
����������
�������

Citation: Xu, Z.; Zhang, Q.; Xiang, S.;

Li, Y.; Huang, X.; Zhang, Y.; Zhou, X.;

Li, Z.; Yao, X.; Li, Q.; et al.

Monitoring the Severity of Pantana

phyllostachysae Chao Infestation in

Moso Bamboo Forests Based on UAV

Multi-Spectral Remote Sensing

Feature Selection. Forests 2022, 13,

418. https://doi.org/

10.3390/f13030418

Academic Editor: Luke Wallace

Received: 17 January 2022

Accepted: 3 March 2022

Published: 5 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Monitoring the Severity of Pantana phyllostachysae Chao
Infestation in Moso Bamboo Forests Based on UAV
Multi-Spectral Remote Sensing Feature Selection
Zhanghua Xu 1,2,3,4,5,* , Qi Zhang 1,6, Songyang Xiang 1,6, Yifan Li 1,2, Xuying Huang 1,7, Yiwei Zhang 1,2,
Xin Zhou 1,2, Zenglu Li 5,8, Xiong Yao 5,9 , Qiaosi Li 10 and Xiaoyu Guo 5

1 Academy of Geography and Ecological Environment, Fuzhou University, Fuzhou 350108, China;
n195527042@fzu.edu.cn (Q.Z.); 205527048@fzu.edu.cn (S.X.); 200620005@fzu.edu.cn (Y.L.);
dg1827013@smail.nju.edu.cn (X.H.); n190627069@fzu.edu.cn (Y.Z.); n190620019@fzu.edu.cn (X.Z.)

2 College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, China
3 Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou 350108, China
4 Postdoctoral Research Station of Information and Communication Engineering, Fuzhou University,

Fuzhou 350108, China
5 Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and

Utilisation, Sanming 365004, China; sukd200720@segi.edu.my (Z.L.); fjyx@fjut.edu.cn (X.Y.);
20161138@fjsmu.edu.cn (X.G.)

6 The Academy of Digital China, Fuzhou University, Fuzhou 350108, China
7 International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
8 Faculty of Education, SEGi University, Damansara 47810, Malaysia
9 College of Architecture and Planning, Fujian University of Technology, Fuzhou 350118, China
10 Department of Earth Sciences, The University of Hong Kong, Hong Kong 999077, China; qiaosili@hku.hk
* Correspondence: fzucar@fzu.edu.cn

Abstract: In recent years, the rapid development of unmanned aerial vehicle (UAV) remote sensing
technology has provided a new means to efficiently monitor forest resources and effectively prevent
and control pests and diseases. This study aims to develop a detection model to study the damage
caused to Moso bamboo forests by Pantana phyllostachysae Chao (PPC), a major leaf-eating pest,
at 5 cm resolution. Damage sensitive features were extracted from multispectral images acquired
by UAVs and used to train detection models based on support vector machines (SVM), random
forests (RF), and extreme gradient boosting tree (XGBoost) machine learning algorithms. The overall
detection accuracy (OA) and Kappa coefficient of SVM, RF, and XGBoost were 81.95%, 0.733, 85.71%,
0.805, and 86.47%, 0.811, respectively. Meanwhile, the detection accuracies of SVM, RF, and XGBoost
were 78.26%, 76.19%, and 80.95% for healthy, 75.00%, 83.87%, and 79.17% for mild damage, 83.33%,
86.49%, and 85.00% for moderate damage, and 82.5%, 90.91%, and 93.75% for severe damage Moso
bamboo, respectively. Overall, XGBoost exhibited the best detection performance, followed by RF
and SVM. Thus, the study findings provide a technical reference for the regional monitoring and
control of PPC in Moso bamboo.

Keywords: UAV multispectral remote sensing; Moso bamboo forest; Pantana phyllostachysae Chao;
feature selection; detection model

1. Introduction

Moso bamboo is the largest and most widely distributed bamboo species in China
with a high economic value. It has various ecological functions, including conserving water,
maintaining soil and water quality, as well as the balance between carbon and oxygen.
However, serious forest pests and diseases have been threatening the ecological health of
the Moso bamboo forest; chief among them is Pantana phyllostachysae Chao (PPC), which can
cause waterlogging inside the bamboo nodes or even kill the plants when the infestation is
severe, thus, seriously restricting the healthy development of bamboo plants. Traditional
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field survey methods are generally used to control the spread of pests by determining the
spatial location of pest occurrence and the degree of damage [1]. However, the emergence
of pests is affected by a variety of factors, making it impossible to obtain comprehensive
and accurate pest information using traditional methods [2]. Therefore, to overcome these
limitations, it is necessary to directly develop a fast and accurate method to detect damage
caused by PPC.

