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Abstract: Accurate equations are critical for estimating biomass and carbon accumulation for forest
carbon projects, bioenergy, and other inventories. Allometric equations can provide a reliable and
accurate method for estimating and predicting biomass and carbon sequestration. Cross-validatory
assessments are also essential to evaluate the prediction ability of the selected model with satisfactory
accuracy. We destructively sampled and weighed 52 sample trees, ranging from 11.8 to 42.0 cm in
diameter at breast height from three plantations in Queensland to determine biomass. Weighted
nonlinear models were used to explore the influence of different variables using two datasets: the
first dataset (52 trees) included diameter at breast height (D), height (H) and wood density (ρ); and
the second dataset (40 trees) also included crown diameter (CD) and crown volume (CV). Cross
validation of independent data showed that using D alone proved to be the best performing model,
with the lowest values of AIC = 434.4, bias = −2.2% and MAPE = 7.2%. Adding H and ρ improved
the adjusted. R2 (∆ adj. R2 from 0.099 to 0.135) but did not improve AIC, bias and MAPE. Using the
single variable of CV to estimate aboveground biomass (AGB) was better than CD, with smaller AIC
and MAPE less than 2.3%. We demonstrated that the allometric equations developed and validated
during this study provide reasonable estimates of Corymbia citriodora subspecies variegata (spotted
gum) biomass. This equation could be used to estimate AGB and carbon in similar spotted gum
plantations. In the context of global forest AGB estimations and monitoring, the CV variable could
allow prediction of aboveground biomass using remote sensing datasets.

Keywords: biomass prediction; crown volume; cross-validatory assessment; destructive sampling;
hardwood plantation; weighted nonlinear models

1. Introduction

The ability to accurately estimate biomass and carbon will impact any incentive
program using forests as part of the solution for emissions reductions [1,2]. Uncertainty in
biomass and carbon estimates, resulting from a lack of species-specific allometric equations
to accurately determine biomass from easily measurable parameters such as tree diameter or
height, needs to be addressed [3]. Many scientists reported that maintaining and expanding
forests will play a key role in storing carbon and in removing carbon from the atmosphere
to assist in securing global net-zero emissions of greenhouse gasses and keep the earth from
increasing its average temperature by 1.5 degrees [4]. As part of the commitment or National
Determined Contributions (NDC) under the United Nations Framework Convention on
Climate Change (UNFCC) framework, each country is required to quantify its forest carbon
sources and sinks, which are determined through national inventories of net greenhouse
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gas emissions and forest carbon budgets [5]. The Intergovernmental Panel on Climate
Change (IPCC) recommended that for determining carbon capture and storage for different
forest types, countries should adopt an appropriate level of reporting from one of three
tiers. These tiers range from simple (Tier 1) to complicated methods (Tier 3) to calculate
the carbon capture and storage [6]. Each country is encouraged to develop Tier 2 and 3
methodologies, particularly for new sources or carbon sinks, and these Tiers are considered
important in the 2019 refinement to the 2006 IPCC Guidelines for National Greenhouse Gas
Inventory [7].

Establishing aboveground biomass (AGB) allometric equations for spotted gum
(Corymbia citriodora subspecies variegata, CCV) will allow plantation owners to track carbon
accumulation more confidently, important for both timber production and trading carbon
credits. This Australian native species provides a high-value hardwood timber in New
South Wales and Queensland, Australia [8,9], and is known to tolerate a range of climates,
making it a desirable species as weather patterns change and become more extreme [10].
Globally, this species is being planted in South Africa, South-East Asia, South and North
America, Brazil, and Israel [11,12]. Planted spotted gum forests have the potential to be
large carbon sinks and contribute to mitigating climate change. Initial studies in Queens-
land indicate that spotted gum plantations can store at least 100 t ha−1 of CO2 equivalents
in the main stem of the trees by age 10 [13]. The amount of CO2 equivalents accumulated
was up to 184 t ha−1 and 159 t ha−1 at an age of 10 years in the coastal Wide Bay Burnett
and Central Coast—Whitsunday regions, respectively in Queensland [13]. However, the
lack of allometry based on destructive sampling of trees biomass could result in inaccurate
estimates of biomass and carbon accumulation for mature plantations and the estimates
of Lee et al. (2011) [13] did not account for the carbon in other tree components (such as
branches and leaves).

Accurate estimation of tree biomass over time provides various benefits in predictions
of CO2 sequestration rates [14], production of biofuels, and electricity using biomass
residues [12]. Several allometric models for estimating forest biomass have been established
worldwide, and there are over 400 models for biomass estimation in natural forests and
plantations in Australia [3,15]. The majority of these estimates were developed for natural
forests such as those dominated by Eucalyptus species [3,16–21]. Biomass datasets derived
through destructive sampling for spotted gum (CCV) are relatively rare and have not been
published in Queensland. A study by Garcia-Florez et al. (2019) [12] sampled 16-year-old
plantation grown CCV trees southwest of Lismore in north-eastern New South Wales,
Australia, to estimate individual above-ground biomass components (stem, branches, bark,
and crown) but not total AGB. In a native forest near Batemans Bay in southern coastal New
South Wales, Ximenes et al. (2006) [22] destructively sampled 122 spotted gum (Corymbia
maculata) trees to predict total AGB and commercial log biomass. However, it is difficult to
ascertain whether these models could be fit in spotted gum plantations in Queensland.

Biomass estimates are often based on traditional field inventory methods that involve
measuring tree attributes such as diameter at breast height, and these can provide accurate
estimations where an appropriate number of inventory plots can be sampled [3]. However,
AGB can also be estimated on a regional scale using remote sensing data in combination
with allometric models [2]. Remote sensing data, such as LiDAR and satellite-based
photogrammetry can provide reliable estimates of tree heights, basal area and canopy
dimensions [23,24] over large areas with relatively high cost-effectiveness [25] and low
levels of uncertainty [26]. If reliable allometrics can be derived using these variables, then
tree and hence forest stand biomass could be estimated over large spatial extents, without
the need for field sampling [1,27]. In both cases, allometric equation development is the
starting point for addressing information gaps and improving biomass estimates.

