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Abstract: The dehesa is an anthropic complex ecosystem typical of some areas of Spain and Portugal,
with a key role in soil and biodiversity conservation and in the search for a balance between produc-
tion, conservation and ecosystem services. For this reason, it is essential to have tools that allow its
characterization, as well as to monitor and support decision-making to improve its sustainability. A
multipurpose and scalable tool has been developed and validated, which combines several low-cost
technologies, computer vision methods and RGB aerial orthophotographs using open data sources
and which allows for automated agroforestry inventories, identifying and quantifying units with
important ecological significance such as: trees, groups of trees, ecosystem corridors, regenerated
areas and sheets of water. The development has been carried out from images of the national aerial
photogrammetry plan of Spain belonging to 32 dehesa farms, representative of the existing variabil-
ity in terms of density of trees, shrub species and the presence of other ecological elements. First,
the process of obtaining and identifying areas of interest was automated using WMS services and
shapefile metadata. Then, image analysis techniques were used to detect the different ecological units.
Finally, a classification was developed according to the OBIA approach, which stores the results in
standardized files for Geographic Information Systems. The results show that a stable solution has
been achieved for the automatic and accurate identification of ecological units in dehesa territories.
The scalability and generalization to all the dehesa territories, as well as the possibility of segmenting
the area occupied by trees and other ecological units opens up a great opportunity to improve the
construction of models for interpreting satellite images.

Keywords: dehesa; agroforestry inventories; image analysis; RGB images; OBIA; automation; ShapeFile;
object-based classification; WMS services; open data source

1. Introduction

The dehesa is an agroforestry system typical of the central-western and south-western
Iberian Peninsula, which occupies around 3 million ha in the form of widely spaced Quercus
savannas combined with grasses, shrubs, crops, livestock and wildlife. The fraction of
the covered space by trees ranges from 5% to 75%, the predominant livestock is extensive
with Iberian pigs, sheep, cows and occasionally goats, and hunting is also common [1]. All
these elements foster multiple uses of the land, contributing to the conservation of soil,
biodiversity and other cultural and historical values. Not surprisingly, the dehesas are
included in the European Habitats Directive [2].

More specifically, this type of pastoral ecosystem in Mediterranean areas is charac-
terized by [3]: (i) adaptation to climate change, (ii) increasing persistence and drought
survival of both annual and perennial species; (iii) the important role of forage legumes;
(iv) maintaining grassland plant diversity; and (v) improved ecosystem services, such as
carbon sequestration, control of soil erosion and wildfires, and preservation of both wild
and domestic biodiversity.
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In addition, as suggested by [4], the intentional integration of trees or other perennials
plants with crops or livestock in production systems is being widely promoted as a conser-
vation and development tool to help meet the 2030 UN Sustainable Development Goals.

The topological arrangement of the trees, the distance between them, their grouping
in specific places, the existence of contacts between them, the formation of corridors and
their relationship with the herbaceous and shrub strata are aspects that can have a great
impact on diversity.

However, the loss of trees is one of the main problems facing the dehesa [5]. The lack
of tree regeneration is the cause of the progressive deterioration of one of the key elements
of this ecosystem and is linked to an inadequate age class structure, in which mature ages
predominate and there is a shortage or absence of young trees [6]. In addition, increased
livestock load, together with excessive mechanization, hinder the capacity for regeneration
and reduce the cover of scrub that facilitates the natural regeneration of the trees [7].

Natural regeneration is a dynamic process through which new plants are recruited
individuals in the adult population, thus offsetting losses due to natural mortality [8]. This
is a slow and unpredictable process due to the complex interaction that exists between
success in the establishment of the seedlings and different factors in the environment [9].

For all these reasons, in order to understand the dehesa ecosystem, as well as the
functioning of its ecological units and the relationships between them, it is necessary to
adopt a systematic and systemic approach, especially with regard to the role of the tree layer
and its relationships with the food chain, the balance of the ecosystem and the provision of
ecosystem services.

In this regard, its characterization and monitoring become key to improving and
supporting decision-making. In order to advance along these lines, it is necessary to
have protocols and systematics, automated to a large extent, that allow the tracking of the
attributes present in these ecosystems and the actions that take place in them. This requires
a major effort to gather information and knowledge, and especially the design, fine-tuning,
optimization and validation of tools that facilitate the aforementioned characterization and
monitoring tasks, and that, at the same time, are robust, scalable and generalizable.

The use of remote sensing has an increasingly important role in the efficient, accurate
and complete monitoring of agroforestry areas, being key in the decision-making processes
of agroforestry management. The amount of available data and satellite platforms has
increased constantly in recent decades, e.g., IKONOS, QuickBird, WorldView and OrbView,
and Sentinel [10].

