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Abstract: Remote sensing fractional vegetation cover (FVC) requires both finer-resolution and high-
frequency in climate and ecosystem research. The increasing availability of finer-resolution (≤ 30 m)
remote sensing data makes this possible. However, data from different satellites have large differences
in spatial resolution, spectral response function, and so on, making joint use difficult. Herein, we
showed that the vegetation index (VI)-based mixture model with the appropriate VI values of pure
vegetation (Vv) and bare soil (Vs) from the MODIS BRDF product via the multi-angle VI method
(MultiVI) was feasible to estimate FVC with multiple satellite data. Analyses of the spatial resolution
and spectral response function differences for MODIS and other satellites including Landsat 8,
Chinese GF 1, and ZY 3 predicted that (1) the effect of Vv and Vs downscaling on FVC estimation
uncertainty varied from satellite to satellite due to the positioning differences, and (2) after spectral
normalization, the uncertainty (RMSDs) for FVC estimation decreased by ~2.6% compared with the
results without spectral normalization. FVC estimation across multiple satellite data will help to
improve the spatiotemporal resolution of FVC products, which is an important development for
numerous biophysical applications. Herein, we proved that the VI-based mixture model with Vv and
Vs from MultiVI is a strong candidate.

Keywords: joint use of multiple satellite data; Fractional Vegetation Cover (FVC); vegetation index
(VI) based mixture model; spectral response function; spatial resolution

1. Introduction

Remote sensing fractional vegetation cover (FVC) is one of the most important prod-
ucts in describing the vegetation coverage for climate, ecosystem, land degradation, and
desertification [1,2]. It is defined as the ratio of the vertically projected area of vegetation
to the total surface extent [3–7]. Until now, most published FVC products are in coarse
resolution (≥250 m). However, for application in a city ecosystem, agriculture, and soil ero-
sion over basin areas, monitoring heterogeneous land surfaces by using coarse-resolution
imageries can easily cause information absence [8,9] and requires higher resolution infor-
mation. Besides this, high-frequency satellite data has great value for dynamic monitoring
of rapid changes on the Earth’s surface, such as timely crop monitoring.

The good news is that more finer-resolution (≤30 m) remote sensing data are freely
available, such as Landsat 8 (30 m), Chinese GF 1 (16 m), and Sentinel 2 (10 m), making
it possible to develop finer-resolution land surface products at high temporal frequency.
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Synergies between Landsat 8 Operational Land Imager (OLI) and Sentinel 2 Multispec-
tral Imager (MSI) data are promising to fulfill the community’s needs for high-temporal
resolution images at a finer resolution, which can provide dense global observations at a
nominal revisit interval of 2–3 days [10]. Besides this, China has launched a series of Earth
resources and environment monitoring satellites, such as the HJ (HuanJing, which means
the environment in Chinese; 30 m; 31 days for global coverage) series, GF (GaoFen, which
means high spatial resolution in Chinese; 16 m; 41 days for global coverage) series, ZY
(ZiYuan, which means resource in Chinese; 5.8 m; 59 days for global coverage) series. Those
satellite data can have finer spatial resolutions for detailed surface process monitoring.
Therefore, making full use of multiple finer-resolution satellite data can help improve the
spatiotemporal resolution of FVC products and will help to improve the practicality of FVC
products. However, different satellite sensors have different spatial resolution and spectral
response functions, and there is limited research on using these data in combination to
fulfill the needs for global high-temporal resolution remote sensing products.

Furthermore, after analyzing the present algorithms available for finer-resolution
FVC estimation [11,12], most algorithms are data-based, which are not extendable to other
satellite sensors. The neural network is sensor dependent and needs a large amount of
training data [11,13], which is not always available, and the transferability of both network
and training data needs to be discussed. The relative vegetation abundance algorithms
scaled by maximum and minimum vegetation index (VI) values and spectral mixture
analysis algorithms need the spectra and VI at subpixel scale for end members are widely
used for FVC application and production [1,14–16]; however, the endmember information
are often data-based and required as given information [17]. Thus, there is a need to provide
a method that can joint use multiple satellite data.