Developing and selecting appropriate AGB models involves several steps. These
include choice of model, selection of independent variables [28,29], and validating the
application of selected models with independent data [30–32]. Independent variable choice
(e.g., diameter or height) impacts the reliability of the derived allometric equation for
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biomass estimations. Chave et al. (2005) [28] found that allometric functions are commonly
developed using combinations of two easily measurable parameters; tree size, or diameter
(D) and height (H), and these explain most of the variation in AGB estimates [33–37]. Other
parameters including wood density (ρ) and canopy variables have also been used [14,38,39].
Increasing the number of independent variables from one variable (D) to two variables (D
and H) or a combination of three variables (D, H and ρ) or four variables (D, H, ρ and canopy
variable) results in allometric models with decreasing error and increasing reliability [40].
However, collinearity and model over-parameterization may occur when adding too many
variables [41]. Additionally, the high costs associated with measurement of certain variables
(e.g., ρ and canopy) may limit the widespread use of allometric equations based on these
variables. An alternative approach to maximize the cost-effectiveness is validating new
data using training and testing datasets to provide confidence when applying equations at
new sites [18,30,31,42]. Hence, an appropriate allometric model should consider collinearity
issues [41], time, cost restraints, the objectives of the model (i.e., appropriate tree parameters
for the users) [43] and testing against new data.

Our objectives were to determine which tree variables improved the accuracy of
biomass estimates using allometric equations and to indicate the most appropriate allomet-
ric equation(s) for predicting aboveground biomass in CCV plantations. We aim to answer
the following three research questions: (i) What is the influence of different independent
variables such as tree height, wood density and crown variables on biomass estimation?
(ii) What is the best model for estimating AGB following cross validation? and (iii) What
allometric models are best at estimating AGB in spotted gum plantations?

2. Materials and Methods
2.1. Study Area and Datasets

The study was conducted in three CCV research trials (451D, 451G and 13PHY) in
southeast Queensland, Australia. A description of three plantation sites was presented by
Huynh et al. (2021) [44].

Datasets of AGB were selected based on three stands of 7, 8, 9, 18, and 20-year-old
healthy trees with single stems [45]. The data were collected during two periods. In
2009, the first dataset consisted of 12 trees sampled in 451D, 451G and 13PHY (D ranges
11.8–18.2 cm); and in 2020, the second dataset consisted of 40 sample trees from 451D and
451G (D ranges 17.1–42.0 cm). The number of sample trees and description of these sites is
given in Table 1 and Figure S1.

Table 1. Study sites, stand age, summary of predictors of sample trees for developing allometric
equations. Abbreviations as follows: n, total number of trees sampled; D, diameter at breast height
(cm); H, total tree height (m); CD, crown diameter (m); and ρ, wood density (kg m−3). For each of D,
H, CD and ρ, mean, minimum and maximum values are indicated.

Sites (Age) n
Mean (min, max)

D (cm) H (m) CD (m) ρ (kg m−3)

451G (7) 3 17.8 (11.8–17.6) 17.4 (15.3–20.4) NA 702.6 (646.8–752.8)
13PHY (8) 6 15.3 (12.5–18.2) 15.4 (13.1–16.4) NA 676.7 (613.0–738.8)
451D (9) 3 14.4 (12.0–17.8) 15.5 (12.6–17.5) NA 663.8 (631.1–713.1)
451G (18) 13 27.1 (17.6–39.9) 27.0 (22.1–29.9) 5.3 (3.0–7.9) 730.8 (671.5–813.5)
451D (20) 27 28.6 (17.1–42.0) 25.8 (20.2–32.0) 6.1 (2.8–9.9) 736.5 (625.7–801.0)

Total 52 25.9 (11.8–42.0) 23.9 (12.6–32.0) 5.9 (2.8–9.9) 722.0 (613.0–813.5)

2.2. Data Collection

In 2009, biomass data were collected in young trees (7–9 years old) at three sites
451D, 451G and 13PHY. In 2020, a similar methodology was conducted in mature trees
(18–20 years old) in 451D and 451G as outlined in Huynh et al. (2021) [45] were destructively
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sampled to obtain individual tree component weights for AGB biomass estimates. In
summary, the procedure for collecting AGB in this study was as follows:

1. Prior to sampling, each sample tree was identified and provided with an ID number.
Tree diameter over bark at breast height 1.3 m (D, cm) was recorded.

2. Most of trees were felled using a chainsaw. However, an excavator was used to push
23 trees onto the ground as these trees were also used to determine belowground
biomass [44]. After the tree was felled, total tree height (H, m) was recorded.

3. Sample trees were divided into three biomass components: (1) stem; (2) large branches
(>2 cm diameter); and (3) small branches (<2 cm diameter), along with foliage, buds,
capsules, or flowers. These components were weighed using digital scales and fresh
weight (kg) was recorded.

4. For each tree, sub-samples (at least 2 kg) of these biomass components were taken
to the laboratory for determining moisture content (MC%). From the base of bole to
the height of the first limiting defect of each tree, a 40 mm wide disk was taken every
3.0 m for laboratory analysis.

5. In the laboratory, the large branch and small branch samples were cut into small
pieces and dried at 65–105 ◦C (as appropriate for the type of sample) until a constant
weight was achieved. Stem disks were used to estimate green wood density (ρ, kg m3)
prior to drying.

The following additional steps were undertaken in the second dataset of 40 sample trees:

6. Crown diameter (CD, m) was measured before felling the trees (at step 1). The
CD measurements were taken for each tree using a tape measure, averaging the
measurements from along and across the planting row.

7. In the laboratory (at step 5), stem bark was removed from the disks, recording fresh
weight of the bark and wood. The samples were dried, and oven-dry weight was
determined. In addition, the average width of chainsaw cuts used to collect the discs
was used to determine mass of sawdust based on the wood density (ρ kg m−3). The
sawdust weight was added to the stem biomass. The formula for estimating stem
bark and sawdust was described by Huynh et al. (2021) [45].