The combination of these remote data with ground measurements, obtained from
interpretations of high spatial resolution aerial photogrammetry, significantly improves
our ability to study land processes. In this regard, the processing of ground measurements
applied in ecosystem characterization is rapidly growing through object-based image
analysis (OBIA or GEOBIA for geospatial object-based image analysis). OBIA-based
classification techniques have grown due to the need for higher resolution image processing,
which are increasingly present in agriculture, and require less processing time, lower
computational power, and homogeneity to perform classification across patterns of objects
containing the information for classification [11,12].

The processing of images corresponding to dehesa territories is particularly complex
due to the variety of strata and ecological elements present in this ecosystem, and authors
who have carried out studies to evaluate the quality of grassland in dehesas [13–15] have
highlighted the difficulty generated by the presence of the tree layer influencing the spectral
data. It has been concluded that further research is needed to isolate the influence of tree
canopy reflectance in pixels partially covered by trees [16].

A major trend in current individual tree crown detection (ITD) methods is the genera-
tion of 3D models based on the crown height model (CHM) for the delineation of crowns
created from LiDAR or Structure for Motion (SfM) techniques, effective as long as an accu-
rate digital terrain model (DTM) and low tree density are available [17,18]. These methods
are accurate but require managing and storing huge amounts of data and many computing
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resources. Studies conducted through 2D ITD methodologies are strongly linked to tree
detection algorithms and canopy detection algorithms [18–20]. The segmentation of 2D
ITD models is based on spectral information through techniques mainly focused on bright-
ness that require methods to extract accurate and relevant information from RGB images.
Heterogeneities can be detrimental to the correct detection of individual trees, so they are
corrected with bias estimation segmentation techniques [21].

Concerning species and types of forests, research has been conducted on the detection
and delimitation of individual trees in different types of agroforestry areas, including
natural forests [22], plantations, orchards [23] and even urban forests [18]. Although some
studies have worked in areas with mixed forests [24,25], in deciduous forests, such as those
of poplars [26,27], birches [28] or maples [29] and in temperate zones [30,31] or tropical
areas [32], most research has focused on coniferous forests. Most of the methods have been
based on the assumption that tree crowns are cone-shaped such that they appear circular
in shape in two-dimensional images; the irregularly-shaped crowns make the reflectance
pattern more difficult to recognize. For example, species with a crown diameter greater
than 12 m and non-tapered shape can cause significant variation in brightness within the
canopy in high spatial resolution images. Such variation can lead to commission errors
where multiple tree crowns are misidentified as the same canopy [33].

This work deals with the identification and quantification of different elements of
ecological significance in dehesas, including individual trees, groups of trees or copses,
young or regenerated trees and sheets of water.

As far as we know, there are no studies that have addressed the joint identification of
these ecological elements, that do it automatically and are scalable to large areas. The works
that are abound are those that make use of image analysis techniques for the detection and
identification of tree crowns.

The objective of this work was to expand the scope of previous studies focused on
tree detection and crown delimitation into a multipurpose tool to generate automated
agroforestry inventories for large area analysis, including the automatic download of the
areas under study, the identification and counting of trees with heterogeneous shape and
other units with ecological significance, such as regenerates, clusters of trees (copses) and
sheets of water, thus extending the sustainable management of a highly complex ecosystem
such as the dehesa. The main aim of this research work lies in accomplishing the identifica-
tion of those multiple targets with an aim to address peculiarities of the dehesa ecosystem
through the use of low-cost techniques, computer vision methods and aerial imagery, all
generalizable and scalable. The results, exported in standardized formats for Geographic
Information Systems, can be used for different purposes, including optimization of man-
agement practices, regulatory compliance, feeding models to estimate productivity, pest
and disease evolution, preventive measures and enhancement of ecosystem services and
diversity, and may be an important aid to interpret images from remote sensors.

2. Materials and Methods
2.1. Study Area

The study area is located in the dehesa zones of southern Spain. Specifically, 32 dehesa
farms were selected (represented by the green dots in Figure 1).

They are part of the demonstration areas included within the framework of the LIFE+
bioDehesa project LIFE 11 BIO/ES/000726 [34]. These farms have common elements (trees,
copses, regenerated trees, shrubs, pastures, water areas, fauna ...), but there are differences
in the quantity, density and species of these elements. The extension of the farms ranges
between 150 and 550 ha.
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Figure 1. Location of the dehesa areas under study.