At present, remote sensing technology is widely used for forest pest detection and has
greatly reduced the labour and workload requirements for exploration of pests [3,4]. The
“ground” to “space” and microscopic to macroscopic paradigm has been applied to the
remote sensing monitoring of forest pests and diseases [5,6]. Using these models, progress
has been made in understanding the response mechanism of these plants to the damage
caused by PPC. In fact, changes in leaf loss, chlorophyll content, water level, and spectral
reflectance of Moso bamboo leaves, in response to the damage caused by PPC, has been
demonstrated both at the leaf level and the remote sensing image scale, facilitating the
analysis of the remote sensing response mechanism of these forests to the damage caused
by PPC [7–9]. In regions with large spatial heterogeneity, the direct use of single-point
measurements or multi-point sampling, averaged to represent the value at the image pixel
scale, is common; however, this method can cause large uncertainties. In general, it is
difficult to correlate the results of studies based on specific scales to those at other scales.
Indeed, blindly applying the data obtained in leaf scale studies to low-resolution satellite
remote sensing may result in significant errors. Therefore, it is difficult to draw the objective
conclusions based on scale transformation from point to surface [10].

Currently, unmanned aerial vehicle (UAV) remote sensing technology is increasingly
being used in forest pest monitoring research as it can efficiently obtain high spatial
and temporal resolution remote sensing images with outstanding structure and texture
information. As such, this method better compensates for the drawbacks of satellite-based
remote sensing and provides a real-time and accurate “ground-aerial-space” integrated
platform for pest monitoring. Numerous studies have successfully detected forest pests
and diseases using indicators such as original wavelengths, vegetation indexes, and texture
characteristics [11–25]. However, pests and diseases can affect the structure and spectral
characteristics of the host canopy [26]. It is therefore essential to fully exploit remote sensing
features that are sensitive to pest response, and select effective classification models when
monitoring pests in forests. Using Pearson correlation analysis and stepwise discriminant
analysis methods, Liu et al. [27] selected features sensitive to pine forest insect damage and
developed a diagnostic model for assessing the damage level in pine forests using multiple
linear regression (MLR). Meanwhile, Iordache et al. [28] combined Pearson correlation
analysis with intra-class and inter-class distance methods to filter pest indicators and
established an identification model based on radio frequency for pine wood nematode
infestation. Moreover, five yellow pest identification models were developed for betel leaf
based on vegetation indices extracted from high-resolution UAV multispectral images, of
which those based on back propagation neural network and support vector machine (SVM)
algorithms exhibited superior detection [29]. Deng et al. [30] examined four models for
detecting diseased citrus plants based on different feature combinations and reported that
the performance of the model based on the XGBoost algorithm was superior to the other
models. Furthermore, although existing studies have investigated the damage response
mechanism of PPC at ground and satellite remote sensing scales, none have assessed its
damage mechanism at the UAV scale.

In view of this, in the current study, UAV multispectral images were used as the
data source to obtain the original spectra of Moso bamboo canopy at different damage
levels, analyse the spectral variations, and select the parameters sensitive to the damage
response of Moso bamboo forest to PPC infestation. Thereafter, the optimal feature subsets
were screened by the RF-recursive feature elimination (RFE) algorithm and SVM, RF and
XGBoost detection models were established. Finally, the detection effect of each model was
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evaluated. This study aimed to provide a reference for the application of UAV multispectral
data for Moso bamboo forest pest detection.

2. Materials and Methods
2.1. Experimental Data and Pre-Processing

The test area was located in Shunchang County, Nanping City, Fujian Province. The
geographical coordinates of the county are 117◦30′–118◦14′ E and 26◦39′–27◦12′ N. The
landform is mainly mountainous and hilly, with a mild climate, and a clear distinction
between wet and dry seasons. Shunchang County was selected as the first batch of “the
hometown of bamboo” in China and has completed the country’s first bamboo forest
carbon sink transaction. By the end of 2018, the county had a forest area of more than
160,000 hectares, including approximately 440,00 hectares of bamboo. According to statis-
tics, all forest types in Shunchang County suffer from pest infestation throughout the year.
As one of the main insect pests of Moso bamboo, PPC seriously restricts the sustainable
development of the county’s Moso bamboo economy.