The recently proposed Multi-angle vegetation index (MultiVI) method can be a candi-
date for the solution [18]. The MultiVI method facilitates the acquisition of end members in
a VI-based linear mixture model for FVC estimation, where the end members (Vv and Vs)
are quantitatively derived from publicly available Moderate Resolution Imaging Spectrora-
diometer (MODIS) Bidirectional Reflectance Distribution Factor (BRDF) products without
using any other prior knowledge [18]. By taking the Normalized Difference Vegetation
Index (NDVI) as an example, the key end members, NDVI for pure vegetation (Vv) and
bare soil (Vs), are two byproducts of this method and can be applied to generate FVC
via the VI-based mixture model. The 500 m resolution Vv and Vs from MODIS can be
downscaled according to land cover product, which makes it available to generate FVC in
various spatial resolutions with multiple satellite data.

However, the generalizability of this 500-meter resolution Vv and Vs from MODIS
should be discussed, whether they are suitable for all satellite data and capable of the
estimation of FVC from multiple satellite data. Research has shown that the spectral
response function does influence the band reflectance and VIs [19,20]. Although the
difference between the spectral response functions of different satellite sensors has a
negligible effect on the estimation accuracy of vegetation structure parameters [19,20],
few studies have addressed the uncertainty and feasibility of using information from one
satellite (e.g., Vv and Vs from MODIS) to determine vegetation structure parameters (e.g.,
FVC) from other satellites (i.e., when applying the Vv and Vs from MODIS to other satellite
data, does the spectral response function difference affect the accuracy of FVC estimation?).

Herein, we proposed that the VI-based mixture model which obtains Vv and Vs from
MODIS via the MultiVI method is capable of estimating FVC by jointly using multiple
finer-resolution satellite data (i.e., Landsat 8, GF 1, and ZY 3). We examine the uncertainty
and feasibility of the FVC estimation process. Our objectives are:

(i) analyzing the necessity of MODIS Vv and Vs downscaling for finer-resolution FVC
estimation; and

(ii) assessing uncertainty due to spectral response function differences for FVC estimation
with different satellite data.
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2. Materials and Methods
2.1. Study Areas and Field Measurements

Herein, we selected the Saihanba National Park (SNP; Figure 1) for the validation
of finer-resolution FVC with field measurements. The SNP area is 666 km2, which is in
Hebei Province, China, and consists of 43.2% grassland, 44.0% forest, 9.5% desert and
swamp, 3.0% cropland, and 0.3% residential land. The forest is artificial and is dominated
by birch and larch. The land cover has a certain heterogeneity but is relatively stable. Field
measurements were collected for the primary vegetation types in the SNP.
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Figure 1. Land cover map in the SNP area (50 km × 60 km) from 30 m GlobeLand30 product in 2010.
Yellow stars present the 25 site locations.

FVC was measured in sampling plots of 45 m × 45 m by using a digital camera in
2015, to obtain the reference FVC for the validation [21–23]. During the experiment, the
digital camera was set up at a height of 1.5~2 m from the ground with the help of a long
stick, and it was directed downward when photographing. Given the forests in SNP, a
top-down direction was used to capture low vegetation underneath the tree crown, whereas
a bottom-up direction was used to capture the underside of the tree crown. Additionally,
the forest FVC was calculated as Equation (1), in which fup is for tree crown FVC while
fdown is for FVC underneath the tree crown. Digital images were taken along two diagonals
of the plot, and about 20 images were taken for each plot. The digital FVC images were
processed by using an automatic and shadow-resistant algorithm (SHAR-LABFVC) with
an uncertainty of less than 0.025 [24]. In all, 25 sites with 35 measurements captured
from 27 June to 13 September 2015 were used for evaluation herein (i.e., some sites were
measured multiple times during this period).