2.2. Image Dataset

The image dataset used in the study came from aerial orthophotographs from PNOA
obtained by photogrammetric flights with high resolution digital camera. The image
dataset has a spectral resolution of 3 bands (blue, green, red), radiometric resolution of
12 bits per band and spatial resolution of 50 cm.

PNOA images were obtained from the Spanish National Geographic Institute [35]
through Web Map Service (WMS) standard [36].

Shapefiles provided by the regional administration [37] were used to metadata the
images (for this study, the metadata provided crop and geospatial information).

2.3. Programming Languages

The tool was developed with Python 3.8.5 and MATLAB 2021a (9.10) programming
language with two libraries: (i) The Image Analysis Processing toolbox and (ii) openearth-
tools library from [38]. Python was used for the automatic acquisition of images and
identification of the area of interest and MATLAB for the digital processing of the images.

2.4. Procedure

In order to achieve the objective, the development of the tool was carried out with
66 images of approximately 25 ha which were chosen to represent the existing variability in
terms of tree density, shrub, pastures and animal species as well as crops and uses of land
among the 32 dehesa farms. The development was focused on the correct identification of
ecologically significant units (the number of trees, regenerations, copses and water sheets)
through image analysis techniques. In addition, the fraction of covered area (FCA) of each
of the elements was also obtained. For its implementation, both existing image analysis
techniques and new specific developments were combined.

The second step was the validation of the tools, where a further 16 images of 25 ha
were used. The real reference of number of individual trees, regenerations, copses and
water sheets, was obtained through manual markings with yellow dots, red dots, green
areas and blue areas, respectively (Figure 2). The different markings made by hand were
counted by means of an algorithm that quantifies the number of each element.

Finally, in order to characterize the farms under study, since the farm is the manage-
ment unit and the basis for decision-making, the methodology was extended to the entire
surface under study (6.377 ha).
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2.5. Methodology Flowchart Description

For the sake of clarity, since the main contribution of this paper is the proposal of a
methodology, its modules are presented here, which were structured as follows: (i) image
acquisition; (ii) standardization: normalization and preprocessing; (iii) segmentation to
identify units of interest; (iv) classification using classification techniques based on OBIA
rules; and (v) save the results in standardized formats for geographic information systems.

The only parameter required by the tool was an array with the identifiers of the areas
under study (local entities (NUTS 4), provinces (NUTS 3), regions (NUTS 2) or countries
(NUTS 1)).

The following is a brief description of the modules, their functionalities and the
techniques used (see Figure 3). Specific developments (shown in red) carried out to achieve
the objectives are shown in the Section 3 since they represent the main contribution of
this research.

1. Image Acquisition: WMS services [36] were used for the automatic download of the
images and shp files [39] to identify areas of interest.

2. Standardization. Pre-processing techniques were performed and image homogeniza-
tion was addressed.

• Size Standardization: Higher resolution images than 0.5 × 0.5 m (the lowest
validated resolution) can be reduced to minimize execution times.

• Pre-processing: Selection of the color space best suited to object detection, noise
reduction and signal smoothing. Specifically: (i) Change to CMYK (Cyan, Ma-
genta, Yellow and Key); (ii) Gaussian noise filtering by linear mean filter (Wiener)
and random noise filtering by non-linear median filter (medfilt2) [40]; (iii) illu-
mination correction: adaptive filtering techniques were used to eliminate the
lack of illumination [41]; and (iv) contrast adjustment: Histogram equalization
techniques were employed [42].

3. Segmentation: This is the stage prior to classification, where the objects are identified.

• Obtaining objects mask: Different segmentation techniques were used for this
purpose: (i) Background extraction using the K-means algorithm [43] and seeded
region growing method [44,45]; (ii) object detection: Identification of image
maxima in non-background areas and growth by region through seeded region
growing method [44].

• Dynamic area estimation: A correct estimation of the area is essential for object
division and classification, so a specific development was carried out to optimize
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the calculation through probability density function (PDF) of the area. This
technique is based on the fact that, in systems where groups of elements with
differentiated areas coexist, the number of groups, as well as the area of each one,
can be determined through the PDF of the area. This development is described
on page 7.

• Division of objects [46]: two techniques were developed and employed: the first
one based on Watershed algorithm [23], the second one based on morphology
splitting techniques [26] to split 8-shaped objects. The steps were as follows:
(i) Area estimation was carried in previous module, only those elements that
were considered clusters will be divided; (ii) the division based on Watershed
was performed. This technique was used for the first iteration because it is based
on intensity values; (iii) the clusters were re-identified (with the area previously
estimated in step (i)); and (iv) the second division was performed, in this case
based on morphology.