2.3. Data Analysis
2.3.1. Variable Selection and Data Preparation

Identification of potential biomass models involves developing the relationships
between aboveground biomass (AGB) and a combination of predictor variables. The
response variable (AGB), dry weight of biomass (kg tree−1) of each tree component, such as
stems, branches and foliage were described by Huynh et al. (2021) [45]. Predictor variables
were the respective diameter at breast height (D), height (H), wood density (ρ), crown
diameter (CD) and crown volume (CV). The CV was calculated based on crown diameter
(CD, m). We presumed that the spotted gum crowns could have many different solid shapes
such as a sphere, ellipsoid, cylinder, cone, and paraboloid. These shapes were calculated
using different formulas in the literature as outlined by Zhu et al. (2021) [46]. We tested
five formulas based on five shapes, with the sphere being selected as the most appropriate
and representative shape for spotted gum.

CVsphere =
4
3
πCD3 (1)

where: CV is Crown volume (m3) and CD is crown diameter (m).

2.3.2. Model Fitting

A power-law equation Y = αXβ + ε was used to develop the allometric relation-
ship between AGB (Y) and predictor variables (X). Power-law equations can be fitted as
logarithmic transformations of the original data ln (Y) = ln(a) + ln(X), or as nonlinear mod-
els [47–49]. The application of logarithmic transformations is widely used for estimating
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tree biomass [3,20,39,50,51]. However, testing general AGB models for tree biomass across
Australia by Paul et al. (2016) [20] recommended that weighted nonlinear modeling should
be used for tree diameters over 10 cm. Huynh et al. (2021) [44] compared log-linear and
nonlinear equations for predicting belowground biomass (BGB) and results showed that
the overall performance of weighted nonlinear models was better than log-linear models.
This result also consists of findings from Huynh et al. (2019) [49], who reported that nonlin-
ear models produce higher reliability. In addition, we also pre-analyzed AGB equations
using Furnival’s Index (FI) [50–52]. Preliminary results (Table S1) showed that FI values
of weighted nonlinear models were lower than log-linear models. Hence in this study,
we focused on weighted nonlinear regression models to develop AGB models. Weighted
nonlinear models had the following general form:

AGB = α × Xβ
ij + εij (2)

where AGB = total aboveground biomass kg tree−1; α and β are the parameters of the
model; Xij is the covariate: D (cm), H (m), ρ (kg m−3) CD (m) and CV (m3), or a combination
of these variables for ith sampled tree; and εij is the random error related to the ith sampled
tree. The variance function (εij) [53,54] was described in Huynh et al. (2021) [44]. In this
study, the weighting variables include D, D2H, ρ, D2HCD and D2HCV.

Before adding height, wood density, crown diameter and crown volume to the di-
ameter at breast height variate for AGB estimates, the models using five single variables
(AGB = α × Dβ; AGB = α × Hβ; AGB = α × CDβ and AGB = α × CVβ) were developed.

(a) Testing compound predictor variables including height and wood density
To determine the importance of different predictor variables and test the influence of

height and wood density, we tested seven commonly used formulations (Table 2) with a
dataset of 52 individual trees (dataset 1) including young trees and mature trees (D ranges
from 11.8–42.0 cm) as (i) the combination of D and H, (ii) the inclusion of D and ρ and (iii)
combination of D, H and ρ (Table 2).

Table 2. Type of predictor models used to develop biomass allometric equations: D is diameter at
breast height (cm), H is total tree height (m), ρ is wood density (kg m−3), CD is crown diameter (m)
CV is crown volume (cm3), and δ is the variance function coefficient.

Input Variable Equation
No. Model Form Weight

Variable

Model set 1: Compound predictor variables including D, H and ρ, n = 52 trees

D (3) AGB = α × Dβ 1/Dδ

H (4) AGB = α × Hβ 1/Hδ

D and H
(5) AGB = α × Dβ × Hβ1 1/Dδ

(6) AGB = α × (D2H)β 1/(D2H)δ

D and ρ (7) AGB = α × Dβ × ρβ1 1/Dδ

D, H and ρ
(8) AGB = α × Dβ × Hβ1 × ρβ2 1/(D)δ

(9) AGB = α × (D2Hρ)β 1/(D2Hρ)δ

Model set 2a: Compound predictor variables including D, H, ρ and CD, n = 40 trees

D (10) AGB = α × Dβ 1/Dδ

H (11) AGB = α × Hβ 1/Hδ

CD (12) AGB = α × CDβ 1/CDδ

D and CD (13) AGB = α × Dβ × CDβ1 1/Dδ

D, H and CD (14) AGB = α × Dβ × Hβ1 × CDβ2 1/Dδ

(15) AGB = α × (D2HCD)β 1/(D2HCD)δ

D, H, ρ and CD (16) AGB = α × Dβ × Hβ1 × ρβ2 × CDβ3 1/Dδ

(17) AGB = α × (D2Hρ CD)β 1/(D2HρCD)δ
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Table 2. Cont.

Input Variable Equation
No. Model Form Weight

Variable

Model set 2b: Compound predictor variables including D, H, ρ and CV, n = 40 trees

CV (18) AGB = α × CVβ 1/CVδ

D and CV (19) AGB = α × Dβ × CVβ1 1/Dδ

D, H and CV (20) AGB = α × Dβ × Hβ1 × CVβ2 1/Dδ

(21) AGB = α × (D2HCV)β 1/(D2H CV)δ

D, H, ρ and CV (22) AGB = α × Dβ × Hβ1 × ρβ2 × CVβ3 1/Dδ

(23) AGB = α × (D2HρCV)β 1/(D2HρCV)δ

(b) Testing combinations of predictor variables including height, wood density and
crown variables.