FVC = fup +
(
1 − fup

)
fdown (1)

2.2. Finer-Resolution NDVI

To analyze the uncertainty and feasibility of the VI-based mixture model and Vv and
Vs from MODIS via MultiVI in finer-resolution FVC estimation, three satellite data were
getting involved and compared, being: (i) Landsat 8 OLI surface reflectance product [25];
(ii) Chinese GF 1 satellite wide-field-of-view (WFV; 16 m) data; (iii) Chinese ZY 3 satellite
multi-spectral camera (MUX; 5.8 m) data. Table 1 lists the temporal information of these
satellite data. An atmospheric correction based on the dark object method was applied
to GF 1 data [26]. A 10-day mean temporal composition was applied to GF 1 data to



Forests 2022, 13, 691 4 of 14

remove outliers. The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
module in the Environment for Visualizing Images (ENVI; Exelis, Inc., Boulder, CO, USA)
software was used for the atmospheric correction of ZY 3 data. Both GF 1 and ZY 3 surface
reflectance were simply averaged aggregated to 30-meter resolution, which was the same
as Landsat 8, and NDVI was calculated for FVC estimation.

Table 1. The temporal information for satellite data. All data were captured in 2015 which match the
field measurements.

Data Landsat 8 GF 1 ZY 3

Product Time
19 June; 5 and 21 July;

6 August; 7 and
23 September

30 June; 10 and
30 July; 8 September

5 August;
3 September

2.3. Spectral Library

The spectral band ranges and spectral response differences among MODIS, Landsat 8,
GF 1, and ZY 3 (Figure 2) were analyzed before applying the Vv and Vs from MODIS to the
other three finer resolution satellite data. Canopy spectra were simulated based on the three-
dimensional (3D) radiative transfer (RT) simulation framework, LESS (large-scale remote
sensing data and image simulation framework over heterogeneous 3D scenes) [27]. The RT
leaf model, PROSPECT-D [28], built-in LESS was used to simulate different leaves’ spectra.
High, middle, and low levels of dry matter (Cm), chlorophyll (Cab), and anthocyanin
(Anth) were considered. Table 2 lists the details of the parameters for PROSPECT-D.
Canopy structure was defined by Leaf Area Index (LAI), Leaf inclination Angle Distribution
(LAD), and crown shape. For canopy spectra simulation, the scene LAI was set at 6,
which represented a very dense vegetation scene. The shape of leaf in all scenes was
set as disc; details are listed in Table 3. When simulating the canopy spectra, the effects
of soil reflectivity were also considered. The soil spectra were from the global spectral
libraries [29,30]. In all 486, canopy spectra were simulated and 4439 soil spectra were used
for spectral normalization.
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Table 2. Leaf biochemical parameters for PROSPECT-D. N: structure coefficient; Cm: dry matter; Bp:
brown pigments; Car: carotenoids; Cab: chlorophyll; Anth: anthocyanin; Cw: water thickness.

Parameters N Cm
(g/cm2) Bp Car

(µg/cm2)
Cab

(µg/cm2)
Anth

(µg/cm2)
Cw

(cm)

Values 1.5
0.005;
0.01;
0.015

0 10
25
50
75

10
20
30

0.025

Table 3. Canopy structure information of the simulated dataset. SZA: solar zenith angle; HOM:
homogeneous scene; HET: a heterogeneous scene with spherical crowns; UNI: uniform distribution;
SPH: spherical distribution.

Scene Object Object
Radius

Object
Height LAD Number of

Soil Types SZA

HOM Leaf 0.05 m 0~15 m UNI;
SPH 3

0◦;
20◦;
40◦

HET Sphere 4 10~19 m UNI;
SPH 3

0◦;
20◦;
40◦

2.4. Vv and Vs Downscaling

A 30 m resolution global land cover dataset (GlobeLand 30) in 2010 [31] was used to
downscale Vv and Vs from MODIS in 500-meter resolution. GlobeLand 30 divides the land
surface into 10 types, including 6 vegetation types (i.e., cultivated land, forest, grassland,
shrubland, wetland, and tundra) and 4 unvegetated types (i.e., water bodies, artificial
surfaces, bare land, and permanent snow and ice). Herein, we combined the wetland, water
bodies, and permanent snow and ice into 1 type, all named water bodies, since they all
have Vs below 0. As for MODIS, Vs via MultiVI does not consider the water background
and it is always greater than 0; this type was considered in the downscaling process, but
no FVC estimation was performed. Thus, 8 land cover types (i.e., cultivated land, forest,
grassland, shrubland, tundra, artificial surfaces, bare land, and water bodies) were used for
Vv and Vs downscaling.