On 14 May 2021, the research team travelled to Dagan Town in Shunchang County
to carry out field research. A typical Moso bamboo plantation in Shakeng Village with
an area of approximately 21 hectares was selected as the test area. The DJ-Innovations
(DJI) Elf Phantom 4 Real-Time Kinematic (RTK) platform with Complementary Metal-
Oxide Semiconductor (CMOS) multispectral sensor was used to collect aerial imagery.
The device has one visible and five multispectral light sensors, which can detect five
wavebands, including blue, green, red, red-edge, and near-infrared light (Table 1). Before
the flight, the grey plate matching the sensor was used for correction. To obtain the
UAV data, the flight height, course overlap degree, and side overlap degree were set
to 93 m, 80%, and 70%, respectively. The composition of the tree species and the level
of damage in the test area were then investigated at the ground level. In the test area,
a total of 441 Moso bamboo canopy positions were measured using Global Navigation
Satellite System (GNSS) receivers with centimetre-level positioning accuracy. Under pest
damage stress, the external characteristics and internal physiological state of plant leaves
become altered. The colour of the affected leaves becomes yellow or even scorched and has
diseased spots or nicks. The water loss and photosynthetic capacity of the leaves become
reduced following pest infestation [7,8]. As such, the process of determining pest level in a
forest is highly complicated as various factors must be considered, including the colour
of canopy leaves, disease spots, leaf integrity, etc. [5,9,31]. Hence, “The General Principles
of Investigates on Main Forestry Pest” (LY/T 2011–2012), which considers these multiple
variables, is used as a reference to determine the level of damage to the Moso bamboo
canopy. Canopy photos were taken on site for a further review with relevant experts to
determine the damage level. The damage levels of the Moso bamboo canopy were classified
by leaf damage percentage: healthy was assigned 0%, mild damage was 0–20%, moderate
damage was 20–50%, and severe damage was >50%. Among the 441 Moso bamboo canopy
samples collected, 16.33% were classified as healthy, 22.45% as mild damage, 28.57% as
moderate damage, and 32.65% as severe damage. These data were used as the foundation
for the subsequent labelling and extraction of image samples and spectral texture features.

Table 1. Band parameters of multispectral sensor.

Bands Wavelength
Range/nm

Centre
Wavelength/nm Band Width/nm

Blue band (B) 434–466 450 32
Green band (G) 544–576 560 32

Red band (R) 634–666 650 32
Red-edge band (RE) 714–746 730 32

Near-infrared band (NIR) 814–866 840 52
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The DJI Terra 3.0.1 software was used to pre-process the UAV images for radiometric
calibration, image stitching, and orthorectification. Finally, the standard orthophoto product
with a spatial resolution of approximately 5 cm was obtained with UTM/WGS84 projection
coordinates. As the UAV images have a high resolution and strong ability to recognise
background information, the pre-processed images (Figure 1c) also included those of non-
bamboo forest areas, such as bare ground and shadows. To exclude these areas, thresholds
were applied to the normalised difference vegetation index (NDVI) and red-edge (RE)
bands. The test was repeated several times using the stepwise method, and the best
extraction results were obtained when NDVI < 0.4845 and RE < 0.0574. In addition, to
remove broadleaf forests in the test area individual image bands, vegetation indexes and
texture features were used in combination with logistic regression models (LR) to extract
moso bamboo forests, where the vegetation indices and texture quantities used are ratio
vegetation index (RVI), normalised vegetation index (NDVI), difference vegetation index
(DVI), normalised differential greenness index (NDGI), and normalised red-edge vegetation
index (NDRE), as well as mean, variance, homogeneity, contrast, dissimilarity, entropy,
entropy, second moment, and correlation. The overall accuracy (OA) of LR was 97.34%,
and the results are shown in Figure 1d.
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Figure 1. Overview of the test area and data processing: (a) geographic location of Shunchang
County; (b) aerial image of Shunchang County; (c) unmanned aerial vehicle (UAV) orthophoto image
of the test area; (d) image obtained after extracting the thematic information of Moso bamboo forest
from UAV images.