Forests 2022, 13, x FOR PEER REVIEW 6 of 22 
 

 

• Dynamic area estimation: A correct estimation of the area is essential for object 
division and classification, so a specific development was carried out to opti-
mize the calculation through probability density function (PDF) of the area. This 
technique is based on the fact that, in systems where groups of elements with 
differentiated areas coexist, the number of groups, as well as the area of each 
one, can be determined through the PDF of the area. This development is de-
scribed on page 7. 

• Division of objects [46]: two techniques were developed and employed: the first 
one based on Watershed algorithm [23], the second one based on morphology 
splitting techniques [26] to split 8-shaped objects. The steps were as follows: (i) 
Area estimation was carried in previous module, only those elements that were 
considered clusters will be divided; (ii) the division based on Watershed was 
performed. This technique was used for the first iteration because it is based on 
intensity values; (iii) the clusters were re-identified (with the area previously es-
timated in step (i)); and (iv) the second division was performed, in this case 
based on morphology. 

 
Figure 3. Methodology Flowchart. Specific developments carried out in this study are shown in red. 

4. Classification: Definitive area estimation through PDF of the area after object division 
to improve its estimation. 
• Feature spectral and non-spectral extraction [47,48]. For this purpose, patterns 

of objects containing spectral (colorimetry mean) and non-spectral (size, texture, 
morphology, solidity, eccentricity and context) information were extracted. 

• A supervised rule-based OBIA classification [47]. This type of classification re-
quires more knowledge of the environment than other self-learning techniques 
such as those based on Neural Networks or Support Vector Machine. 

Figure 3. Methodology Flowchart. Specific developments carried out in this study are shown in red.

4. Classification: Definitive area estimation through PDF of the area after object division
to improve its estimation.

• Feature spectral and non-spectral extraction [47,48]. For this purpose, patterns
of objects containing spectral (colorimetry mean) and non-spectral (size, texture,
morphology, solidity, eccentricity and context) information were extracted.

• A supervised rule-based OBIA classification [47]. This type of classification
requires more knowledge of the environment than other self-learning techniques
such as those based on Neural Networks or Support Vector Machine.
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• Georeferenced raster image where the classified objects were visualized was
generated (dark pink for regenerates, yellow for individual trees, green for
copses and blue for water sheets). Copses were grouped in terms of proximity.

5. Save results: The results were stored in different standardized formats for Geographic
Information Systems software or platforms such as Google Earth Engine in order to
facilitate further use: (i) Excel File with the relevant image data; (ii) ShapeFile: with
relevant object data; and (iii) SQL server database.

3. Results

The main result of this paper is the proposal of a methodology for the automatic
identification of the target units as well as the specific developments (shown in red in
Figure 3) carried out to achieve this objective. Details are provided so that the specific
developments presented here can be reproduced for other data or purposes.

3.1. Specific Developments
3.1.1. Automatic Image Acquisition

This module performs automatic downloading of the image dataset and identifies
the ecosystem under study. In order to extend its use to other areas and ecosystems, the
module was made configurable, so different characteristics can be set: (i) geographical
extension to which it is applied (local entities (NUTS 4), provinces (NUTS 3), regions (NUTS
2) or countries (NUTS 1)); (ii) crop/ecosystem of interest; and (iii) partial download of the
images or mosaic of the whole set.

The development was carried out through a Python developed script. TIFF images
were downloaded invoking services provided by the National Geographic Institute based
on WMS [35] services and AOI was automatically identified through the metadata of the
shp files supplied by the regional administration [37], storing the area of interest in a
GeoJSON file. This module automates the download/identification and dimensioning of
the areas under study of PNOA images through open data sources.

3.1.2. Area Estimation

This method determines the number of existing populations as well as the area of
each population by means of the probability density function (PDF) and the cumulative
distribution function (CDF) of the area of the elements.

In systems where elements with differentiated areas coexist, the number of populations
can be determined through the PDF of the area, by identifying the number of curves. To do
so, positive peaks were detected through the segmented peak finder [49], which locates and
measures the positive peaks by looking for downward zero-crossings in the first derivative
(see Figure 4).

The calculation of the area of each population was obtained by means of cumulative
distribution function (CDF), which was used to evaluate probability as area. The cumulative
probability density function is the integral of the PDF, and the probability between two
values of a continuous random. Equation (1) shows the cumulative distribution function
from a to b.

P (a < x < b) =
∫ b

a
f (x)dx (1)

Based on the above, the area of each population was obtained where the CDF value
was 65% of each population (see Figure 5). Considering P (a < x < b) as 90% of that
population, the area of the first population was estimated at C point, Equation (2) (65% of
P (a < x < b), Equation (3)).