Using the dataset of 40 trees sampled in 2020 (dataset 2a and 2b) where CD and
CV data were available, we explored whether the accuracy of the AGB models could be
improved by adding CD or CV as predictor variables. We tested the (i) combination of CD
and D, (ii) combination of D, H, and CD, and (iii) inclusion D, H, ρ and CD. To compare the
influence of these variables on the models in the same dataset, a new equation based on D
and H alone (Equations (10) and (11)) was also created. A similar process was applied to
the CV variable (Table 2).

2.3.3. Model Assessment and Selection

Candidate models were selected based on a combination of five fit statistics: (i) Akaike
Information Criterion (AIC); (ii) adjusted R2 (adj. R2); (iii) average bias, (iv) root mean
square error (RMSE) and (v) mean absolute percentage error (MAPE). In addition, diag-
nostic plots were also used to check for possible outliers and assess the goodness of fit of
the models. The optimal models will have the lowest AIC, bias, RMSE and MAPE; low
levels of collinearity as well as a high adj. R2. These criteria were described by Huynh et al.
(2021) [44].

The candidate nonlinear models were fitted by the weighted maximum likelihood
procedure [55,56] using ‘nlme’ package in R and the plot diagnostics were checked using
the ggplot 2 package in R [57].

2.3.4. Model Cross Validation

To assess the accuracy of selected biomass models against independent data, a cross vali-
dation procedure was undertaken by applying Monte Carlo cross validation (MCCV) [30,42,58].
Among the dataset 1, (Equations (3)–(9)) the MCCV was randomly split with 80% for train-
ing and 20% for testing [32] with the procedure repeated 100 times.

The statistics for validation of each model were averaged over the 100 realizations.
For a smaller sample size of datasets 2a and 2b (Equations (10)–(23)), the MCCV procedure
was repeated 40 times. The statistics for validation of each model were averaged over the
40 realizations. Comparison models were also based on the same criteria in Section 2.3.3,
including AIC, adj. R2, percent bias, RMSE and MAPE [54,59,60]. Finally, a model with the
fewest errors was selected as follows:

Bias =
1
R

R

∑
r=1

100
n

n

∑
i=1

yi − ŷ
yi

(24)

RMSE =
1
R

√√√√ R

∑
r=1

n

∑
i=1

(yi − ŷ)2 (25)

MAPE =
1
R

R

∑
r=1

100
n

n

∑
i=1

∣∣yi − ŷi
∣∣

yi
(26)



Forests 2022, 13, 486 7 of 20

where R = number of resamplings; yi is observed AGB; and ŷ is estimated AGB from the
cross-validation study.

To further test the application of our selected equation we used an independent AGB
dataset for 86 individual trees [61] of CCV and Corymbia maculata (two different species of
spotted gum) collected from across Australia. The validation procedure was also repeated
100 times and the above criteria were used to assess the model.

3. Results
3.1. Basic Measurements and Tree Component Biomass

The tree over bark diameters (D) ranged from 11.8 cm to 42.0 cm across all sites
and ages, while the height (H) varied from 12.6 m to 32.0 m (Table 1). The minimum
crown diameter (CD) was 2.8 m and the maximum was 9.9 m. The mean basic wood
density (ρ) of the sapwood and heartwood without bark was 663.8 kg m−3 at age of nine
in trial 451D and this value increased to 736.5 kg m−3 by age 20 at the same site (Table 1).
There was significant variability in wood density among sites and ages (p-value = 0.007;
df = 4; F-value = 3.95). The individual tree AGB among the three sites ranged from 43.9 to
1503.7 kg tree−1 (Table 3).

Table 3. Biomass of each tree component, including stem (under bark), stem bark, large branches
(≥2 cm diameter), small branches (<2 cm diameter) and leaves sampled at three sites (451D, 451G,
and 13PHY). For each component mean, minimum and maximum values are presented.

Sites n
Mean (min, max), kg

Stem Bark Large Branches Small Branches and Leaves Total AGB

451G (7) 3 67.8 (29.0–110.0) 16.4 (8.7–23.4) 10.6 (5.5–16.3) 5.3 (2.3–7.2) 100.0 (45.5–156.8)
13PHY (8) 6 70.8 (40.1–101.9) 12.0 (7.9–16.1) 28.5 (8.8–44.7) 8.9 (4.6–13.4) 120.2 (73.3–174.1)
451D (9) 3 59.4 (26.4–98.0) 17.0 (10.8–24.6) 3.6 (2.1–5.4) 4.8 (3.3–7.7) 84.8 (43.9–135.6)
451G (18) 13 417.1 (99.0–845.9) 55.1 (19.8–109.9) 179.1 (21.0–666.4) 51.1 (9.6–109.7) 702.5 (149.4–1503.7)
451D (20) 27 329.9 (92.2–682.1) 44.3 (18.8–75.5) 159.1 (17.2–501.2) 43.1 (7.2–172.5) 576 (149.7–1431.3)

Total 52 291.1 (26.4–845.9) 40.1 (7.9–109.9) 131.5 (2.1–666.4) 36.8 (2.3–172.5) 499.4 (43.9–1503.7)

The weight of AGB varied by different ages and sites; minimum AGB of young trees
ranged from 43.9 to 156.8 kg tree−1, whereas maximum AGB of mature trees ranged
from 149.4 to 1503.7 kg tree−1. There was variation among tree components, the weight
of stem was higher than other components such as large branches, small branches, and
leaves (Table 3). The relative proportions of the aboveground tree biomass components are
presented in Figure 1. The highest proportion of biomass was in potentially commercial
logs (60.3%) while the smallest proportion was small branches and leaves.

