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Abstract: Forest fires have become a habitual threat in all types of ecosystems, which is the reason
why it is necessary to improve management of the territories and optimization of prevention and
means of extinction. This study compares three machine learning techniques: logistic regression,
logistic decision tree, and multivariate adaptive regression spline to identify areas susceptible to
forest fires in the Loja canton. In the training of the machine learning models, a multitemporal
database with 1436 points was used, fed with the information from seven variables related to fuel
moisture, proximity to anthropic activities, and ground elevation. After analyzing the performance
of the three models, better results were observed with the LMT, thus offering application ease for
local decision-makers. The results show that the technique used allowed generating a model with a
good predictive capacity and that the maps resulting from the model can be updated in short periods
of time. However, it is necessary to highlight the lack meteorological data availability at the local
level and to encourage future researchers to implement improvements in this regard.

Keywords: forest fires; susceptibility; machine learning; logistic decision trees; spatial modeling;
logistic regression; multivariate adaptive regression spline

1. Introduction

Forest fires are uncertain events, both in terms of their causes and impacts on ecosys-
tems and the economy. Although some forest fires occur spontaneously, most of them are
caused by human activities. Hence the importance of identifying the seasons and zones
that represent greater risks to inform the citizens, warn the authorities, and streamline the
available surveillance and extinction means. To such end, it is recommended to analyze
the four basic factors involved in the occurrence of forest fires, namely: weather, type
of vegetation cover, topography, and human activity. The first three factors have been
analyzed in various publications, converging in that: when information on the fuel type
of the vegetation is not available, it is possible to approximate it by using the vegetation
spectral indices; the topography, with ground altitude, slope, and orientation factors; and
the meteorological conditions, with relevant variables, such as temperature, relative hu-
midity in the air, wind, rainfall, and water vapor pressure [1–5]. All these conditions have
the potential to boost or, on the contrary, delay fire propagation [6].

Although forest fires occur in most of the biomes, in countries with Template-Mediterranean
climates, especially in Europe and North America, the effect of the seasons is more accentu-
ated, especially with the increase in temperatures and the reduction in rainfall volume [7].
These meteorological changes have driven the creation of several indices to determine the
likelihood of fire occurrence in specific areas, with the National Fire Danger Rating System
(NFDRS), the McArthur Forest Fire Danger Index (FFDI), the Canadian Forest Fire Weather
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Index System (FWI), and the Fire Potential Index (FPI) standing out [8]. All these indices
use weather data as a basis [9–12] and, although they have been used for several decades
to plan and manage forest fires in North American countries, they are not designed for
Ecuadorian tropical zones nor do they include anthropic interaction measurements, as
recommended by [13].

The study of forest fires evolves continuously following environmental and social
changes. The first meteorological approaches were centered on the likelihood occurrence
and on the locations’ susceptibility assessment with regression models, geographically
weighted regression, or generalized additive regression [14]. In this sense, protocols for
zoning the risk of fires following the Saaty multicriteria analysis methodology also became
popular; such methodology allows designing hierarchization models to weight variables
with the criteria of professionals from various areas and generate an equation that multiplies
the value of each variable by the weight obtained in the technical analysis [15].

In the last decade, forest fire modeling has undergone significant advances thanks to
the integration of machine learning algorithms, mainly Artificial Neural Networks (ANNs),
Random Forests (RFs), and Supporting Vector Machines (SVMs) [13]. In parallel, the use of
the maximum entropy (MaxEnt) algorithm has gained ground, which had, typically, been
used in the analysis of species distribution and modeling of ecological niches [16]. The
most recent trend is that of the forest fire simulation systems such as FARSITE, FSim, CFast,
FlamMap, or Burn-P3, which allow for quantitative estimations of both ignition probability
and fire propagation to guide fuel treatment as a forest management measure [17]. A more
in-depth analysis of the forest fire modeling techniques can be found in these research
studies [18–20]. Despite its easy application and interpretation, decision trees have been
scarcely employed in similar studies, in which techniques such as ANN, SVMs, or RF have
been preferred.