Vv/Vs for each MODIS pixel is assumed as the combination of Vv/Vs of all land cover
types in this pixel area. Take the proportion of each land cover type (k) in the MODIS pixel
as the weight (f ), 500 m Vv/Vs can be decomposed to 30-meter resolution according to
Equation (2). {

Vv,modis = ∑m
k=1 fkVv,k

Vs,modis = ∑m
k=1 fkVs,k

(2)

where, Vv,modis and Vs,modis is the Vv and Vs for a single 500 m MODIS pixel, Vv,k and Vs,k
is the Vv and Vs for a single 30 m land cover type (k) pixel, m is the number of land cover
type in this MODIS pixel area. A 3 × 3 sliding window with 1 MODIS pixel step was used
to solve the equation, and the result was set as the solution for all the 30 m land cover type
pixels in the center MODIS pixel area. Equation (3) shows an example of how to obtain Vv,k
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in MODIS pixel (x,y) using a sliding window. For obtaining Vs,k, it is the same as that of
Vv,k, except that Vv,modis is replaced by Vs,modis.

Vv,modis,x−1,y−1 = ∑m
k=1 fk,x−1,y−1Vv,k,x,y

Vv,modis,x−1,y = ∑m
k=1 fk,x−1,yVv,k,x,y

Vv,modis,x−1,y+1 = ∑m
k=1 fk,x−1,y+1Vv,k,x,y

Vv,modis,x,y−1 = ∑m
k=1 fk,x,y−1Vv,k,x,y

Vv,modis,x,y = ∑m
k=1 fk,x,yVv,k,x,y

Vv,modis,x,y+1 = ∑m
k=1 fk,x,y+1Vv,k,x,y

Vv,modis,x+1,y−1 = ∑m
k=1 fk,x+1,y−1Vv,k,x,y

Vv,modis,x+1,y = ∑m
k=1 fk,x+1,yVv,k,x,y

Vv,modis,x+1,y+1 = ∑m
k=1 fk,x+1,y+1Vv,k,x,y

(3)

2.5. Spectral Normalization

Spectral normalization was applied to Vv and Vs from MODIS to match spectral
settings of Landsat 8, GF 1, and ZY 3. Canopy and soil spectra described in Sec. II.C was
transformed into red and near-infrared (NIR) bands reflectance according to the spectral
response functions of each satellite sensor (Figure 2). Normalized coefficients for Vv and
Vs were obtained based on canopy and soil NDVI, respectively. A simple linear model
(Equation (4)) was performed on Landsat 8 and MODIS, GF 1 and MODIS, and ZY 3 and
MODIS, respectively. 

NDVIveg1,i = av,i·NDVIveg1, modis + bv,i
NDVIveg2,i = av,i·NDVIveg2, modis + bv,i

. . . . . .
NDVIvegj,i = av,i·NDVIvegj, modis + bv,i

. . . . . .
NDVIvegn,i = av,i·NDVIvegn, modis + bv,i

(4)

where, i is for Landsat 8, GF 1, and ZY 3; NDVIvegj,i is the NDVI of i calculated from canopy
spectrum j; NDVIvegj,modis is the NDVI of MODIS calculated from canopy spectrum j; av,i
and bv,i are normalized coefficients for Vv of i. In all 486 canopy spectra were used for
av,i and bv,i estimation; thus, n is 486 in Equation (4). The estimation of the normalized
coefficients for Vs of i (i.e., as,i and bs,i) are similar to Vv, except for changing the spectra to
the soil. When estimating as,i and bs,i, n was 4439, which means 4439 soil spectra. Vv and Vs
for Landsat 8, GF 1, and ZY 3 were calculated by applying the normalized coefficients to
Vv and Vs from MODIS.

2.6. FVC Production

VI-based mixture model (Equation (5)) was used to estimate consistent FVC products
from multiple satellite data. The central latitude/longitude of each pixel for all satellites
were used to match Vv and Vs from MODIS with NDVI from Landsat 8, ZY 3, and GF 1. To
analyze the necessity of MODIS Vv and Vs downscaling for finer-resolution FVC estimation,
FVC (FVC_1 in Figure 3) was estimated with 500-meter and 30-meter endmembers, respec-
tively. To assess uncertainty due to spectral band ranges and spectral response function
differences from different satellite sensors, FVC was also estimated with endmembers
before (FVC_2 in Figure 3) and after (FVC_3 in Figure 3) spectral normalization. The
necessity of MODIS Vv and Vs downscaling, uncertainty of spectral normalization, and
consistency of FVC estimation from different satellites were evaluated by comparing with
field-measured FVC.