3.2. Data Exploration and Variable Selection

Before fitting the allometric equations, a correlation matrix plot was visualized to
check assumptions and explore the strength of relationships between response variable
(AGB) and predicted variables (D, H, CD, ρ and CV) (Figure 2). These relationships were
tested based on the AGB and natural logarithm of five variables (ln(D), ln(H), ln(CD), ln(ρ)
and ln(CV) using Spearman default method. These predicted variables displayed positive
correlations (note there were no negative correlations, hence only blue circles displayed
in this figure). The D, H, CD and CD were strongly correlated with AGB, while ρ by itself
had a weaker correlation (color intensity and the size of the circle are less) with AGB.
However, these relationships were tested based on every single variable, the nonlinear
relationships and fitted statistics for the equations were observed after applying weighted
nonlinear methods.
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Figure 1. Average proportions of aboveground biomass components of plantation grown spotted
gum (Corymbia citriodora subsp. variegata) trees, based on data from 52 destructively sampled trees.
Please note that debark log biomass was determined from the weight of logs with their bark and the
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3.3. Allometric Equations for AGB

The preliminary analysis illustrated that logarithmically transformed models had
higher FI values compared to weighted nonlinear models (Table S1). The FI of log-linear
models ranged from 36.7 to 128.7 whereas weighted nonlinear models gave very small
values of FI (0.0004–0.0316), (Table S1).

The main statistics used to assess reliability of AGB models are presented in Table 4,
comparative plots of predicted and observed data of Equations (3)–(9) are presented in
Figure 3. These equations accounted for 61–98% of the variation in AGB, with AICs ranging
from 442 to 670. Bias, RMSE and MAPE were similar for models with D, H, and ρ (Table 4).
The results showed that predictor D alone (Equation (3)) performed strongly across all
predicted models based on AIC (541.1) whereas H had the poorest relationship with AGB.
However, bias was quite small in the model with H alone. Both these equations appear to
be reasonably reliable and are investigated further along with the other equations in the
section on cross validation of results.

Table 4. Parameter estimates and their standard errors for AGB models developed based on weighted
nonlinear models: D is diameter at breast height (cm), H is total tree height (m), AIC is Akaike
Information Criterion, bias is averaged bias (%), RMSE is averaged root mean square error (kg),
MAPE is averaged mean absolute percent error (%). Each equation number here refers to those in
Table 2.

Equation
No.

Parameter Estimates AIC Adj. R2 Bias
(%)

RMSE
(kg)

MAPE
(%)

α β β1 β2 β3

Model set 1: Compound predictor variables including D, H and ρ (n = 52 trees)

(3) 0.08220 2.64134 544.1 0.963 −0.0025 0.0200 0.0085
(4) 0.00622 3.49873 670.8 0.720 0.0001 0.0034 0.0012
(5) 0.05251 2.40238 0.38285 546.3 0.973 −0.0023 0.0316 0.0132
(6) 0.02533 1.00656 554.0 0.975 0.0212 0.0500 0.0186
(7) 0.05252 2.40266 0.38253 546.3 0.973 −0.0023 0.0316 0.0132
(8) 0.00233 2.42585 0.30576 0.49890 551.8 0.972 0.0001 0.0248 0.0106
(9) 0.00004 0.99037 561.6 0.963 0.0004 0.0004 0.0002

Model set 2a: Compound predictor variables including D, H, ρ and CD (n = 40 trees)

(10) 0.10606 2.56803 442.3 0.950 0.0000 0.0043 0.0009
(11) 0.00027 4.45063 545.9 0.614 0.0000 0.0002 0.0000
(12) 33.24309 1.61825 532.6 0.769 4.3446 30.0835 6.1784
(13) 2.30247 1.07425 450.2 0.947 −0.0003 0.0032 0.0007
(14) 0.05153 2.18627 0.54648 0.11719 456.7 0.964 0.0007 0.0259 0.0050
(15) 0.19568 0.68009 460.3 0.961 −1.0183 1.6823 0.3358
(16) 0.00079 2.07194 0.69202 0.60292 0.18009 463.1 0.967 0.0031 0.0318 0.0060
(17) 0.00156 0.69886 455.2 0.965 0.0347 0.1618 0.0326

Model set 2b: Compound predictor variables including D, H, ρ and CV (n = 40 trees)

(18) 15.35139 0.53941 532.6 0.781 2.7223 18.9797 3.8982
(19) 0.09881 2.61161 −0.01109 450.2 0.950 −0.0003 0.0032 0.0007
(20) 0.04872 2.18625 0.54650 0.03907 456.7 0.966 0.0007 0.0259 0.0050
(21) 0.95382 0.38323 496.5 0.908 −0.5644 5.6982 1.1344
(22) 0.00072 2.07191 0.69205 0.60293 0.06004 463.1 0.970 0.0030 0.0318 0.0060
(23) 0.06581 0.38942 494.9 0.907 0.1717 1.2739 0.2542
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3.3.1. Including Predictor Variables Height and Wood Density

Including the variables H and ρ resulted in slight improvements (Table 4) relative to
model with D alone (Equation (3)). The compound variate of D2H (Equation (6)) improved
adj. R2 (0.975) in comparison to Equation (3) with an adj. R2 = 0.963. The combination
of Dβ × Hβ1 (Equation (5)) and Dβ × ρβ1 (Equation (7)) provided similar goodness of
fit criteria (AIC = 546.3, adj. R2 = 0.973 and MAPE = 0.0132 %). Adding three predictor
variables D, H and ρ into the model (Equations (8) and (9)) reduced RMSE and MAPE, but
it did not improve the AIC compared with Equation (3).

3.3.2. Including CD and CV in Biomass Equations

Model statistics in dataset 2a are presented in Table 4 and diagnostic plots are presented
in Figure S2a,b. Addition of CD as a compound predictor variable in Equations (12)–(17)
did not improve model performance compared with the model of D alone (Equation (10)),
except for adj. R2. The adj. R2 increased when adding a combination of CD-H and CD-H-ρ,
with the changes in adj. R2 from 0.950 (Equation (12)) to 0.967 (Equation (16)).