2.2. UAV Remote Sensing Feature Selection

This study mined the remote sensing response characteristics of the bamboo forest at
the canopy scale, on the basis of high-resolution UAV multispectral image data, to assess the
damage caused by PPC. The pre-selected indicators included the individual image bands
and 18 vegetation indexes, namely, RVI, renormalised difference vegetation index (RDVI),
transformed normalised difference vegetation index (TNDVI), enhanced vegetation index
2 (EVI2), enhanced chlorophyll absorption rate index (MCARI), green normalised vege-
tation index (GNDVI), modified ratio vegetation index (MSR), optimisation soil-adjusted
vegetation index (OSAVI), normalised vegetation index (NDVI), soil-adjusted vegetation
index (SAVI), modified soil-adjusted vegetation index (MSAVI), green band chlorophyll
index (RedGreen), enhanced red-edge ratio vegetation index (MSRRE), normalised red-edge
vegetation index (NDRE), leaf chlorophyll index (LCI), transformed chlorophyll uptake rate
index (TCARI), RE band chlorophyll index (CIrededge) and feature spectral index of CSI.
Additionally, eight texture features were included, namely, mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, correlation.

Not all of the above-mentioned feature indicators contribute to detection of the damage
level caused by PPC; therefore, feature selection is needed to improve the classification
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and detection accuracy of the model. One of the most commonly used methods, employed
in previous feature optimisation studies, is recursive feature elimination based on SVM
(SVM-RFE) [32,33]. Meanwhile, an increasing number of studies have combined random
forest algorithms with RFE for feature optimisation [34–36]. Meanwhile, related studies
have reported that RF-RFE is a mature feature selection method that offers superior results
to SVM-RFE [37]. The RF-RFE selects features primarily by the results obtained from
training the classifier. The basic process is as follows: (1) RF is used to rank the importance
of features; (2) the features with low importance are removed before each classification,
and iteration is stopped when the feature set is empty [38]. Since the random decision tree
generation process uses the self-sampling method (Bootstrap), not all samples are used
in the generation process of each tree—the unused samples are referred to as out_of_bag
(OOB)—through which the accuracy of the tree can be evaluated. RF focuses on OOB
estimation of the prediction error on a “random” dataset by assigning a random number to
each feature in turn; each feature is then assigned a score accordingly; the larger the score,
the more important the feature. RF uses OOB estimation to calculate the relevance of the
features of the model, and this measure of feature importance makes the complexity of the
computation unincreased. In addition, RF accounts for the influence of each feature on the
classification. To further filter the number of feature parameters significant to the severity
of the damage, the RF-RFE algorithm, based on cross-validation, is used to cross-validate
different feature combinations on the basis of RF-RFE to determine the final optimal feature
subset. In this study, the construction and optimisation of the detection model for the
damage level caused by PPC is carried out on the basis of simplifying the features by RF
importance ranking and RFE backward iteration.

2.3. Construction and Optimisation of Pest Detection Models

In this study, three models, SVM, RF, and XGBoost, were selected to detect and
compare the damage levels of PPC; in each model, the feature subset screened by RF-
RFE was considered as the independent variables and the damage level of PPC was the
dependent variable.

2.3.1. Support Vector Machine (SVM)

The core idea of SVM is to map the data to a high-dimensional space to find the optimal
classification hyperplane by minimising the upper limit of the classification error. For
linearly separable data, SVM focuses on identifying the separating hyperplane ωTx + b [39].
Its objective function is given by Equation (1):

argmaxω,b

{
minn

(
label·

(
ωTx + b

))
· 1
‖ω‖

}
= πr2 (1)

where ω is the normal vector which determines the direction of the hyperplane, label is
the category label, and label•

(
ωTx + b

)
≥ 0 is the constraint. By introducing Lagrange

multipliers, Equation (1) can be transformed into Equation (2):
maxα

(
m
∑

i=1
α− 1

2

m
∑

i,j−1
label(i)·label(i)·αiαj<x(i), x(j)>

)
C ≥ α ≥ 0,

m
∑

i=1
αilabel(i) = 0

(2)

where α is the displacement that determines the distance of the hyperplane from the origin
and C is the relaxation variable. The separation hyperplane can be obtained by solving α
andω.

The SVM algorithm deals with nonlinear problems by setting a suitable kernel function
which essentially calculates the similarity between the samples and landmark points to
define new features and thus train complex nonlinear decision boundaries. SVM has
four different kernel functions: linear, polynomial, hyperbolic tangent (sigmoid), and
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Gaussian radial basis function (RBF). As different kernel functions are used to identify the
hyperplanes under different data distributions, the settings of the kernel functions, and
their corresponding penalty coefficients C and gamma parameters, affect the accuracy of
model classification.