FVC =
NDVI − Vs

Vv − Vs
(5)
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3. Results
3.1. Necessity Analysis for Vv and Vs Downscaling

The necessity of downscaling the endmembers, Vv and Vs, from MODIS was analyzed
by comparing the uncertainty of FVC estimation based on the endmembers at 500 m and
30 m, respectively. Figure 4 shows that FVC from Landsat 8 has lower uncertainty with
30 m Vv and Vs (i.e., RMSD for FVC_2 is 0.124) than with 500 m (i.e., RMSD for FVC_1 is
0.134). However, for ZY 3 and GF 1, the uncertainties are not much different. The RMSDs for
FVC_1 and FVC_2 from ZY 3 are 0.117 and 0.119, while for FVC_1 and FVC_2 from GF 1 are
0.094 and 0.102, respectively. The FVC estimation uncertainty of using finer-resolution Vv
and Vs depends on the positioning accuracy of the input data (i.e., finer-resolution NDVI).
Since the land cover dataset (GlobeLand 30) used for downscaling was produced based on
Landsat and HJ satellites [31], the 30 m Vv and Vs have better positioning consistency with
FVC from Landsat 8 than ZY 3 and GF 1. As for consistency (R2), FVC_2 for Landsat 8, ZY
3, and GF 1 all have lower consistency than that of FVC_1. The downscaled endmembers
increase the heterogeneity of the estimated FVC results. FVC_1 within the same 500-meter
resolution pixel only reflects the difference of the 30 m NDVI from Landsat 8, ZY 3, or GF 1.
When downscaled endmembers are used, the FVC_2 differences also include differences in
land cover types. This shows that the downscaled endmembers have different accuracy
under different land cover types, but the overall trend is good (i.e., RMSD decrease).
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3.2. Uncertainty Analysis for Spectral Normalization

The uncertainty of FVC estimation caused by the spectral difference between finer-
resolution NDVI from Landsat 8, ZY 3, and GF 1 and Vv and Vs from MODIS were analyzed
by comparing finer-resolution FVC with field measurement (Table 4). We compared sit-
uations of no spectral normalization (i.e., original in Table 4), only normalized Vs, only
normalized Vv, and normalized both Vv and Vs (i.e., normalized all in Table 4), respectively.
Results show that all Landsat 8, ZY 3, and GF 1 have slight improvement after spectral
normalization (i.e., on average, the RMSD of FVC estimated with normalized Vv and Vs
decreased ~2.6% compared with the FVC estimated with the original Vv and Vs). Since 30
of the 35 field measurements have FVC > 0.5 (Figure 4), which are more sensitive to Vv
during production [32], thus only normalized Vv seems to have the lowest uncertainty for
Landsat 8 and ZY 3. That is to say when using the VI-based mixture model to estimate
consistent finer-resolution FVC products from Landsat 8, ZY 3, and GF 1, a simple spectral
normalization of Vv and Vs can be considered.

Table 4. Uncertainty (RMSD) analysis for spectral normalization by comparing finer-resolution FVC
(FVC_3) with field measurement. Original: no spectral normalization; Normalized Vs: only did
spectral normalization for Vs; Normalized Vv: only did spectral normalization for Vv; Normalized
All: did spectral normalization for both Vv and Vs.