Starting with the six base Equations (12)–(17) above, we then added terms to test for
CV (Equations (18)–(23)) in dataset 2b (Table 3). The model based on only CV (Equation (18))
gave the poorest fit as indicated by the large AIC (532.6), while the combination D × CV
(Equation 19) had the smallest AIC (450.2). However, use of multiple variables, including
D-H-CV-ρ resulted in a superior adj. R2 (0.970) relative to the combination of D and CV.
Using CD (Equation (12)) and CV alone (Equation (18)) had the same value of AIC (532.6),
but Equation (18) improved AGB estimates, increasing adj. R2 and reducing bias, RMSE
and MAPE.
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3.4. Cross Validation Biomass Models

The Monte Carlo cross validation (MCCV) procedure was used to evaluate and im-
prove predictive performance of Equations (3)–(23). Validation results of these equations
are provided in Table S2 and diagnostic plots are present in Figure 4. Cross validation
results of models using the four single predictor variables D, H, CD and CV are presented
in Table 5.

3.4.1. Models Using Diameter, Height and Wood Density

With dataset 1, the accuracy of AGB prediction between Equations (3)–(9) varied
significantly. The model created using H alone (Equation (4)) had relatively high errors
(averaged AIC = 533.1, bias = −41.7%, MAPE = 55.3% and adj. R2 = 0.642) while the model
using D (Equation (3)) proved to be the best (Table 5), with the lowest values of AIC = 434.4,
bias = −2.2% and MAPE = 7.2% (Table 5). Adding H and ρ as a second or third variable
improved the adj. R2 (∆ adj. R2 from 0.099 to 0.135) whereas other criteria such as AIC, bias
and MAPE did not improve (Table 5).

3.4.2. Models Using Crown Diameter and Crown Volume

For validated models using CD in the second dataset (Equations (12)–(17)), results
showed that using CD markedly increased errors for predicting AGB compared with the
D-based model (Equation (10)), with the highest ∆AIC = −73.2 and ∆MAPE = −18.6%
(Equation (12)) (Table 5). Similarly, all models with CV (Equations (18)–(23)) performed
poorly in comparison to Equation (10), with ∆AIC = −33.1 and ∆MAPE = −7.2%. Using
CV alone in Equation (18) estimated AGB slightly better than the CD in Equation (12), with
AIC = 2.1 smaller and MAPE lowered by 2.3%. By contrast, models with CV added as a
second variable showed less accuracy than adding CD. For example, the MAPE ranged
from 7.1–13.3% when applying CD, while ranges of 10.7–17.1% were seen for the CV models
(Table 5).

3.4.3. Cross Validation against an Independent Dataset

Using our selected equation based on D (Equation (3)) with the dataset of Paul et al.
(2016) [61] AGB resulted in bias = −18.0%, RMSE = 0.3 kg and MAPE = 25.8%. Even though
the sample trees were collected from two species planted across a wide range of environ-
ments and ecoregions (including temperate broadleaf and mixed forests, Mediterranean
forests, woodlands, and scrub woodlands), these results provide greater confidence in
Equation (3) to predict biomass for these species grown in Australia.
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Figure 4. Observed and predicted plots for AGB models validated for all biomass models using
MCCV method. Plots with blue border were validated for Equations (3)–(9) with compound predictor
variables of D-H-ρ, cross validation procedure was used 80% data used for training, 20% data for
testing, the process is repeated 100 times; Plots with green border validated and repeated 40 times for
Equations (12)–(17) with compound predictor variables D-H-ρ-CD. The same process was applied for
Equations (18)–(23) with compound predictor variables D-H-ρ-CV and plots with orange border. See
Table S2 for criteria associated with these models.
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Table 5. The comparison of cross validation results when the model based on D alone (Equations (3)
and (10)) was compared with models using different predictor variables. Equation (3) was compared
with Equations (4)–(9), and (10) was compared with Equations (11)–(23). A negative change in AIC,
RMSE and MAPE indicates that the D-based equation is better than others. A positive change in adj.
R2 means the model D-based is superior. We also present the five equations here (Equations (3), (4),
(10), (12) and (18)) to estimate biomass directly from D, H, CD and CV.

Equation
No. Model Form AIC Adj. R2 Bias RMSE MAPE

(3) AGB = α × Dβ 434.4 0.823 −2.2 0.115 7.2
(4) AGB = α × Hβ 533.1 0.642 −41.7 0.679 55.3

(10) AGB = α × Dβ 357.2 0.880 −6.0 0.114 6.8
(12) AGB = α × CDβ 430.4 0.964 −6.5 0.428 25.4
(18) AGB = α × CVβ 428.3 0.964 −14.8 0.348 23.1

∆ AIC ∆ Adj. R2 ∆ Bias ∆ RMSE ∆ MAPE

Model set 1: Compound predictor variables including D, H and ρ

(4) AGB = α × Hβ −98.7 0.181 39.4 −0.564 −48.1
(5) AGB = α × Dβ × Hβ1 −6.7 −0.099 1.2 0.016 −0.1
(6) AGB = α × (D2H)β −13.2 −0.149 6.2 −0.011 −3.4
(7) AGB = α × Dβ × ρβ1 −4.0 −0.098 1.1 0.011 0.8
(8) AGB = α × Dβ × Hβ1 × ρβ2 −13.4 −0.130 1.9 0.021 0.7
(9) AGB = α × (D2Hρ)β −19.8 −0.135 8.6 −0.023 −4.2

Model set 2a: Compound predictor variables including D, H, ρ and CD

(11) AGB = α × Hβ −86.9 0.255 9.9 −0.096 −11.4
(12) AGB = α × CDβ −73.2 −0.084 0.5 −0.315 −18.6
(13) AGB = α × D β × CDβ1 −7.8 0.054 0.2 −0.012 −0.3
(14) AGB = α × D β × Hβ1 × CDβ2 −19.7 0.003 −1.2 0.021 −0.7
(15) AGB = α × (D2HCD)β −16.6 −0.084 −2.6 −0.010 −0.9
(16) AGB = α × D β × Hβ1 × ρβ2 × CDβ3 −24.4 −0.047 −1.7 0.017 −1.7
(17) AGB = α × (D2HρCD)β −12.8 −0.083 −2.9 −0.075 −6.5