The extremely unstable fire behavior of forest fires is boosted by the topographical,
geological, and climatic conditions characteristic of tropical and subtropical countries, such
as Ecuador. The low seasonality throughout the year is due to the country’s location above
the Ecuadorian line and is the reason why the difference between the regions is only defined
in two seasons: wet or winter, and dry or summer [21]. Generally, in the Coastal region,
the rain season begins in December and lasts until May, while the dry season is between
June and November. In the Sierra and Amazonia region, there is rainfall from October to
May, and the dry season extends between June and September, with slight differences in
the North Amazonia (province of Sucumbíos), where the rainy season lasts from March to
November and the dry season extends from December to February [22].

The altitude range is another conditioning factor for weather in inland Ecuador, since
the topography generates a wide gradient of temperatures and exerts an influence on
rainfall volume. Generally, the high areas receive low rainfall, while the low zones up
to 2000 m.a.s.l. present an ample variation in annual rainfall volume [23]. This division
caused by the pluviometric and thermal regimes makes it possible for forest fires to occur
in almost all the months throughout the national territory.

As already mentioned, the meteorological variables (temperature, relative humidity,
and accumulated rainfall) are habitually used as the cornerstone for the models of forest fire
occurrence, regardless of the technique followed [5,24,25]. Some authors, such as [26], add
to the analysis information about the vegetation cover, classifying it especially according to
the type of fuel. In other models, the distance to access routes or other human infrastructures
is also used [27], as well as forestry productivity or demographic density [28] for an
approximation to the ignition risk in forest fires.

Although the meteorological variables are present practically in all the models, access
to good resolution information in Ecuador is limited. There are several internet services
offering weather information, although predominantly at broad scales and as weekly or
monthly averages. Such is the case of the ERA5-Land collection [29] with monthly data
regarding temperature, rainfall, atmospheric pressure, or wind speed at a resolution of
0.1 arc degrees (approximately 1.11 km). The TerraClimate [30] dataset offers a broader
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catalog of variables, the following among them: Actual and potential evapotranspiration,
water deficit, soil moisture, accumulated rainfall, and the maximum and minimum temper-
atures of each month at a global level; however, it is only available in a 2.5-km scale. On its
part, GLDAS-2.1 [31] offers more than 30 meteorological variables estimated every 3 h at a
resolution of 0.25 arc degrees (approximately 25 km).

The experience of modeling the occurrence probability of forest fires in Ecuador is
semi-empirical, and little has been published on the subject. The most relevant corresponds
to the Metropolitan District of Quito (DMQ), in which case FlamMap software was used
to simulate the spread of a forest fire that occurred in 2018 in the Atacazo hill. This study
recognizes the lack of baseline information at the country level and how the performance of
firefighters is affected by this gap. Other recommendations of the authors are the generation
of mapping at local scale mapping with their own models, or, the use of factors that allow
adapting or calibrating popular models in other areas of the world [32].

Is it possible to generate, using supervised learning techniques such as decision
trees, logistic regression or MARS, a reliable model that allows obtaining fire probability
maps periodically? To answer this question, this study was carried out in the Loja canton
(province of Loja, Ecuador). The data were obtained from open sources, both to identify
hot spots (fires) and explanatory variables. Once the database was generated, the three
techniques mentioned above were applied to generate the model which was later validated
using cross-validation.

This manuscript begins with an explanation of how to obtain the explanatory variables
considered for the forest fire susceptibility model, as well as it is explained the importance
analysis and other metrics that allow prioritizing variables and discarding multicollinearity.
Aspects of the experimental design for training and validation in machine learning are later
discussed. Being this a comparative article of the performance of three different techniques,
a section that evaluates their performance and allows to choose a technique was drafted.
Given the scarce application of machine learning models in the country, the discussion
section recapitulates the most novel aspects of the research and compares it with available
studies for similar contexts. The concluding paragraphs emphasize recommendations for
future researchers and the challenges to follow after this research.

