP)-doweled connections between CLT panels. The specimens were submitted to
monotonic shear loading, following the test protocol described in EN 26891-1991. Two configurations
of adjacent five-layer panels were tested: flat-butt connections with 45◦ dowels (x, y, and z axes),
and half-lap connections with 90◦ dowels. The results were evaluated according to the mechanical
connection properties of strength, stiffness, and ductility ratio. The results showed higher stiffness
for butt-end connections. In terms of strength, the half-lap connections were stronger than the
butt-end connections.

Keywords: GFRP dowel connections; timber constructions; cross-laminated timber (CLT);
design methodology

1. Introduction

Cross-laminated timber (CLT) has been gaining prominence in civil construction world-
wide for being an efficient, sustainable, and ecologically friendly prefabricated solution,
and is a great alternative to conventional concrete and masonry construction [1].

CLT is manufactured with timber boards placed side by side, glued at 90 degrees to the
adjacent layer, composing a structural panel (Figure 1). The CLT panels are manufactured
in odd layers, with at least three and at most nine layers. The positioning of the boards is
strategically designed to optimize the mechanical properties of the panel [2].

CLT panel connections are commonly made using nails, screws, and metal connectors.
Panel-to-panel connections are normally made by three types of joints: (1) half-lap joints;
(2) single-surface splines, in which a laminated veneer lumber (LVL) plywood sheet is fixed
on one face by screws; and (3) double-surface splines, in which two LVL laminations are
fixed on both sides by screws. The connectors responsible for the connections between CLT
panels, as well as in other wooden structures, need to have adequate strength, rigidity, and
ductility capacity to fulfill their function [3].

Therefore, several studies on CLT have been performed in recent decades. Studies have
investigated connections between CLT panels with metal nails, screws, and connectors, as
well as the performance of these connections in different loading situations. The highlight is
the behavior of the connections between CLT panels in seismic areas, in which the ductility
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of the connections is of significance in the dissipation of energy, since the CLT panels are
very rigid [3–8].
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However, metal connections have some disadvantages. Under exposure to high
temperatures, the steel elements deform, compromising the wooden structure; they are
also corroded in aggressive environments, and during the wood expansion process due to
humidity or its absence, the metal elements can damage the structure, such as by cracking
of the components [9].

An alternative found to overcome some of these disadvantages is the connection of
wooden elements made with dowels and, in particular, those made of Glass-fiber-reinforced
polymer (GFRP). GFRP dowels have been tested on different wooden structures to analyze
their structural performance in terms of strength, stiffness, and ductility, in addition to the
analysis of their mechanical characterization.

One previous study [10] aimed to analyze the performance of GFRP dowels in connec-
tions of laminated veneer lumber (LVL) elements. In the tests, the dowels were subjected to
double-shear loading, with different diameters and orientations in relation to the plane of
the wood fibers. The performance of GFRP dowels reached the expectations of the research.

In another study [11,12], the objective was to analyze the performance of densified
veneer wood (DVW) plate connections with GFRP dowels. The spacing between the GFRP
dowels according to Eurocode 5 [13], as well as the strength, stiffness, and ductility of
the connections, were investigated. The GFRP dowels achieved resistance capacity and
ductility of 65% and rigidity of 75% compared to the steel pin values.

According to Thomson [11], the spacing between the GFRP dowels is smaller than
that of metal dowels and wooden dowels. The length of the shear dowel and, hence, the
dowel spacing, clearly influences the ultimate connection capacity. An in-line spacing and
end distance of three times the dowel diameter (3d) provides a low level of dowel yield
resistance. However, for a dowel spacing and end distance of 4d, significant post-yield
deformation and load resistance was observed, and might therefore be considered as the
minimum in-line spacing for GFRP dowels.

A method for mechanical characterization of GFRP dowels has also been proposed
by Thomson [12] based on the yield moment My,Rk from Eurocode 5 [13] and the “short
beam” test of ASTM D4475-2 [14]. The researcher considered that the deformation of
the GFRP dowel in double-shear loading has plasticity at four points along the length of
the dowel—that is, the perfect elastic–plastic behavior. The empirical flexural capacity of
the GFRP bolts can be determined by equating the internal energy dissipated by rotating
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the dowel at the four points, thus estimating the yield moment My,Rk, called Meff, and
determined through Equation (1) as follows:

Meff =
3Pp d

8
(1)

where Meff is the yield moment connection, Pp is the plasticity load resistance, and d is the
dowel diameter (mm).