Estimated Area = f (c) (2)

P(a < x < c) =
∫ c

a
f (x)dx = 0.65 × P(a < x < b) = 0.65 ×

∫ b

a
f (x)d x (3)
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3.1.3. Seeded Region Growing (SRG) Method

We proposed a more parametrizable seeded region growth algorithm [50], which al-
lows a greater adaptation to different methodologies. The parameters used were (i) image:
grayscale image; (ii) binaryMask: binary mask limiting object growth; (iii) p: maximum
percentage of growth per iteration (p > 0: expand towards a lighter area and p < 0: expand
towards a darker area); (iv) iterationMax: number of max pixels you want to explore;
(v) sizeMask: size of quadrated mask that is used to calculate the mean values; (vi) mer-
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geObject: 0 if you want to keep objects separated; and (vii) maxDiff: maximum difference
between initial pixel value and value of the pixels that will be added to the object (this input
must be positive because the evaluation is done over the absolute value of the difference).

The development carried out allows growth towards negative and positive gradients
by adding those nearby pixels whose value is less/greater than the mean value of the
surrounding area of the object (defined by sizeMask) plus the p value between −1 and
1. It also allows limiting the maximum percentage of object growth by intensity and size
(defined by maxDiff and iterationMax), as well as merging or keeping objects separated
through mergeObject parameter. Figure 6 shows the execution for different parameters
which allows a better adjustment to the needs of the different problems posed.
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Figure 6. Results of the SRG method for different parameterizations: (a) Input image with the seeds;
(b) result for the p = −0.1, maxDiff = 0.4, sizeMask = 5 and mergeObject = 0 parameters; (c) result for
the p = −0.5, maxDiff 0.5, sizeMask 5 and mergeObject = 0 parameters.

3.1.4. Object Division

Two methods were developed, one of them based on watershed methodology [51]
and the other based on object morphology.

Watershed Method

This method identifies seeds based on maximum intensity and grows in negative
gradients. In order to satisfy these requirements, it is necessary to work with the transform
of the distance of the mask of objects to be divided (see Figure 7). The growth is conditioned
by morphological parameters such as eccentricity, solidity and area.

Firstly, seeds (the brightest objects) were obtained by recursively applying different
thresholds (from highest to lowest intensity). In each iteration, new possible seeds were
discovered, which can give rise to new seeds or be grouped with the previous ones. The
groupings were obtained through agglomerative hierarchical cluster based on minimum
distance. The seed search process by iterative method avoids the over-division of the object.

Figure 7a shows the candidates to be seeded in different iterations (1 and 15, respec-
tively, the maximum number of iterations was limited to 15) and Figure 7b shows the final
seeds, and it can be observed how in each iteration new seeds appear. Small objects were
not identified as seeds because they are isolated objects and splitting is not required.

Subsequently, using seeded region growing (SRG) developed in this study, the seeds
were expanded across the negative gradient of the object mask. For the development of our
methodology, the parameters used were: sizemask = 5, p = −0.2 (expand towards a darker
area) while keeping the objects separated.

As a result, a fully parameterizable wathershed-based methodology was developed,
which allows a better adaptation to the problem.
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Figure 7. Example of iterative seed search process: (a) Possible seed candidates for different applied
thresholds; (b) final seeds set.

Figure 8 shows an example of results for different parameters: Figure 8a was ob-
tained with minArea = 50, maxArea = 200, MaxEccenrticity = 1, minSolidity = 0 parame-
ters; Figure 8b was obtained with minArea = 150, maxArea = 250, MaxEccenrticity = 0.9,
minSolidity = 0.5 parameters. As can be observed, in Figure 8a more optimal results were
achieved, because a better approximation of the division of the objects was made. This is
due to a better adjustment of the parameters, mainly the object size, which underlines the
importance of a correct estimation of the area described on page 7.
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Object Division by Morphology

This method was based on the prior knowledge of shape of the objects to be divided
(round objects) as well as morphological operations of erosion and dilatation. It divides
objects of a binary mask and defined radius. The steps are shown below.

Firstly, seeds were identified by means of erosion techniques and grouped by agglom-
erative hierarchical cluster based on minima distance (defined by radius). Figure 9 shows
the seeds marked in red obtained through morphological operations.
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Figure 9. Seeds, marked in red, identified through morphological operations such as erosion
and dilatation.

Next, a first morphology-based growth was performed, where the growth constraint
of each object is given by its size (larger objects experience higher growth). To achieve
the above, the minimum distance from the seed to background was calculated for each
object, which constrains it growth. This allows all the seeds to be at an equal distance from
the background.