Satellite Original Normalized Vs Normalized Vv Normalized All

Landsat8 OLI 0.124 0.126 0.119 0.121
ZY3 MUX 0.119 0.122 0.114 0.117
GF1 WFV 0.102 0.099 0.101 0.099

3.3. Accuracy Analysis for FVC by Comparing with Traditional VI-Based Linear Mixture Model

The accuracy of FVC estimated with the process of FVC production in this study was
compared with the traditional VI-based linear mixture model. The downscaled MODIS Vv
and Vs after spectral normalization were used for the process of FVC production in this
study (i.e., FVC_3 was used for comparison). Vv and Vs for the traditional VI-based model
were obtained based on the statistic method provided by Zeng et al. [14]. According to
Zeng et al. [14], Vv is the NDVI value at the 75th percentile of the cumulative distribution
histogram for cultivated land, forest, and grassland, and 90th percentile for shrubland and
artificial land, while Vs is the constant value, 0.05, for all land cover types. Considering
that Landsat 8 has the highest recognition among all and is the best data match with
the GlobeLand 30 land cover product, Landsat 8 on 31 July 2015 was selected for this
comparison. Figure 5 shows the FVC map estimated by the proposed method (Figure 5a)
and the traditional VI-based linear mixture model (Figure 5b), respectively. The spatial
distribution of FVC in both Figure 5a,b is very similar, except that the texture of Figure 5a is
clearer. The accuracy of Figure 5a,b was checked by using the field measurements around
31 July 2015. The result (Figure 6) shows that the FVC estimated by the process in this study
has less uncertainty (RMSD = 0.110) than the traditional VI-based model (RMSD = 0.149).
The lower consistency (R2) is also caused by the heterogeneity of downscaled Vv and Vs.
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4. Discussion
4.1. Applicability of the Vv and Vs Downscaling Method

In order to analyze the applicability of the land cover-based Vv and Vs downscaling
method used herein, Figure 7 shows the distribution of pixel heterogeneity in the SNP
area. The number of different land cover types in each 500-meter MODIS pixel was used to
represent the heterogeneity. Herein, most pixels have over two kinds of land cover types
but less than six, which makes Equation (3) solvable.
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Figure 7. The land cover heterogeneity of each 500 m MODIS pixel in the SNP area. The heterogeneity
was described by the number of different 30 m land cover types from GlobeLand 30 in 2010.

After grouping the field plots based on Figure 7, the uncertainties of estimated FVC
from Landsat 8, ZY 3, and GF 1 due to land cover heterogeneity are shown in Figure 8. Here,
finer-resolution FVC estimated with downscaled Vv and Vs (FVC_2) was used (Figure 4b).
The uncertainty was also presented by absolute error (FVC_2—field-measured FVC). The
land cover heterogeneity was grouped into three groups: (1) the number of land cover
types is less than three but equal to or greater than two (2~3); (2) the number of land cover
types is less than four but equal or greater than three (3~4); (3) the number of land cover
types is equal or greater than (>4). In Figure 8, the red median marks for both Landsat 8
and ZY 3 FVC are all above the dark red dash zero line in all three groups, which means
that they both overestimated the FVC. Due to the small image width of ZY 3, areas with
high heterogeneity (>4) are not covered. While for GF 1, both the median and mean are
below zero, which means that it underestimated the FVC. The differences in the uncertainty
of the estimated FVC hardly change with the heterogeneity (Figure 8), which shows that
the surface heterogeneity does not affect the accuracy of the process.
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Figure 8. The error of FVC estimation under different land cover heterogeneity. FVC error is
the difference between estimated FVC and field-measured FVC (FVC_2-field-measured FVC). The
heterogeneity was described by the number of different 30 m land cover types from GlobeLand 30 in
2010. On each box, the central red mark indicates the median, the number at the top indicates the
mean, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not considered outliers, and the outliers are
plotted individually using the red ‘+’ marker symbol. The dark red dash line is the zero line, which
means no error. LT 8 is short for Landsat 8.
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When using a different land cover dataset with a different classification system, the size
of the sliding window may need to be adjusted. Furthermore, when it is hard to match finer-
resolution Vv, Vs, and finer-resolution NDVI accurately, or land cover product matching
the finer-resolution NDVI is not available, particularly in areas that have undergone rapid
land cover changes, the coarse-resolution Vv and Vs which represent the average situation
of a wide range (herein 500 m × 500 m) and have the closest observation time is better for
FVC estimation based on VI-based model. In this study, the positioning accuracy between
Landsat 8 and finer-resolution Vv and Vs was less than one pixel, while ZY 3 and GF 1 were
worse based on visual interpretation (i.e., within 2~3 pixels).