Other researchers have studied the performance of GFRP dowels for connections in
wooden structures, aiming to analyze their behavior at elevated temperatures [6–8]. The
results demonstrated that the GFRP dowels manufactured with a thermosetting polyester
matrix, and without fire-resistant additives, presented quick degradation at high tempera-
tures, and failure in a short period.

Other researchers [15–17] have studied the performance of GFRP dowels for connec-
tions in wooden structures, aiming to analyze their behavior at elevated temperatures. The
results showed that GFRP dowels made with a phenolic matrix, and without fire-resistant
additives, may be designed to perform appropriately during fire, and failure of the metal
connections occurred faster than failure of the non-metal connections under sustained loads
of 20 and 40% of the connection capacity.

The characterization method proposed by Thomson et al. [11,12] was used in the
research by Palma et al. [18] to test three types of GFRP dowels: glass fibers and polyester
matrix (GP), glass fibers and epoxy matrix (GE), and carbon fibers and epoxy matrix (CE).
The results showed that the GE dowels had higher strength and ductility than the CE
dowels, whereas the GP reached lower values of resistance, stiffness, and ductility. In the
calculation of My,Rk, the resistance of the GFRP dowels was 50% lower than that of the
metal dowels. However, GE dowels (epoxy resin matrix and fiberglass) performed better
compared to the others. The GFRP-GE dowels were used to test the connections between
densified veneer wood (DVW) plates. The resistance of the GFRP-GE dowels was 20–28%
lower than that of the metal dowel connections. The stiffness of the connections with GFRP-
GE dowels was also inferior, while the ductility was superior for the GFRP-GE dowels.

Thus, the performance of GFRP dowels in wooden structure connections proved to
be a viable alternative to overcome some disadvantages of metal connections. However,
no studies could be found on GFRP-doweled connections to CLT panels. Therefore, the
objective of this research was to analyze the structural performance of such connections as
an alternative to upgrade the industrial process of on-site building of the CLT construction
system with greater structural efficiency.

2. Materials and Methods
2.1. Specimen Description

The materials used in this study were air-dried yellow pine (Pinus spp.) boards,
previously oven-dried, averaging 12% moisture content (MC). The MC was measured
using a Digisystem DUC 2050L hygrometer at three points of the boards—each end, and
the center (center of the upper face)—according to the Brazilian Standard [19]. The pine
boards were purchased at a market, coming from Brazilian plantations. The materials were
stored in the Laboratory of Structures at the Londrina State University. All boards were
cut (cross-section 100 mm × 20 mm), mechanically laminated, and machined to eliminate
particles on the surface of the pieces. This process allowed for the opening of the wood
pores, thus facilitating the process of absorption and anchoring of the adhesive.

2.1.1. NDT Ultrasonic Test

To guarantee that the panels had homogeneous mechanical properties, the whole
set of boards were graded through NDT ultrasonic testing. The equipment used was the
Agricef USLab model. The output was 700 V through metal-encapsulated transducers,
which operated at a frequency of 45 kHz to directly measure the propagation velocity of
the waves in microseconds (µs).
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In the test, the transducers were placed on the center of the flat face of each end of the
boards, and a thin layer of approximately 1 mm of alcohol-free gel was applied. The length
of the pine boards was 3 m. The dynamic modulus of elasticity (MOEd) was determined
through Equation (2) as follows:

MOEd = ρ12%.v2. (2)

where MOEd is the dynamic modulus of elasticity (10−6MPa), ρ12% is the density of the
wood at 12% moisture content (g/cm3), and v is the longitudinal wave velocity (m/s).

2.1.2. Manufacture of CLT Panels and GFRP Dowels

The design of the panels considered the following conditions: the connection con-
figuration, the location and insertion angles of the GFRP dowels, and the number and
dimensions of the panel specimens.