Model set 2b: Compound predictor variables including D, H, ρ and CV

(18) AGB = α × CVβ −71.1 −0.084 8.8 −0.234 −16.3
(19) AGB = α × Dβ × CVβ1 −9.3 −0.046 0.2 −0.026 −4.2
(20) AGB = α × Dβ × Hβ1 × CVβ2 −16.2 0.004 −1.2 −0.031 −4.5
(21) AGB = α × (D2HCV)β −45.7 −0.084 −2.2 −0.039 −4.2
(22) AGB = α × D β × Hβ1 × ρβ2 × CVβ3 −11.8 −0.047 −1.7 −0.026 −3.9
(23) AGB = α × (D2HρCV)β −44.2 −0.084 −2.4 −0.039 −10.3

4. Discussion

The development of carbon accounting models for Tier 2 and 3 methods can be
complex as they require information on model accuracy and reliability [27]. There is an
initial high cost associated with sampling to collect adequate biomass data to develop,
evaluate and apply the methodology [7]. However, if allometric equations (required by Tier
2 and 3) can be developed, carbon accounting will have higher reliability and an overall
reduction in costs [3,27,62]. Furthermore, the advances in technology such as remote
sensing, combined with appropriate allometric equations based on variables that can be
readily estimated (e.g., tree height, diameter, crown volume), should lead to improved
predictions of plantation scale biomass [23,27].

4.1. Equation Development and Cross Validation

One of the most common mistakes identified in biomass determinations indicated by
Sileshi (2014) [41] was the choice of analytical methods to develop allometric equations.
Most studies (66% of all allometric equations) use log-linear models and authors often pro-
vide little evidence for choosing a particular method [41]. Our study found that weighted
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nonlinear models had significantly smaller FI values than log-linear models (Table S1)
across all models tested. This finding supports the conclusion of Huynh et al. (2021) [44]
that weighted nonlinear equations had relatively low error values compared to log-linear
equations. In some cases, the log-linear models may be suitable for estimating biomass
of small-diameter trees (D < 10 cm), but these models may not always be suitable for
estimating biomass of larger trees [20]. Huynh et al. (2021) [44], indicated that applying
log-linear models results in poor predictions of belowground biomass of trees with a 40+ cm
diameter. Therefore, we suggest tree biomass equation development considers nonlinear
models for large trees.

The main purpose of model validation is to avoid bias in prediction and assess the
performance of biomass models [31]. This study indicates that although most developed
models had small errors, validated models had higher errors (Table 5). The H model
(Equation (4)), for example, had 0.0012% MAPE in the development model, whereas a
55.3% MAPE was found in the validation results. The model using H alone resulted in poor
estimates of AGB in comparison with D alone. The evidence from this study is consistent
with previous studies which involved H, indicating that the addition of H did not improve
model performance [18,63]. Validation of our selected equation using D alone (Equation (3))
against independent data from Paul et al. (2016) [61] in this study provides confidence
in the use of this equation at other spotted gum plantations. This is important especially
given the high cost associated with destructive sampling [43].

4.2. Inclusion of Height and Wood Density

The addition of H and ρ resulted in models with improved adj. R2 values while other
model criteria did not improve (Table 5). Findings from van Niekerk et al. (2020) [27]
also showed that adding H and ρ into allometric equations, resulted in the mean square
error becoming only slightly higher than the D-based model. Our finding is also consistent
with Sileshi (2014) [41] who found a small improvement in AGB prediction when H and
ρ were included. The highest adj. R2 (∆ adj. R2 = −0.149) was found with D2H in
combination (Equation (6)). However, the largest adj. R2 is not the most commonly used
criteria to determine the best model, as the addition of polynomial terms increases the
adj. R2 [20,41]. Some authors [64–69] found that D2H improved the accuracy of biomass
equations. By contrast, other studies agreed that D-based allometry is a better predictor of
AGB [20,27,41,70,71] based on a combination of criteria (AIC, adj. R2, bias and MAPE).

It was found that D and ρ in combination (Equation (7)) tended to be better (with
on ∆ AIC = −4.0, ∆ bias = ± 1.1% and ∆ MAPE = 0.8%) than a combination D and H
(Equation (5)) (Table 5). Paul et al. (2016) [20] found that adding ρ did not improve
biomass models. It is important to note that the wood density data in Paul’s study had
some potential limitations: 88% of ρ values were collected from the Global Wood Density
Database with only 12% of the data being estimated based on field measurements. In
our case, all ρ values were estimated using multiple disks per sample tree, with a total of
223 disks from the 40 mature trees sampled in 2020 [45] and 12 sample trees in 2009. The
slightly improved predictive ability of models with ρ may be due to the ρ values in our
data being significantly different (p-value = 0.007) between age groups and sites. Wood
density also varies among species and positions in the stem. Therefore, further study
should investigate the influence of wood density for different species when developing
biomass models.

4.3. Influence of Crown Diameter and Crown Volume

The fact that D is relatively easy to measure in forest inventory, and has low mea-
surement error [3,41] has led many to consider it the most useful variable for biomass
prediction [18,20,27,69]. However, with the advances in remote sensing, alternative vari-
ables (e.g., crown dimensions) could be readily included in biomass equations to estimate
large-scale (e.g., plantation wide) biomass accumulation [1,2,69].
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The use of LiDAR for crown volume estimation could become increasingly important
as a predictor variable as this variable can be easily derived from LiDAR inventories [46].
However, only a few studies were conducted using this variable [23,27] and these studies
have not validated the predictive performance of the model against new data [69]. Fur-
thermore, there are more variables that could be derived from LiDAR data that could be
considered to ensure greater accuracy of biomass values [14,20,23]. Our validation results
showed that ∆ AIC = −86.9 and ∆ adj. R2 = 0.255 in Equation (11) while ∆ AIC = −71.1 and
∆ adj. R2 = −0.084 in the Equation (18), and diagnostic plot (Figure S3) indicating narrow
variation (Table 5 and Table S3). This finding is consistent with the results of Goodman et al.
(2014) [69] and van Niekerk et al. (2020) [27] who found that using crown radius of large
trees improved predicted biomass models more than height. Validation models using our
data imply that using crown volume was particularly important for building confidence in
estimating biomass/carbon and could potentially be applied to accurately predict AGB
using remote sensing tools such as LiDAR.