2.3.2. Random Forest (RF)

RF is a machine learning algorithm that contains multiple decision trees [40]. The
basic concept is to use the self-help sampling method (bootstrap) to randomly select k
samples from the original training set which are then added back as a new training set. The
classification decision trees are then constructed to generate a random forest composed of k
classification trees, and finally the attribution of new samples is decided by majority voting
based on the results of each classification tree. The essence of the algorithm is to improve
the decision trees by combining multiple decision trees together, with the creation of each
tree depending on an independently drawn sample set.

2.3.3. Extreme Gradient Boosting Tree (XGBoost)

XGBoost is a boosted tree-based machine learning algorithm used for studying
gradient-boosted decision tree algorithms [41]. The premise of this algorithm is to perform
a second-order Taylor expansion of the loss function, add a regularization term to the
objective function to control the complexity of the model, and continuously perform feature
splitting to develop a tree to fit the residuals of the last prediction during the training pro-
cess. K trees are obtained after training, and according to the characteristics of this sample,
there will be a corresponding prediction score for each tree; the sum of the corresponding
scores of each tree is the prediction value of this sample.

XGBoost considers the regularization term, and its objective function is defined as
follows:

obj =
m

∑
i=1

l(yi, ŷi) +
k

∑
k=1

Ω( f (k)) (3)

Ω( f (k)) = γT +
1
2

λ
T

∑
j=1

ω2
J (4)

where
m
∑

i=1
l(yi, ŷi) represents the loss function, ∑m

i=1 ∑k
k=1 Ω( f (k)) represents the regular-

ization term, ŷi is the predicted output, yi is the label value, f (k) is the k-th tree model, T
represents the weight value, γ is the leaf tree penalty regularization term with pruning
effect, and λ is the leaf weight penalty regularisation term to prevent overfitting.

2.4. Test Effect Evaluation

To ensure the reliability of the evaluation results, improve the stability and generali-
sation ability of the models, and attenuate the influence of sample data on the evaluation
results, 441 sets of Moso bamboo canopy spectral sample data were divided into modelling
and validation sets in the ratio 7:3, and 309 training samples were used for model construc-
tion while 132 validation samples were used for model evaluation. The OA and Kappa
coefficient were used to evaluate the effectiveness of the three models for detecting the
damage level of PPC. Data analysis in this work was conducted with Python (anaconda
4.9.2), jupyterlab 2.2.6, and machine learning library scikit-learn 0.23.2, under the Windows
10 operating system.

3. Results
3.1. UAV Multispectral Characterisation of PPC Damage in Moso Bamboo Forests

Changes in the internal structure and external morphological characteristics of Moso
bamboo caused by PPC will present as changes in the spectral reflectance of the affected
Moso bamboo at both the visible and near-infrared wavelengths. Hence, the reflectance of
extracted individual image bands was normalised, and the spectral variation of the Moso
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bamboo canopy under different damage levels was analysed based on the normalised
individual image bands, as shown in Figure 2, where the horizontal coordinates 1, 2, 3,
and 4 represent healthy, mild damage, moderate damage, and severe damage, respectively.
No obvious change was observed in B-band reflectance under different severities, and the
R-band reflectance was higher for moderate and severe damage than for healthy and mild
damage. Moreover, the reflectance of R-band under severe damage was particularly visible,
likely due to the image resolution being higher and the canopy of severely damaged, or
even dead, Moso bamboo was sparser; therefore, the reflectance was influenced by the
background such as branches and soil, thus not showing a proper monotonic trend. Unlike
the B and R bands, the reflectance of the G, RE, and NIR bands tended to decrease as the
damage level increased. As the host nutrient deficiency caused by PPC tends to obliviate
the “green peak” and “red valley” of the spectrum, the reflectance of G, RE and NIR bands
tends to decrease with an increasing damage level.
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3.2. Feature Optimisation and Analysis Based on RF-RFE