Connection configurations and the inclination of dowel insertion were defined accord-
ing to the literature findings [13,14]. Butt-end connections showed better results when the
dowels were inserted at 45◦ with respect to the panel surface [3]. However, the most com-
mon configuration is the half-lap type: 90◦ connected. Therefore, the following connections
were chosen: butt-end 45◦ insertion angle dowel connections (x, y, and z axes)—designated
T1—and the half-lap 90 ◦ insertion angle dowel connections, designated T2 (Figure 2).Forests 2022, 12, x FOR PEER REVIEW  5  of  13 
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Twelve sets of specimens were manufactured, consisting of three five-layered CLT
panels each, measuring 500 mm long and 400 mm wide. The laminations were each 19.6
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mm thick, and the final panel thickness was 98 mm. The NDT grading procedure permitted
the distribution of the laminations in each panel in such a way that the overall MOE average
and standard deviation were similar to the whole sets of panels, allowing for comparison.

The panels were manufactured at Compensados Ideal Ltd. (Londrina, Brazil)—a
local plywood manufacturing company. The panel layers were phenol-formaldehyde-
resin-bonded, (brand name FF-109), and donated by the Bonardi Indústria Química Ltd.
(Colombo, Brazil). To comply with the indications in the literature, the bonding pressure
was 1 MPa applied by a hydraulic press [20].

Five sets were half-lap-connected and five sets were butt-end-connected. In order
to estimate the Fmax, duplicates of both types were prepared, thus totaling 12 sets. The
butt-end-connected specimens were numbered from 1 to 5 (SP1 to SP5), while the half-
lap-connected specimens were designated from A to E (SPA to SPE). The grouping of the
panels in the specimens was carried out according to the values obtained from the NDT
ultrasonic grading test (MOEd), in order to guarantee that the panels had homogeneous
mechanical properties, as shown in Table 1.

Table 1. Graded NDT ultrasonic test MOEd and grouping of panels.

Configuration Specimen Grouping of Panels MOEd [10−6 MPa]

Mean COV (%)

T1—Half-lap

SPA Panel 1 + Panel 5 + Panel 3 5584 9
SPB Panel 4 + Panel 2 + Panel 6 5452 11
SPC Panel 7 + Panel 14 + Panel 9 5402 17
SPD Panel 8 + Panel 10 + Panel 12 5340 11
SPE Panel 11 + Panel 13 + Panel 15 5316 12

Twin half-lap Panel 16 + Panel 20 + Panel 18 5434 12

T2—Butt-end

SP1 Panel 17 + Panel 19 + Panel 21 5321 2
SP2 Panel 22 + Panel 23 + Panel 24 5422 13
SP3 Panel 27 + Panel 29 + Panel 30 5310 9
SP4 Panel 25 + Panel 26 + Panel 28 5321 2
SP5 Panel 31 + Panel 34 + Panel 35 5416 2

Twin butt-end Panel 32 + Panel 33 + Panel 36 5403 11

The materials used to manufacture the GFRP dowels were Huntsman’s epoxy polymer
resin—composed of Araldite® LY 1564 BR resin and Aradur 2963 hardener—and Owens
Corning’s E-CR GLASS Advantex® fiberglass. The glass fibers were unidirectionally
oriented and continuous. The percentages of fiberglass and epoxy resin were 63% and
37%, respectively.

The production method for GFRP dowels was pultrusion, performed manually and
individually; the portions of fiberglass and epoxy resin were separated into a container,
and the fibers were bathed in the resin and then pulled into a mold, where they cured for
24 h as recommended by the resin manufacturer.

The dowels’ minimum diameter was 6 mm, so as to comply with the provisions of
Eurocode 5 [13]; the dowels were 150 mm long for the butt-end connections and 100 mm for
the half-lap connections (Figure 3). The CLT specimens were pre-drilled, with a diameter
of 6 mm.
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Figure 3. GFRP dowel specimens.

2.2. Testing

The tests were performed at the Londrina State University Structure Laboratory.
The specimens were subjected to monotonic shear loading according to the test method
described by EN 26891 [21]. The specimens were tested on an EMIC model DL-30000
Universal Testing Machine with 300 kN maximum loading capacity. Two support rods
were inserted into the head of the set to prevent panel rotation around the Y axis. In
the same way, two wooden blocks guaranteed locking of the panels on the X axis, and
prevented gaps between panels during the test.