4.4. Evaluating Existing Applicability Models

We estimated the AGB of our sample trees using four published models which were
also derived using destructive sampling methods for large eucalypt trees. Models were
developed for (1) tropical and subtropical eucalypt woodlands [18]; (2) native spotted
gum (Corymbia maculata) forests [22]; (3) hardwood trees from the genera of Eucalyptus,
Corymbiam and Angophora [20]; and (4) Eucalyptus grandis × E. nitens hybrids [27].

The MCCV method was undertaken to validate the performance of these published
equations for our dataset. The MCCV was run 100 times using 20% random splitting
data. Averaged errors of these equations are presented in Table S3. A graph showing the
comparisons between the AGB model in this study, the model of Ximenes et al. (2006) [22]
and the model of Paul et al. (2016) [20] are presented in Figure 5. The smaller errors
(bias, RMSE and MAPE) indicate the accuracy of the model based on D (Equation (3))
for predicting AGB. The averaged errors for individual trees of the previously published
equations were always higher than that of Equation (3) (Table S3), with MAPE of the
published models ranging from 18.8–30.9%. For a closely related spotted gum species
(Corymbia maculata), the estimated AGB using the model of Ximenes et al. (2006) [22]
resulted in under-estimation of AGB; with bias =18.6% and MAPE of 18.8%, while other
models had higher errors than Ximenes’s equation (Figure 5). This suggests that applying
equations to data from closely related species in the same genus could reduce predicted
AGB errors.

The datasets of Williams et al. (2005) [18] were mostly from trees of Eucalyptus crebra
(18 trees), E. foelscheana (20 trees), and E. terminalis (20 trees). These species had lower
heights than our sample trees despite having a similar median diameter and biomass
values. For example, E. crebra with an average D = 26.3 cm, H = 17.1 m and AGB = 492.4 kg,
compared to our trees with an average D = 25.9 cm, H = 23.9 m, AGB = 499.4 kg. Although
William’s data were collected across the Northern Territory, Queensland and New South
Wales (Australia), AGB is underestimated when applying their equations to our data, with
bias = −30.9%, RMSE = 0.2 and MAPE = 30.9%. This corroborates previous findings that
allometric relationships for prediction of AGB may vary due to species characteristics [72],
environment, forest structure [73] and wood density [74].

The validation results for the biomass model of van Niekerk et al. (2020) [27] developed
in South Africa for E. grandis × E. nitens hybrids, suggest that applying this equation results
in lower errors than the equation of Paul et al. (2016) [20], with bias = 21.8%, RMSE = 0.2
and MAPE = 21.8% (Table S3). A possible explanation for this result may be due to the
differences between natural forests and plantations. Paul’s model was developed based
mostly on data collected from natural forests across Australia. The advantage of the Paul
model is that it can be applied widely, but as a consequence of this, the errors are higher
with such a model. Another difference may be due to the method used for developing the
models. The equation of van Niekerk et al. (2020) [27] was developed using the weighted
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nonlinear method, while the equation of Paul et al. (2016) [20] used the log-linear method.
The issues associated with selection of biomass models are reviewed by Sileshi (2014) [41]
who points out some of the pitfalls of using the log-linear methodology.
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Figure 5. Validation and comparison of the D-based equation of this study and published equations
in different regions in Australia, with spotted gum native forests [22] and mixed hardwood forests of
Eucalyptus, Corymbia and Angophora [20]. The dataset was validated by the MCCV method with
20% random splitting data and the process was repeated 100 times to average the errors.

5. Conclusions

When developing and testing allometric equations, it will be necessary to estimate
biomass using the higher tier methods of the IPCC. The models reported in this study
followed high-tier methods and could be used to accurately predict the biomass and
carbon sequestered in spotted gum (CCV) plantations relatively easily, with minimal costs
and time, compared to destructively sampling trees. The equations developed here were
independently validated, and we tested the application of these models more broadly with
CCV and Corymbia maculata from natural forests in NSW.

This study showed that Equation (3), AGB = α× D β, performed better than equations
with other variables such as H, ρ, CD, and CV, with the lowest values of AIC, bias and
MAPE. Adding more tree variables to the model led to increased adj. R2 while other criteria
did not improve when compared with the D-based model. A combination of D and ρ in
Equation (7) had slightly improved errors compared to the equation with D and H (Equa-
tion (5)). As an alternative to the D-based equation, an equation using CV (Equation (18))
was better than applying models based on H or CD. However, additional work is needed
to test the application of crown variables to predict biomass in unrepresented regions
and species.

While AGB can be predicted more accurately using D from simple forest measure-
ments, measurement of D is not practical over large areas due to the high cost associated
with extensive field data measurements. Remote sensing, using techniques such as radar
or LiDAR, can provide data, such as that on crown diameter at various scales, from local to
global scales. Applying the allometric equation based on crown volume in combination
with remote sensing datasets would therefore allow broad-scale biomass estimation in
spotted gum forests.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f13030486/s1, Figure S1. Distribution of diameter at breast height (left) and total height
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(right) of 52 sample trees used to develop biomass equations; Figure S2. (a) Plots of biomass estimation
models based on data set 2a. With compound predictor variables of D, H, ρ and CD for 40 samples
trees. See Table 4 for criteria associated with these regressions; (b) Plots of biomass estimation models
based on data set 2b. With compound predictors variable of D, H, ρ and CV for 40 samples trees.
See Table 4 for criteria associated with these regressions; Table S1. The Furnival’s Index (FI) used
to compare logarithmically transformed models and weighted nonlinear models. The lower FI
indicated more reliable models; Table S2. Average predicted error of biomass equations using Monte
Carlo cross-validation (MCCV), the procedure was used 80% data used for training, 20% data for
testing, the process is repeated 100 times for Equations (3)–(9) and 40 times for Equations (10)–(23);
Table S3. Comparison of average errors of Equation (3) in this study and published AGB models for
eucalypt species.
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