2. Materials and Methods
2.1. Study Area

Loja canton is a part of the province of Loja, located in southern Ecuador, and has an
approximate area of 1928 km2. About 31% of the territory is used for agricultural activities
(crops and/or animal breeding), 26% corresponds to remnants of native forest and, in a
lower proportion, are other types of natural vegetation: 17% shrubs, 13% grass, and only
7% moors; on their turn, the urbanized zones correspond to 6% of the total area of the
canton [33].

The average temperature varies from 57 ◦F (14 ◦C) in the rainiest months to 63 ◦F
(17 ◦C) in the driest ones. The south-western part of the canton has higher temperatures
(71 ◦F or 22 ◦C). In contrast, the north-eastern zone is characterized by low temperatures
throughout the year (45 ◦F or 7 ◦C). In the central zone, the most urbanized sector, the
average annual temperature is 61 ◦F or 16 ◦C; the coldest month is July (43 ◦F or 6 ◦C), and
the hottest month is November (81 ◦F or 27 ◦C). A climate variable extremely related to
temperature in the study area is humidity, whose ranges goes from 86% between December
and July to 75% between August and November.

The average annual rainfall is 1300 mm, the areas that receive the least rainfall are
the eastern areas; in terms of seasonality, the months with the least rainfall tend to be
august or September, while the months with the highest rainfall are December, January,
and February [34].

According to the last population and housing census, 2010, the canton Loja holds a
population of 214,855 inhabitants (48% of the province of Loja). The capital Loja is the most
populated with 180,617 inhabitants, followed by Malacatos (7114 inhabitants), Vilcabamba
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(4778 inhabitants), San Lucas (4673 inhabitants), and Taquil (3663 inhabitants). In terms
of population density, the city of Loja and the parish capitals are the most populated; in
contrast, the parishes of Jimbilla, Malacatos, San Pedro de Vilcabamba, Vilcabamba, and
Yangana have extensive uninhabited areas (located to the south-east). Internal migration
is a progressive phenomenon in the canton: currently, 80% of the territory is considered
urban and only 20% rural.

The canton has multiple natural hazards throughout the year. In recent years, during
the rainy season, were reported overflowing canals, landslides, and floods in several areas
of the territory. The main risk in the canton is the increasing of forest fires in the driest
months. According to official statistics of the National Service for Risk and Emergency
Management (Servicio Nacional de Gestión de Riesgos y Emergencias, SNGRE), available
since 2016, in 2020 more than 100 events a year were identified in the province of Loja,
which represented between 13% and 39% of the burned area in the entire country [35].

The only fire risk map available is a model elaborated in 2014 by several governmental
institutions. It uses Multicriteria Evaluation (MCE) techniques based on cartographic
information of the fuel, temperature, rainfall, solar radiation, humidity, and cover-soil
complex texture model [36]. Although it is the official country-scale model, it is based on
subjective criteria, so it is not possible to evaluate its accuracy with objective parameters.
As it is a static map, it does not reflect the constant changes that the canton has undergone
during these eight years, both in anthropogenic activities and in the state of vegetation.

2.2. Preselection of Explanatory Variables and Generation of the Database

The model was generated based on data collected between 2015 and 2020 in a 5-km
influence area around the canton limits. This period was selected due to the availability
of Sentinel 2 information. 1910 hot spots (fires) were obtained from the data generated by
the VIIRS [37] and MODIS [38] satellites, from which a random selection of 887 points was
made. In addition, from Sentinel 2 images [38], 549 points of unburned sites and that were
on dates close to those when the hot spots were recorded were identified (Figure 1). From
these 1436 points and considering the dates on which the fire took place within the study
period, a database with 23 variables related to the topography, vegetation, and proximity to
human activities was generated, selecting the images immediately preceding occurrence of
the event. These variables were reduced to eight after an importance analysis. The NDVI
and NDMI indices were generated from Sentinel 2 imagery using the code editor of Google
Earth Engine (GEE).