To determine the optimal subset of features for the model, RF-RFE was used to screen
31 features (Figure 3). From the figure, it can be seen that classification accuracy reaches a
maximum at ten features and tends to decline as more features are added. Therefore, the
first ten features were selected as the optimal subset. The importance of the features in the
optimal feature subset in descending order of importance are RedGreen, CSI, NDVI, MSR,
TNDVI, RVI, correlation, MCARI, GNDVI, and CIrededge (Figure 4).
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The values of each optimal feature were normalised and plotted as a scatter plot
(Figure 5), where the horizontal coordinates 1, 2, 3, and 4 represent healthy, mild, moderate,
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and severe damage, respectively. As seen in the figure, the vegetation indices under
different severities exhibit some variation. As the damage level increased, RedGreen
and CSI showed an increasing trend, while NDVI, MSR, TNDVI, RVI, correlation, MCARI,
GNDVI, and CIrededge exhibited a decreasing trend. Correlation, which is a texture feature,
showed a tendency to initially decrease, subsequently increase, and then decrease as the
damage level increased. This indicates that the features selected by the RF-RFE feature
selection algorithm showed a clear pattern of damage response, and large differences
occurred among different damage levels of Moso bamboo canopies.
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3.3. Damage Detection Model and Effect Evaluation of PPC in Moso Bamboo Forest
3.3.1. Establishment of a Damage Detection Model for PPC Infestation in Moso Bamboo
Forests

Based on the sample data of the experimental group, ten features, including RedGreen,
CSI, NDVI, MSR, TNDVI, RVI, correlation, MCARI, GNDVI, and CIrededge, were used as
independent variables, and healthy, mild damage, moderate damage, and severe damage
were used as dependent variables to train a model for detecting the damage level of PPC
using the SVM, RF, and XGBoost algorithms.

The learning curve and the grid search were used to tune the parameters and improve
the accuracy of the models. The main tuning parameters of SVM are C, kernel, degree,
and gamma. Here, C is the penalty factor or the tolerance for error; the higher the C
value, the less likely it is to overfit; however, the computation will be slower. The gamma
parameter comes with the RBF function as kernel; this parameter implicitly determines the
distribution of the data after mapping to the new feature space. Degree is the dimensionality
of the polynomial function. The main parameters regulated by random forest (RF) are
n_estimators, random_state, and max_depth. The n_estimators are the number of trees, that
is, the number of base evaluators; if n_estimators are too small, it will result in underfitting,
and vice versa. The random_state is the seed used in any class or function with randomness
to control the random pattern. The max_depth is the maximum depth of the tree which
reflects the complexity of a single tree. The main parameters regulated by XGBoost are
n_estimators, random_state, max_depth, gamma, and eta. n_estimators, random_state,
and max_depth are the same as those in RF, while gamma is the minimum value of the loss
function at which the node can be split and eta is the weight or learning rate of the model
generated by each iteration.
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To ensure the stability of the models, the training sets were subjected to five-fold
cross-validation. The optimisation of the main parameters of each model and the accuracies
of the five-fold cross-validation are listed in Table 2.

Table 2. Parameters of the SVM, RF, and XGBoost models.

Classifier Parameters
Five-Fold

Cross-Validation
Accuracy (%)

Support Vector Machine,
SVM

kernel = ‘poly’, C = 1, gamma = 5,
degree = 2 82.34

Random Forests, RF n_estimators = 50, random_state = 80,
max_depth = 9 85.41

Extreme Gradient
Boosting, XGBoost

n_estimators = 137, random_state = 100,
max_depth = 2, gamma = 0.1, eta = 0.05 86.63

3.3.2. Evaluation of the Detection Effect of PPC in Moso Bamboo Forest

The final classification results of each model after tuning and enhancing the parameters
and effects, respectively, of the detection model using the learning curve and the grid search,
are shown in Figure 6. The results show that the degree of Moso bamboo damage predictive
ability is good for all three models. Among them, SVM exhibited slight confounding for
the prediction of healthy and mild damage, while RF and XGBoost had similar prediction
results. Furthermore, the prediction effect of XGBoost was slightly superior to that of RF
for moderate and severe damage.
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Next, the sample data of the validation set were substituted into the three models
and the OA and Kappa coefficient values for detecting the damage level of PPC were
calculated (Table 3). The results show that the OA and Kappa coefficient values for all
three models were above 80%, 0.700, respectively, and that the OA, Kappa coefficient value
of the XGBoost algorithm were the highest at 82.54%, 0.811, respectively, compared with
those of the SVM and RF models. This shows that the XGBoost pest detection model is
more accurate than the SVM and RF models. The OA of the XGBoost pest detection model
was higher by 4.52% and 0.76%, and the Kappa coefficient was higher by 0.078 and 0.006,
compared to those of the SVM and RF models, respectively.