As shown in Figure 10, smaller objects only grow with radius 1 while bigger objects
experience a growth of radius 5. This controlled growth allows small objects not to invade
the area of large objects in the following phases. Lastly, final seeds are expanded by the
initial binary mask and isolated objects are added (Figure 11).
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Figure 11. Result of the morphology growth algorithm in different steps: (a) Final seeds; (b) result of
expanding the seeds by the object mask; (c) final result by adding isolated elements.

3.1.5. OBIA Classification

Patterns of objects containing spectral (colorimetry mean) and non-spectral (size,
texture, morphology, solidity, eccentricity and context) information were extracted for
subsequent OBIA-based classification.

• Feature extraction: Spectral and non-spectral attribute extraction

(a) Spectral attributes based on colorimetry of the RGB image (Green Layer) and
CMYK (Cyan Layer) color model.

(b) Non-spectral attributes:

i. Eccentricity (Ecc): parameter that determines the degree of deviation of
a conical section with respect to a circumference (0 for circumferences,
tends to 1 for very longitudinal elements).

ii. Robustness (R): the fraction of area of the region compared to its convex
hull. The convex hull is what you would get if you wrapped a rubber
band around the region. So, the robustness is the fraction of the actual
area of the region, being high for the elements of interest.

iii. Texture obtained through STD filters (T_SDT): allows us to differentiate
between water sheets and trees, since this attribute is much lower in
water sheets.

iv. Area (Area): key factor to differentiate between regenerates, indepen-
dent tree units and copses.

• Rule-based OBIA classification through the spectral and non-spectral attributes (see
Figure 12) The classification was carried out using a supervised method, which requires
prior knowledge of the elements. Based on this knowledge and the tests carried
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out during development, the values of the different thresholds were adjusted. The
thresholds related to the area were compared with the estimated area in each image,
so it is a dynamic threshold.
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Figure 12. Rule-based OBIA classification.

With regard to the rest of the features that make up the classification, we took into ac-
count those that allow us to clearly distinguish between the different elements. Specifically,
the STD makes it possible to distinguish between water and vegetation (regenerated, trees
and copses), since water has a much lower STD than vegetation. As far as vegetation is
concerned, Robustness is quite high for trees and low for copses, while Eccentricity has
high values for copses and low values for trees.

Color-based spectral features allowed false positives, such as architectural elements,
to be ruled out.

3.2. Tool Validation

An additional set of 16 images was used to validate the tool. Figure 13 shows an
example of the result of the tool for one image used for this purpose.

Table 1 shows a summary of the real values and those calculated by the tool when
processing the images, as well as the relative errors for each of the elements to be identified
for the 16 images used for validation.

In order to study the goodness of fit of the data, a correlation analysis was carried out
between the real and the calculated value for each of the target units. The quality of the fit
was measured through the coefficient of determination (R-squared). The R-squared values
obtained were between 0.97 and 0.99, indicating that the model is capable of explaining
97% of the variability observed in the response variable. The p-values were between
4.29 × 10−12 and 7.13 × 10−109 (far below 0.05) showing that there was evidence that the
variance explained by the model is higher than that expected at random.
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Figure 13. Example of an image selected for the validation: (a) Input image; (b) image processed by
the tool. Dark pink for regenerates, yellow for individual trees, green for copses and blue for water
sheets for the 16 images used for validation.

Table 1. Real and calculated values and relative errors of the items under study for 16 images used
for the tool validation.

Image
ID

Ecological
Unit

Real
Value

Calculated
Value

Relative
Error

Image
ID

Ecological
Unit

Real
Value

Calculated
Value

Relative
Error

1

Trees 952 961 0.9%

9

Trees 982 1003 2.1%
Regenerations 47 41 12.7% Regenerations 72 80 11.11%

Copses 0 0 0% Copses 1 1 0%
Water
Sheets 1 1 0% Water

Sheets 1 1 0%

2

Trees 755 834 10.4%

10

Trees 716 685 4.4%
Regenerations 84 85 1.1% Regenerations 56 61 8.9%

Copses 3 4 33.3% Copses 0 0 0%
Water
Sheets 0 0 0% Water

Sheets 1 1 0%

3

Trees 551 534 3.0%

11

Trees 482 510 5.82%
Regenerations 131 152 7.6% Regenerations 51 58 13.7%

Copses 3 3 0% Copses 10 9 10%
Water
Sheets 0 0 0% Water

Sheets 0 0 0%

4

Trees 49 49 0%

12

Trees 664 658 0.9%
Regenerations 2 2 0% Regenerations 34 38 11.7%

Copses 0 0 0% Copses 1 1 0%
Water
Sheets 0 0 0% Water

Sheets 0 0 0%

5

Trees 122 125 2.4%

13

Trees 419 449 7.1%
Regenerations 1 1 0% Regenerations 13 15 15.38%

Copses 1 1 0% Copses 1 1 0%
Water
Sheets 2 2 0% Water

Sheets 1 1 0%
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Table 1. Cont.