2.3. Multi-Collinearity Checking of Forest Fire Influencing Variables

In order to test for multicollinearity, we applied the tolerance (Equation (1)), and VIF
(variance inflation factor) (Equation (2)), of the R olsrr package [39], definided as:

Tolerance = 1 − R2
d (1)

VIF =

∣∣∣∣ 1
Tolerance

∣∣∣∣ (2)

where R2
d is the determining factor for the regression of explanatory variables and d

concerns all other explanatory variables, λmax and λk are the maximum and the kth eigen
values, respectively. Tolerance < 0.1, VIF > 10 indicates serious collinearity problem [39–42].
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2.4. Forest Fire Occurrence Probability Models
2.4.1. Logistic Regression (LR)

Logistic regression aims to predict, from independent variables, the probability (from
0 to 1) of occurrence (Equation (3)). The LR equation (Equation (4)) is as follows [43]:

Pi =
1

1 + e−zi (3)

zi = α + β1Xi1 + β2Xi2 + . . . + βpXip (4)

where P is the probability of occurrence of the event (dichotomous variable); z is obtained
from a linear combination of independent variables based on adjustment of maximum
likelihood, with constant α, coefficient of partial lineal regression β, and original values of
variables x.

2.4.2. Multivariate Adaptive Regression Spline (MARS)

Multivariate Adaptive Regression Splines (MARS) is a method developed for flex-
ible modelling of high-dimensional data. This method uses classical linear regression,
mathematical construction of splines, and binary partitioning to create a local model.

When the response y assumes only two values, linear logistic regression is used. The
MARS model predicts a function using “basic function (BF)”, a linear combinations and
interactions of the adaptive piecewise linear regression [44]. The basic function of MARS
non-parametric regression is [45]:

y = f (x) + ε (5)
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where ε shows the error, f (x) is an unknown regression model that calculated by:

f (x) = β0 +
M

∑
m=1

βmβm(x) (6)

where β0 is the coefficient of the constant basis function, βm is the coefficient of the mth
basis function, βm(x) is the mth basis function, and M is the number of basic functions in
the model.

2.4.3. Logistic Model Trees (LMT)

The logistic model tree is a classification model, which combines decision tree learning
methods and logistic regression (LR). From the number of iterations, a simple regression
function is adjusted using the attributes that generate the lowest error and incorporate it
into an additive model. The optimum number of iterations is determined by means of cross-
validation when performance of the model stops increasing. When no more improvements
can be attained by adding more simple linear models, the data are divided, and boosting is
resumed separately in each subset. This process takes the logistic model generated up to
this moment and de-bugs it separately for the data in each subset. Cross-validation is once
again performed in each subset to determine the suitable number of iterations to perform
in this subset. To prevent data overfitting, a tree-pruning process is applied, producing
smaller but very precise trees with linear-logistic models in the leaves. A more detailed
explanation of the model can be found in [46].

2.5. Forest Fire Occurrence Probability Analysis

Data analysis applying (i) LR; (ii) MARS, and (iii) LMT. All models were executed in R
using ‘caret’ package [47]. MARS was executed using additionally the ‘earth’ package [48],
with the “backward” pmethod for prune the model, and 1 degree of interaction. And for
LMT we use RWeka [49], the number of iterations was cross-validated, and the rest of the
parameters used were those configured by default (Figure 2).
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In addition, the variable importance was calculated using the Varimp command of
the caret package in R software. For Varimp interpretation of each model, see the Caret
package documentation [47].
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2.6. Performance Assessment

Two tools were used to assess performance of the model, namely: Area Under the Curve
(AUC) and Cohen’s Kappa Coefficient.

2.6.1. Area under the Curve

The ROC (Receiver Operating Characteristic) curve allows evaluating the ability of
the trained model to classify information, regardless of the algorithm used or of the scale of
the predictive variables. It measures the relationship between sensitivity (Equation (7)), or
“rate of true positives”, and 1-specificity (Equation (8)), or “rate of false positives”.

Sensitivity = TP/((TP + FN)) (7)

TP = true positives, FN = false negatives.

Specificity = TN/((FP + TN)) (8)

TN = true negatives, FP = false positives.
In 1988, the forth some approximate parameters were set to classify precision [40] as

follows: 0.50–0.60 = insufficient; 0.60–0.70 = poor; 0.70–0.80 = fair; 0.80–0.90 = good; and
0.90–1.00 = excellent [46].