Table 3. Evaluation of the detection performance for SVM, RF, and XGBoost models.

Damage Levels
SVM RF XGBoost

OA (%) Kappa
Coefficient OA (%) Kappa

Coefficient OA (%) Kappa
Coefficient

Healthy 78.26 0.876 76.19 0.722 80.95 0.776
Mild damage 75.00 0.565 83.87 0.788 79.17 0.746

Moderate damage 83.33 0.712 86.49 0.809 85.00 0.788
Severe damage 82.50 0.922 90.91 0.866 93.75 0.900

Total 81.95 0.733 85.71 0.805 86.47 0.811

The accuracy of the three models in detecting the degree of damage (healthy, mild,
moderate, and severe damage) was then analysed. The prediction accuracy of SVM and
XGBoost for mild damage was lower than that for the other degrees, at 75.00% and 79.17%,
while the Kappa coefficients were 0.565 and 0.746, respectively. As for RF, the prediction
accuracy and Kappa coefficient were lower for healthy plants compared to the other levels,
at 76.19% and 0.722, respectively. The detection performance of the three models was
better for moderate and severe damage, with an accuracy between 80–93.75% and a Kappa
coefficient between 0.7–0.922. Overall, XGBoost had the best detection performance for
the four degrees of damage, with the lowest detection accuracy being close to 80% and the
lowest Kappa coefficient being 0.746.

Based on the results of the above analysis, it can be seen that although all three models
can effectively identify the severity of damage in Moso bamboo forests, the performance
of the XGBoost-based detection model was superior compared to that of the other two
models, and hence, can be used to fully exploit the damage information of PPC.

4. Discussion

In recent years, studies have demonstrated the use of medium-resolution multispectral
satellite images to monitor forest pest disturbances at the regional scale [42,43], as well as
the applicability of satellite remote sensing imagery to monitor moth infestation in Congo
bamboo, as well as other forest pests and diseases [9,44,45]. Although satellite remote
sensing images have the advantages of large coverage and low cost, they are susceptible to
a relatively long revisit period, and low spatial resolution, among other factors. Even the
relatively short revisit period for Sentinel 2 data is one week, which is not conducive to
timely detection of early infestation. Moreover, the low spatial resolution can result in the
presence of mixed pixels, making it difficult to achieve real-time and accurate monitoring,
which to some extent restricts their application for accurate monitoring of forest pest and
disease stress. UAV remote sensing technology can efficiently and rapidly acquire remote
sensing images with high spatial and temporal resolution; the types of data acquired are
also abundant and includes visible, multispectral, and hyperspectral data, which can better
solve the drawbacks of satellite remote sensing and can be used for pest monitoring at the
canopy scale [46–49]. In our previous studies, four dimensions of pest response, including
leaf loss, greenness, humidity, and original wavelength, were clarified at the ground
level [7–9]. In this study, spectrum-derived indicators that are sensitive to the damage
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caused by PPC were selected and screened based on UAV multispectral data. The results
were consistent with those of the previous studies. In addition, the leaf feeding pattern of
PPC is from the top of the Moso bamboo canopy downward, and therefore, canopy leaf
loss becomes more pronounced as the infestation increases, leading to variability in the
canopy structure according to the degree of damage. Moreover, the structural variation
of the Moso bamboo canopy was not considered in the previous studies. In this study,
texture features were also incorporated into the analysis and detection of the damage level
to the Moso bamboo canopy at the canopy scale. From the index filtering results, it can be
seen that the selected texture features does not account for a large proportion, which may
be related to the window size set when extracting texture features, which will be further
investigated in a future study.

Since numerous spectral indices and texture feature variables were used to analyse
the models used in this study, feature redundancy was inevitable. Therefore, it is necessary
to select a suitable method to screen for the initial selection of indicators. In this study,
the RF algorithm combined with the RFE method was used for feature optimisation. To
further screen the number of features significant to each damage level, the idea of cross-
validation was also introduced into the RFE algorithm, and the RF-RFE algorithm based
on cross-validation was used to assess different feature combinations on the basis of RF-
REF and determine the final optimal feature subset. However, as a black box model, it
is difficult to explain the relationship between each preferred characteristic indicator and
the occurrence of the pest; therefore, a variance analysis of the selected indicators was
performed to explain the sensitivity of each preferred indicator to the damage level of PPC.
In this study, the process of “feature selection of RF-RFE followed by variance analysis”
allows for the objective selection and interpretation of the best feature indicators and their
usability, respectively.