Image
ID

Ecological
Unit

Real
Value

Calculated
Value

Relative
Error

Image
ID

Ecological
Unit

Real
Value

Calculated
Value

Relative
Error

6

Trees 890 776 13.08%

14

Trees 729 737 10%
Regenerations 81 95 17.28% Regenerations 191 233 21.9%

Copses 1 1 0 Copses 3 3 0%
Water
Sheets 0 0 0 Water

Sheets 1 1 0%

7

Trees 732 625 14.61%

15

Trees 438 398 9.1%
Regenerations 65 70 7.6% Regenerations 15 20 33.33%

Copses 2 2 0% Copses 2 2 0%
Water
Sheets 1 1 0% Water

Sheets 1 1 0%

8

Trees 972 912 6.17%

16

Trees 924 899 2.7%
Regenerations 98 104 6.1% Regenerations 14 19 35.7%

Copses 2 2 0% Copses 0 0 0%
Water
Sheets 1 1 0% Water

Sheets 1 1 0%

3.3. Extension of the Study

In order to test the scalability and usefulness of the tool developed to characterize
management units in real situations, such as complete farms, the tool was applied to the
entire area of 32 farms (6377 ha). Figure 14 shows the result of one farm under study.
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Figure 14. (a) Images input; (b) the images processed by the tools. Dark pink for regenerates, yellow
for individual trees, green for copses and blue for water sheets.

The characterization of the 32 farms under study through the methodology allowed
obtaining relevant attributes such as the number of elements and the FCA of each unit
of interest (see Figure 15). The FCA is especially useful for monitoring water sheets and
copses, since, although they are few units, they can have relevance within the farm, as is the
case in farm CO16. Regarding the number of elements, it is considered important to have a
traceability of the number of regenerates or trees. We also extracted generic information
such as estimated crown area (estimated using the function developed for this purpose),
FCA of each target unit (water sheets, regenerations, tree and copses) as well as the Fraction
of Canopy Cover FCC (regeneration FCA + tree FCA + copses FCA) (see Figure 16)
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stable solution was achieved for the automatic and precise identification of ecological 
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Figure 15. Analysis of (a) relative FCA of units of important ecological class per farm; (b) FCA
percentage of units of important ecological class per farm; (c) number of units with important
ecological significance; (d) hectares per farm.
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Figure 16. Descriptive statistics of the estimated crown area, water FCA, regeneration FCA, trees
FCA, copses FCA and FCC of the 32 areas under study.

4. Discussion

This work was aimed at developing a methodology to generate automated agroforestry
inventories for large area analysis. To do so, a tool was developed with which a stable
solution was achieved for the automatic and precise identification of ecological units in
dehesa territories. This represents a valuable contribution to the development of tools
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for landscape characterization and monitoring in a complex agroforestry system, which
have become crucial for its sustainability. The results of this work are in line with the
results presented in [52], where a methodology for landscape sampling, mapping and
characterization of a complex agroforestry system in sub-Saharan Africa was provided.
Their results showed the compositional, configurational and functional heterogeneity
found in the study area with a satisfactory accuracy of 85.12%. The approach proposed
in our study allowed to effectively characterize peculiarities of the dehesa by providing
knowledge of its topological distribution, which helps the conservation of its biodiversity,
thus saving the complexity of image processing in these types of territories due to the great
variety of ecological elements [13–15].

Our proposal has achieved individualized traceability by providing detailed informa-
tion (area, morphology, geolocation) for each target unit, allowing us to discern between
small trees, trees and copses. This is essential for different purposes: (i) Feeding models to
estimate the number of Iberian pigs that can be released per hectare where the importance
of automatic detection is highlighted including the correct identification of acorn trees as
well as the need to discern shrubs (young acorn trees that are still unproductive or shrubs
that are not oaks) [53]; and (ii) monitoring of understorey cover, growth rates and age of
oak mortality, due to the fact that studies carried out in [54] provided solid evidence that
land-use practices and management intensity modulate responses of holm oak growth to
drought. The tool proposed in this study allows including metadata to delve deeper as
well as to extend their area of study.