On the center panel, a steel I-type bar with wooden sides sitting on a metal plate was
used to evenly distribute the applied load. In accordance with the EN 26891 [21] provisions,
a dial gauge was positioned on the center panel to measure vertical displacements (Figure 4).
This process was replicated for both butt-end connections and half-lap connections.
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According to the literature [6,7], the mean estimated ultimate failure load (Fest) for the
T1 configuration was calculated to be 15 kN. These references [6,7] were later used in the
comparison between screws, nails, and GFRP dowels, which can be found in Section 4.2.
Thus, according to the EN 26891 load x displacement graph [21], the testing was initiated
by the twin specimens of both types of connections.
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Concerning the butt-end connections, at 30% Fest the displacement reached the maxi-
mum 15 mm stipulated by EN 26891 [21]. The maximum load Fmax observed was 5 kN.
Thus, for this test, the new threshold had to be adjusted to 5 kN.

The same procedure was followed with respect to the half-lap connection specimens.
However, in this configuration there was a twofold increase in the failure load compared to
the prior test (Fmax = 10 kN), which required adjustments of the test threshold to 10 kN.

3. Results

The performance analysis of GFRP-doweled connections was based on the method-
ology presented in EN 26891 [21]. The same guidelines were followed in testing. The
mechanical properties analyzed (from the linear regression line between the 0.1 to 0.4 Fest
curve) were the connection resistance capacity Fmax, the maximum displacement Dmax,
and the stiffness kser. The kser linear regression aims to compare the values obtained by
calculation with those observed during testing.

3.1. Butt-End Connections Results

The load x displacement curve of configuration T1 for the butt-end connections is
shown in Figure 5. In accordance with EN 26891 [21], the load was applied up to 0.4 Fest
and maintained for 30 s. The load was then be reduced to 0.1 Fest and maintained for 30 s.
Thereafter, the load was increased until the ultimate load or a slip of 15 mm was reached.

Forests 2022, 12, x FOR PEER REVIEW  8  of  13 
 

 

 

Figure 5. Load x displacement curves of butt‐end connections (T1). 

The mechanical properties of the whole set of butt‐end connections are displayed in 

Table 2. All but one (Dmax) of the coefficients of variation (COVs) were high (greater than 

20%). 

Table 2. Butt‐end connections’ mechanical properties (T1). 

Specimen  Fest (kN)  Fmax (kN)  Dmax (mm)  kser (kN/mm) 
        EN 26891 (1991)  Regression 

SP1 

5 

5.33  11.54  1.97  2.66 

SP2  5.22  14.71  3.87  5.51 

SP3  5.77  14.41  3.00  4.32 

SP4  6.97  14.75  2.73  3.63 

SP5  3.92  11.91  3.20  4.44 

Mean    5.44  13.46  2.95  4.11 

COV (%)    20.17  11.87  23.50  25.64 

The average maximum displacement Dmax was 13.46 mm—close to the maximum 15 

mm allowed by the EN. The proximity to the displacement limit points to a good energy 

dissipation capacity and high degree of ductility. 

The instantaneous sliding modulus or stiffness kser, was similar concerning COVs cal‐

culated following EN 26891 [21] and those observed in the experimental test—23.50% and 

25.64% (columns 5 and 6, respectively). However, the averages of the calculated kser and 

that obtained by the regression line are quite divergent. This divergence can be explained 

by how stiffness is obtained, according to EN 26891 [21], by Equation (3), as follows:   

kser = 
.ସ౩౪

జ,
   where    𝜐,ௗ ൌ

ସ

ଷ
ሺ𝜐ସ െ 𝜐ଵሻ  (3) 

where Fest is the estimated ultimate failure load, υi,mod is the value of the initial slip, and υ04 

and υ01 are the values of the displacements registered for 0.4 Fest and 0.1 Fest, respectively. 

The stiffness obtained by the linear regression is an adjustment to the force–displacement 

response between the values of 0.1 Fest and 0.4 Fest. Therefore, this divergence is the result 

of the dependence displayed by this variable on possible geometric deviations or errors 

verified in the manufacturing of the connections. 

Therefore, the kser proposed by the standard is quite conservative. The calculations 

underestimate the actual values, pointing to a reconsideration of the parameters adopted 

in the equations proposed by the EN 26891 standard [21]. 

Figure 5. Load x displacement curves of butt-end connections (T1).

The mechanical properties of the whole set of butt-end connections are displayed
in Table 2. All but one (Dmax) of the coefficients of variation (COVs) were high (greater
than 20%).

Table 2. Butt-end connections’ mechanical properties (T1).