2.6.2. Cohen’s Kappa Coefficient

The Kappa index was calculated, which is a statistical instrument that estimates
agreement between two observers or measuring tools for the same phenomenon, with
the intention of adjusting the random effect in the agreement proportion expected, as
established by Equation (9) [50].

Kappa = (P0 − Pe)/(1 − Pe) (9)

P0 = observed concordance ratio, and Pe = expected random matching concordance ratio.
The expected value of the Kappa coefficient takes on values between 0 and 1; where 1

represents perfect consistency. To intercept the results, the appraisal scale for the Kappa
index proposed by [51] was adopted, which, with 0.2 intervals, proposes the following
agreement levels: no agreement (0.00), insignificant (0.00–0.20), discreet (0.21–0.40), moder-
ate (0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.00).

Once the models were generated, they were applied to the entire study area. Addi-
tionally, 5 categories were developed (very low: 0–0.2, low: 0.2–0.4, moderate: 0.4–0.6, high:
0.6–0.8, and very high: 0.8–1) using the equal interval method. NDVI and NDMI values
for the month of August 2020 were used for this purpose, mainly because it is the month
with the lowest cloud cover in Sentinel images. To compare the models, the percentage of
estimated area within each of the categories was calculated.

Finally, positive predicted value (PPV) and negative predicted value (NPV) were
calculated to determine the proportions of positive and negative results that are true
positive and true negative results, respectively.

2.6.3. Wilcoxon Test Rank

With the aim of identifying statistically significant differences between the values
observed in the training and test dataset and the results of each model, and to compare
any statistically significant differences between the values generated by the models, the
Wilcoxon signed-rank test was applied. According to this method, when the p-values are
less than the significance level (0.05), the null hypothesis is rejected and, therefore, the
performances of the models are significantly different [52].
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3. Results
3.1. Multi-Collinearity Analysis

The multi-collinearity test showed strong multicollinearity problems among the vari-
ables ‘Accessibility from towns’ and ‘Accessibility from roads’. Once the variable ‘Ac-
cessibility from towns’ was eliminated, the achieved tolerance, and variance inflation
factor (VIF) values below the upper and lower limits, respectively (Table 1). Therefore, no
multicollinearity issues were identified for the seven variables tested (Figure 3).

Table 1. Multicollinearity analysis in the current study.

N Variables Tolerance VIF

1 NDVI 0.9543621 1.04782
2 NDMI 0.8127563 1.230381
3 Accessibility from economic center 0.1436906 6.959399
4 Accessibility from roads 0.1273751 7.850826
5 Elevation 0.5045483 1.981971
6 Distance to rivers 0.824852 1.212339
7 Distance to anthropic zones 0.5341745 1.872047
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Figure 3. Final selection of predictor variables for the susceptibility model. Five of these variables
are permanent: elevation (a), distance to anthropic zones (d), distance to rivers (e), accessibility from
economic center (f) and accessibility from roads (g) and correspond to an estimate of the proximity
to human activities that represent a risk of smoldering ignition. The two updateable layers are the
NDVI (b) and NDMI (c) vegetation indices, which provide information on the state of moisture and
vitality of the vegetation cover throughout the year in the study area.

3.2. Forest Fire Occurrence Mapping Results

The maps generated by each model are shown in Figure 4. Additionally, a bar chart
identifying the number of pixels assigned to each class is shown in each map. In the case of
LR, the very low class has the largest area (32%), followed by low (21%), moderate (17%),
high (15%), and very high (15%). For MARS, the dominant classes are very low (45%), and
then very high (20%), although some areas are classified as low (13%), and finally moderate
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(13%) and high (13%). As for LMT, the largest proportion of area classified as very low has
the largest area (59%), followed by very high (30%), while low percentages are classified as
low (7%), high (3%), and moderate (2%) (Figure 4).
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Figure 4. Forest fire occurrence mapping using LR model (a), MARS model (b), and LMT model (c).