Another point worth underlining is regeneration in the dehesa due to it being a slow
and unpredictable process. Tree loss and lack of regeneration have been identified as one
of the main problems of dehesa territories [5]. The tool allows one to measure, evaluate
and monitor the regeneration capacity of different areas, which makes it possible to obtain
key patterns in the recovery of ecosystems.

More specifically, this work has demonstrated its capacity for the identification and
counting of the tree canopy. This had been addressed by different research and techniques:
(i) [55] achieved the detection of 71% of the tree based on terrain elevation models through
LiDAR and SfM technique; (ii) [56] were able to delimit 93% of the tree crowns and [18]
achieved results with errors between 5.88 and 7.99% in mixed temperate forests with
geometric approximations models. Their results are slightly more precise than those
presented in this work. However, it should be taken into account that the necessary
resources and computational calculations required to apply these techniques are much
higher; and (iii) regarding studies focused on obtaining CHM through 2D techniques,
with multispectral images (R/G/B/NIR) based on OBIA image analysis techniques [57]
obtained an accuracy of 80%, and [17], in their best result, after the evaluation of 10 farms,
identified 85% of the palm tree crowns. In the present study, the results (errors between
0.9% and 14.61% in the identification of the tree layer) are similar to those presented using
the same techniques with the novelty that other elements were also identified with errors
between 0% and 33.3%. In addition, 32 farms were characterized (a total of 6.377 ha) with
diversity in tree density and distribution, with the difficulty that this entails, as pointed out
by [58].

The methodology covers the automatic acquisition of images and identification of
regions of interest through external and open sources for different areas (NUTS 4/NUTS
3/NUTS 2/NUTS 1) and ecosystems, which allows expansion of the study areas both
geo-graphically and agronomically (other types of crops/ecosystems). This functionality
enables the study of the temporal and spatial variability of agroforestry inventories through
automatic updates, making it possible to measure their evolution and compare patterns in
different regions. For this purpose, there are tools which allow automatic downloading of
satellite images such as ESA SNAP (Sentinel Application Platform) [59], plugin SCP for
QGIS [60] or Earth Engine which provide easy web-based access to an extensive catalog of
satellite imagery and other geospatial data in an analysis-ready format [61], although its
higher resolution (10 × 10 m) is lower than that required for the aim of this study. Moreover,
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SIGPAC (Geographic Information System of Agriculture Parcels of national government)
allows identifying areas and enclosures to view them on a map or on highly detailed aerial
photographs but does not enable the automatic download and interpretation of the images.

Regarding image analysis processing, the developments carried out in the study
present advances in segmentation and object division techniques. The main improvement
compared to existing developments is the flexibility in parameterization, which makes it
possible to better adjust to different purposes. As far as segmentation is concerned, the
development focused on a widely extended technique, the SGR algorithm [62]. Different
approaches were found to address it [63] but none of them completely fitted the needs.
Concerning the division of the objects, over-division was observed in the methods provided
by MATLAB based on watershed [64] so the development of the two functions was required.

In addition, with a view to extending the methodology to other resolutions, dynamic
area estimation was implemented, which calculates the number of populations, the relative
percentage and the area of each one of them for a set of provided objects.

One aspect of great importance is the potential to use the synergies between automated
procedures to identify and characterize different ecological units in pastoral agroforestry
systems from very-high-resolution images such as orthophotos with spatial resolution of
0.5 m or greater, which allow calibrating and optimizing the analyses carried out with
lower resolution satellite images, completing the analysis of spectral mixtures.

These specific developments can be reproduced for other data or future study.

5. Conclusions

This study addressed the automatic acquisition, identification, and interpretation of
elements with ecological significance in dehesa areas with low-cost techniques, computer
vision methods and RGB aerial orthophotographs, allowing the automatic and periodic
generation of agroforestry inventories in order to study their evolution. The heterogeneity
of this stratum in terms of its distribution and irregular coverage of the territory constituted
one of the main difficulties to be solved, but a stable solution was achieved that adds
one more tool to the decision support system for the conservation and regeneration of
the dehesa.

The results obtained allow the automatic analysis of all the dehesa areas of a complete
territory and allow obtaining data that help the management of the areas and the verification
of indicators associated with norms and rights to obtain public aid.

The proposal of this paper enables obtaining results in standardized formats of Ge-
ographic Information Systems and in high-level platforms such as Google Earth Engine.
It is also a source of metadating of the elements of ecological significance automatically
identified, as well as an improvement to the development of models for the interpretation
of satellite images and their use as decision support systems, an aspect that is suggested as
an important line of work for the future.
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