Specimen Fest (kN) Fmax (kN) Dmax (mm) kser (kN/mm)

EN 26891 (1991) Regression

SP1

5

5.33 11.54 1.97 2.66
SP2 5.22 14.71 3.87 5.51
SP3 5.77 14.41 3.00 4.32
SP4 6.97 14.75 2.73 3.63
SP5 3.92 11.91 3.20 4.44

Mean 5.44 13.46 2.95 4.11
COV (%) 20.17 11.87 23.50 25.64
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The average maximum displacement Dmax was 13.46 mm—close to the maximum
15 mm allowed by the EN. The proximity to the displacement limit points to a good energy
dissipation capacity and high degree of ductility.

The instantaneous sliding modulus or stiffness kser, was similar concerning COVs
calculated following EN 26891 [21] and those observed in the experimental test—23.50%
and 25.64% (columns 5 and 6, respectively). However, the averages of the calculated
kser and that obtained by the regression line are quite divergent. This divergence can
be explained by how stiffness is obtained, according to EN 26891 [21], by Equation (3),
as follows:

kser =
0.4 Fest

υi,mod
where υi,mod =

4
3
(υ04 − υ01) (3)

where Fest is the estimated ultimate failure load, υi,mod is the value of the initial slip, and υ04
and υ01 are the values of the displacements registered for 0.4 Fest and 0.1 Fest, respectively.
The stiffness obtained by the linear regression is an adjustment to the force–displacement
response between the values of 0.1 Fest and 0.4 Fest. Therefore, this divergence is the result
of the dependence displayed by this variable on possible geometric deviations or errors
verified in the manufacturing of the connections.

Therefore, the kser proposed by the standard is quite conservative. The calculations
underestimate the actual values, pointing to a reconsideration of the parameters adopted
in the equations proposed by the EN 26891 standard [21].

3.2. Half-Lap Connections Results

The load x displacement curves of the T2 configuration for half-lap connections are
shown in Figure 6. In accordance with EN 26891 [21], the load was applied up to 0.4 Fest
and maintained for 30 s. The load was then reduced to 0.1 Fest and maintained for 30 s.
Thereafter, the load was increased until the ultimate load or a slip of 15 mm was reached.
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The maximum loads Fmax of these connections are very close, resulting in a COV equal
to 7.26%. The results show that the average maximum 14.73 mm displacement was even
closer to 15 mm compared to the butt-end connections (T1), indicating greater ductility of
this configuration (Table 3).
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Table 3. Mechanical properties of half-lap connections (T2).

Specimen Fest (kN) Fmax (kN) Dmax (mm) kser (kN/mm)

EN 26891 (1991) Regression

SPA

10

11.54 14.51 1.51 2.03
SPB 13.20 14.94 1.56 2.08
SPC 13.47 14.70 1.27 1.68
SPD 14.07 14.55 1.56 2.11
SPE 13.47 14.95 1.79 2.38

Mean 13.15 14.73 1.54 2.06
COV (%) 7.26 1.42 12.05 12.17

The results of the instantaneous slip modulus kser were very similar, showing calcu-
lated and observed coefficients of variation 12.05 and 12.17%, respectively. Furthermore, for
this configuration, the experimental results for stiffness were greater than those calculated
by 25.2% on average. The same observation can be made for the revision of the equations
suggested by EN 26891 [21].

4. Discussion
4.1. Comparison between Butt-End Connections and Half-Lap Connections

Comparing the results of butt-end connections (T1) to those of half-lap connections
(T2), the ultimate load shows a considerable difference (Figure 7). T1 strength was 41%
greater than that of T2 connections, averaging 13.15 kN and 5.44 kN, respectively.
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In contrast to the results reported in the literature regarding nailed and screw connec-
tions, the 45◦ butt-end connections (T1) presented lower performance than the 90◦ half-lap
connections (T2). This phenomenon can be explained by the behavior of the GRFP as a
function of the fiber orientation with respect to the plane of stress application, as shown
in Figure 8.
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The diagram of the moduli of elasticity and rupture (Figure 7) demonstrates that the
GFRP materials composed of unidirectional fibers oriented in the longitudinal (0◦) and
transverse (90◦; the present case) directions show similar performances; however, at 45◦ the
response is much lower [17]. This also explains the better results concerning 90◦ half-lap
connections (T2). Therefore, the experimental observations are justified by the literature.