3.3. Variable Importance

The results of the variable importance are showed in the Table 2. According to it,
for LR, the most important variables are humidity (NDMI), accessibility from roads and
NDVI. Elevation, accessibility from economic center and distance to anthropic zones are of
intermediate importance, while the least important variable, is the distance to rivers. For
MARS, two variables have a strong weight, namely: humidity and elevation. NDVI and
accessibility from roads are of intermediate importance, while accessibility from economic
center, distance to anthropogenic zones, and distance to rivers are of less importance. For
LMT, humidity, accessibility from roads, and elevation are the most important variables,
followed by distance to anthropic zones, accessibility from economic center, distance to
rivers, and, finally, NDVI, which are of less importance.

Table 2. Variable importance of the forest fire occurrence independent variables using the varImp
function from Caret package. In the three algorithms analyzed, the most important variable turned
out to be the NDMI index; while the variable with the least impact for the models based on LR and
MARS was Distance to anthropic zones, for the LMT algorithm the variable with least importance
was the NDVI index.

LR MARS LMT

NDMI 9.6 100.0 0.7921
Accessibility from roads 5.4 35.6 0.6902

NDVI 4.1 39.8 0.5062
Elevation 2.4 65.5 0.6844

Accessibility from economic center 2.3 27.9 0.5547
Distance to rivers 2.0 21.0 0.5683

Distance to anthropic zones 1.0 20.4 0.5256
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3.4. Models’s Performance

The training and test result of the forest fire occurrence probability is shown in the
Table 3. Using the training data, the LR model has a good ability to classify the information
(AUC > 0.8), while the ability of MARS and LMT is excellent (AUC > 0.9). Regarding
the degree of agreement measured with the kappa index, it is observed that the model
generated by LR is moderate, while in the MARS and LMT models it is substantial, with
LMT approaching near perfect. It is also observed that the LR model tends to generate a
considerable number of false positives, which generates a positive predictive value (PPV)
of 0.7632, and a lower accuracy than the other models. In contrast, LMT generates a low
number of false positives, yielding a positive predictive value of 0.8894, and a model
accuracy of 0.9017.

With the validation dataset, the overall accuracy of the models decreases, but they still
maintain good classification accuracy (AUC between 0.8 and 0.9). As with the training data,
in the validation data the kappa index is moderate for the LR model (0.4964) and substantial
for the MARS and LMT models (0.6569 and 0.6642, respectively). While LR generates a
considerable number of false positives, leading to a PPV d 0.7361 and an accuracy of 0.7482,
the models generated by MARS and LMT still maintain PPV values and accuracy greater
than 0.8.

Table 3. Performance of models generated by three statistical techniques. LR: logistic regression.
MARS: Multivariate adaptive regression spline. LMT: Logistic model tree.

TRAINING DATA SET TEST DATA SET

Parameters LR MARS LMT LR MARS LMT

True positive 348 361 378 106 114 116
True negative 304 331 365 99 113 112
False positive 108 81 47 38 24 25
False negative 64 51 34 31 23 21

PPV (%) 0.7632 0.8167 0.8894 0.7361 0.8261 0.8227
NPV (%) 0.8261 0.8665 0.9148 0.7615 0.8309 0.8421

Sensitivity 0.8447 0.8762 0.9175 0.7737 0.8321 0.8467
Specificity 0.7379 0.8034 0.8859 0.7226 0.8248 0.8175

AUC 0.844 0.9061 0.9017 0.825 0.8849 0.8321
KAPPA 0.5825 0.6796 0.8034 0.4964 0.6569 0.6642

Accuracy 0.7913 0.8398 0.9017 0.7482 0.8285 0.8321

The pairwise comparisons of the three models and the observed data are shown in
Table 4. In both, the training and test databases, the models generated by LR and MARS
show a significant difference with respect to the observed data, while LMT does not show
a significant difference with respect to the observed data.

Table 4. Results of the Wilcoxon signed rank test applied to the observed and predicted data generated
by each model. Numbers within each cell represent the p-value associated with the null hypothesis
being true: no difference between the data generated by a given pair of models. LR: logistic regression;
MARS: multivariate adaptive regression splines; and LMT: logistic model tree.