Although all of the detection models proposed in this study performed well with
respect to detecting the damage level of PPC, certain limitations remain. For instance, the
accuracy of the SVM, RF, and XGBoost models in detecting the level of damage (healthy,
mild damage, moderate damage, and severe damage) all varied to some extent. The detec-
tion accuracies of the three models for moderate and severe damage were correspondingly
greater than those for healthy and mild damage, and the average detection accuracies were
78.47%, 79.35%, 84.94%, and 89.05%, for healthy, mild damage, moderate damage, and
severe damage, respectively. It can be seen that the detection accuracy of each model for
healthy and mild damage has certain shortcomings, of which the SVM model performed
particularly well. In general, the damage process of a single Moso bamboo plant is as
follows: first, the uppermost leaves are destroyed by PPC; after the top leaves are eaten,
the pest will move downwards and harm the leaves in the middle and lower part of the
canopy [50]. In this study, the spectrum of the top leaves of the canopy did not change
significantly between the initial damage phase (mild damage) and healthy Moso bamboo,
as evidenced by the results of the variability analysis of the selected features. This may
lead to errors in differentiating between healthy and mild damage plants when judging
and sampling, thereby affecting the detection accuracy of both, and resulting in missing
the areas of early mild infestation. Pest infestation can increase the frequency and intensity
of forest disturbances and therefore require effective methods for accurate monitoring and
mapping of damage levels [51]. Traditional methods of ground surveys are not sufficient
to determine the damage level caused by pests to the host. The proposed framework
for detecting the damage level of PPC using data mining and multi-model classification
comparison achieves the identification and evaluation of the damage level of PPC at the
canopy scale with positive results. However, this process requires manual mapping of the
ROI of the canopy, and the subsequent extraction of spectral texture values of the canopy,
which may lead to a reduction in detection accuracy; moreover, this process cannot be
used to map the extent of damage at the individual plant level. The framework can be
further improved by using better artificial intelligence algorithms to automatically extract
and identify the canopy and damage level of individual trees. In addition, owing to the
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limitation of the spectral resolution of the UAV data itself, the extracted spectral-derived
indicators cannot characterise dimensions such as water content or humidity, leading to
inadequate mining of damage response features, which then affects the accuracy of damage
class classification. High-resolution hyperspectral images can provide higher spectral
resolution and more detailed texture features to identify subtle changes in the tree canopy,
which can subsequently be used in Moso bamboo single-plant pest detection studies by
combining Light Detection and Ranging (LiDAR) data with hyperspectral image data.

5. Conclusions

PPC is a major leaf-eating pest in bamboo forests. Studying the response mechanism of
the pest at the UAV remote sensing scale is necessary for the detection of the damage caused
by PPC in Moso bamboo forests as it can provide a reference for intelligent monitoring of
forest resources and accurate prevention and control of pests. In this study, multispectral
UAV images acquired by DJI Elf Phantom 4 RTK small multirotor multispectral image
acquisition platform were used to extract and analyse the features sensitive to the damage
response of Moso bamboo, and establish the damage level detection models based on
SVM, RF, and XGBoost by combining machine learning algorithms. The results showed the
following:

1. The spectra of G, RE, and NIR bands of the Moso bamboo canopy differed significantly
according to the degree of damage, and their values showed a decreasing trend with
the increase in damage class.

2. The ten features selected using the RF-RFE algorithm, including nine vegetation
indices and one texture feature, were ranked in descending order of importance as
RedGreen, CSI, NDVI, MSR, TNDVI, RVI, correlation, MCARI, GNDVI, and CIred-
edge. Each of the selected features showed relatively clear pest response patterns,
and large differences were observed between the different damage classes of Moso
bamboo canopies. The selected texture feature was also shown to play an important
role in the detection of damage classes at the UAV scale.

3. All three models were able to detect the damage level of PPC, and XGBoost showed
the best detection performance; its OA and Kappa coefficient were 86.47%, 0.811,
respectively. The RF model, with an OA and Kappa coefficient value of 85.71%, 0.805,
respectively, was ranked second, and SVM, with an OA and Kappa coefficient of
81.95%, 0.733, respectively, was ranked third.
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