As for Dmax, the half-lap connections were also responsible for the largest average dis-
placement. However, the most rigid connections were the butt-end connections, averaging
47% (calculated) and 49% (tested) more rigid than half-lap connections (Tables 1 and 2).
The kser coefficients of variation in both cases were close, ranging from 23.50% to 25.64%.
These results indicate a lower predictability for butt-end connection with dowels placed in
this position. The mode of rupture of the 45◦ butt-end connections occurred with shear of
the dowels (Figure 9), while the dowels at 90◦ were plasticized.
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The rupture of the GFRP dowel connection at the butt-end joint at 45◦ indicates the risk
of compromising the overall structure. On the other hand, the plasticity of the GFRP dowel
connections in the case of the half-lap joints provides greater resistance before failure.
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4.2. Comparison between Experimental Results and Literature Review

The results observed in the present study were compared with those found in the
literature [6,7]. In this study [6], the diameter of the dowels was 6 mm, while that of the
HBS screws was 8 mm. The length of the GFRP dowels was equal to the thickness of
the CLT panels—approximately 100 mm. While the authors of [6] used the commercially
produced screw length (80 mm), their CLT panel thickness was 85 mm.

The strength of the GFRP half-lap connections was well above that observed in [6]
for the same number of connectors (13.15 × 5.25; Table 4). The maximum displacement
was similar to that observed in all studies. However, the instantaneous sliding modulus or
stiffness—corresponding to the connection stiffness kser—was quite different.

Table 4. Experimental GFRP dowel connection vs. literature review.

Properties Gavric et al. [6] Branco et al. [7] Experimental GFRP

Half-Lap Nail 90◦ Nail 45◦ Half-Lap Butt-End

Fmax (kN) 5.25 3.51 2.48 13.15 5.44
Dmax (mm) 15.98 14.03 13.90 14.73 13.46

kser (kN/mm) 1.24 1.20 1.37 1.54 2.95

Connections 4 screws 2 nails 4 GFRP dowels

The tests in [7] were performed on solid wood pieces connected with nails at various
angles. The average strength obtained in [7] concerned two-nail connections at a 90◦

insertion angle. Considering that with fewer than eight connectors, the strength of a
connection (nailed or screwed) can be considered as the sum of individual pin strength [19],
the equivalent to four nails would be 7.02 kN (3.51 × 2; column 2, Table 4)—well below
the 13.15 kN observed in this study. The 90◦ nailed connections had a stiffness of 2.4 kN—
equivalent to a four-nailed connection (1.2 × 2; column 2, Table 4)—stiffer than those of the
half-lap GFRP (1.54; column 4, Table 4).

Following the same reasoning, the mean maximum load for the 45◦ GFRP-doweled
connections was greater than that of the 45◦ nailed connections observed in [7] - 5.44 kN vs.
4.96 kN (2.48 * 2; column 3, Table 4). The same was true of stiffness: 2.95 kN vs. 2.74 kN
(1.37 * 2; column 3, Table 4) for dowels and nails, respectively.

5. Conclusions

This study focused on the behavior of CLT panels connected via butt-end (T1) and
half-lap (T2) GRFP-doweled connections; and some conclusions could be drawn. The
results showed higher stiffness for butt-end connections (T1). In terms of strength, the
half-lap connections were 2.4 times stronger than the butt-end connections.

This observation totally diverges from the literature concerning metal-pinned connec-
tions (nail and screws), and can be explained by the way the GRFP behaves according to
the plane to which the stress is applied—at 45◦ the response is the poorest. The strength
reported for unidirectional GRPF in both longitudinal and transverse directions (0◦ and
90◦) is very close, which explains the superior performance for the 90◦ half-lap connections.
The results demonstrate a lower predictability for butt-end joints placed at a 45◦ angle,
reducing the reliability of the GFRP material.

The use of glass-fiber-reinforced polymer (GFRP) composites as doweled connections
for CLT construction systems proved to be a viable technical alternative. Another consid-
erable advantage is the physical resistance of GFRP dowels compared to metal fasteners.
In the presence of variable moisture and in coastal areas, metal fasteners can corrode,
compromising the CLT structure; this does not happen with GFRP dowels. Further research
is necessary, such as the mechanical characterization of the GFRP dowels according to the
methods identified in the literature, and studies on greater diameters of GFRP dowels for
CLT connections.
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Finally, it is worth mentioning the pioneering character of this research since, to date,
no study has been found in the literature on the use of GFRP dowels as connections for CLT
panels. This research is of great importance for the civil construction sector—especially
CLT construction, which is on the rise in Brazil.
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