TRAINING DATA SET TEST DATA SET

LR MARS LMT LR MARS LMT

BBDD * 0.00 0.00 0.15 0.00 0.00 0.56
LR 0.32 0.00 0.89 0.00

MARS 0.00 0.00
* BBDD means database.

Likewise, there are no significant differences between the data generated by the LR
and MARS models, while the p-values allow us to infer that there are significant differences
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between LMT and the other two models, which leads us to conclude that the LMT model is
significantly better than LR and MARS in this experiment.

4. Discussion

Our results demonstrate that nonparametric techniques (MARS and LMT) are able
to generate more accurate models than traditional logistic regression models, such as
LMT, for the identification of the probability of forest fire occurrence, nevertheless, this
difference is statistically significant in LMT. The models obtained present a performance
level that is similar to that of other studies that have used more complex techniques for
the evaluation of risk events, such as forest fires or landslides. In the case of the Random
Forests (RFs), its performance is generally high, with AUC values within the 0.80–0.90
range in similar studies conducted in Honduras and China, respectively [13,53]. On their
turn, [54] generated a model based on Alternative Decision Trees (ADT) with an AUC
value slightly higher than 0.9 and obtained AUC results slightly lower than that in our
study when using other techniques, such as LMT, Functional Trees (FTs) and Naïve Bayes
Tree (NBT).

One of the advantages of generating models with LMT and MARS is that they allow the
generation of zones in which the variables that affect the probability of forest fire occurrence
have a greater or lesser influence on the definition of this probability. Another greatest
advantage in using LMT and MARS is its simplicity in the final application of the model
since, unlike other alternatives such as random forests and artificial neural networks, there
is no need to use software programs specialized in machine learning. Both the classification
in subgroups and the application of the equations can be adapted to geographic information
systems, thus facilitating its implementation by local decision-makers and visualization
by citizens.

Part of the elements that ensure usefulness in the modeling processes are related to
access to the initial data, as well as to the ease to implement the final model. Regarding the
former, it is to be noted that, in our model, the use of weather variables was avoided due
to the difficulty in permanent access to good resolution data in developing countries, as
already verified by [55,56] in the case of Argentina by [57] at the regional level (South Amer-
ica). Although these research studies analyze several sources of meteorological variables,
they all seem to reach the same conclusion: their spatial resolution is useful in large-scale
modeling and, as the analysis scale increases, the importance of the meteorological variables
decreases. In their absence, variables that result from the interaction of weather conditions
were used, such as vegetation moisture (NDMI) and, to a certain extent, NDVI.

For the permanent application of susceptibility models based on satellite images, there
is a common inconvenience, the shadows or masking caused by the presence of clouds on
the capture date. For this, the recommendation is to build a tile free of clouds during longer
periods of time [8,53,58]; or, if not possible, to remove the contaminated pixels, as was the
case in this study, with the consequent information sacrifice to obtain more periodic maps.
Finally, the incidence of human activities on the occurrence of forest fires was corroborated.
Of the seven variables included in the model generated, four corresponded to proximity
to anthropic zones. As stated by [59], the ecosystems located farthest away from human
activities present more resilience to thermal stress and to sporadic ignition

5. Conclusions

In this study, the predictive ability of models based on LR, MARS, and LMT to
determine the probability of forest fire occurrence was evaluated. Several experiments were
conducted using a dataset that included a database of burned and unburned points and
seven conditioning variables. The performance of the forest fire probability models was
evaluated using ROC curves and statistical measures. The LMT and MARS classification
models obtained higher AUC values for the training and validation datasets, but only
LMT differed significantly in the statistical measures with respect to LR. Nevertheless, the
MARS and LMT techniques are promising for mapping probability of forest fire occurrence.
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Additionally, vegetation moisture, represented by the variable MDMI, proved to be of
highest importance in the models generated by the three techniques, while distance to
anthropogenic zones was of a low importance in all three models. The accuracy of the forest
fire probability model presented in this work, and the ease of obtaining geographic data to
apply it, as well as the implementation of the results in more user-friendly environments,
such as geographic information systems, make these results useful for the generation, in a
simple and fast way, of permanently updated information on the probability of occurrence
of forest fires by decision-makers.
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