4.2. Spectral Analysis for Multiple Satellite Sensors

The spectral difference among MODIS, Landsat 8, ZY 3, and GF 1 were compared
based on NDVI. Figure 9a shows that the vegetation NDVI (i.e., calculated NDVI based on
vegetation spectra described in Sec. II.C) from Landsat 8 and ZY 3 are very similar, while
vegetation NDVI from GF 1 looks different. Although ZY 3 has a wide band range, ZY
3 also has a high response in the spectral range, whereas Landsat 8 has a high response,
especially in the NIR band (Figure 2); thus, they have very similar vegetation NDVI. As for
soil NDVI (i.e., calculated NDVI based on soil spectra described in Sec. II.C), Landsat 8 soil
line has the most similarity with MODIS (i.e., has the slope 0.996 very close to 1), while the
slopes for ZY 3 and GF 1 are 0.796 and 0.776, respectively (Figure 9b). The influence of the
broadband reflectivity of ZY 3 and GF 1 on NDVI is mostly reflected in the soil NDVI.
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Figure 9. Spectral normalization between finer-resolution satellite NDVI and MODIS NDVI. (a) is for
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Different from previous research [19,20], herein, we applied the spectral normalization
to Vv and Vs from MODIS to make it match the NDVI from Landsat 8, ZY 3, and GF 1,
since Vv and Vs in the VI-based model determine the benchmark and boundary of the FVC
estimation [2]. Table 5 lists the original and normalized Vv and Vs. The average Vv for
Landsat 8 and ZY 3 are larger than MODIS since the slope of normalized coefficients is less
than 1 (Figure 9a). This may be due to the wider high NIR response range of Landsat 8
and ZY 3 than MODIS; the spectral band range (width) with response > 0.9 is 854~875 (21)
nm for Landsat 8, 775~871 (96) nm for ZY 3, and 847~864 (17) nm for MODIS (Figure 2).
Although GF 1 also has a wide spectral band range, the peak of the NIR spectral response
for GF 1 (i.e., 774 nm) is less than others (MODIS: 857 nm, Landsat 8:859 nm, ZY 3: 807 nm;
Figure 2). The normalized Vv for GF 1 is less than MODIS. For Vs, all normalized Vs are
less than MODIS. There is less difference in the change rate and reflectivity of soil spectra
between red and NIR than vegetation. The difference in Vs is mainly caused by the spectral
band range.
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Table 5. Vv and Vs statistic over the field sites in SNP in 2015. Vv and Vs for Landsat 8, ZY 3, and GF
1 are the values after spectral normalization. Ave: average; Std.: standard deviation.

Title 1 MODIS Landsat 8 ZY 3 GF 1

Vv
Ave. 0.879 0.885 0.884 0.869
Std. 0.041 0.039 0.039 0.042

Vs
Ave. 0.151 0.139 0.127 0.130
Std. 0.032 0.032 0.025 0.025

4.3. Prospect of FVC Estimation by Joint Using Multiple Satellite Data

FVC from finer-resolution satellite data, such as Landsat series, sentinel 2, Chinese GF
series, and so on, has great value for dynamic monitoring of crop, city, and hydrological
basins [8,9,33]. However, the missed temporal information can hinder applications of
FVC that require near-daily or multi-day imagery, flood response, vegetation phenology
identification, and forest disturbance detection [8–10,33,34]. Only using the temporally
sparse time-series satellite data is, therefore, unsuitable for global monitoring of rapid
changes and rapid phenology changes. The FVC estimation process proposed in this
study can make full use of multiple finer and even high-resolution satellite data. By joint
using multiple satellite data for FVC estimation, it is expected to improve the spatial and
temporal resolution and applicability of FVC products. The high-frequency and high-
spatial-resolution FVC product is meaningful for climate, ecosystem, land degradation,
and desertification research [1,2].

In this study, GF 1 (RMSD = 0.099) has the lower uncertainty than Landsat 8 (RMSD = 0.121)
and ZY 3 (RMSD = 0.117; Table 4). However, the uncertainty in FVC estimation is influenced
not only by the spatial resolution, spectral band range, and spectral response function
differences but also by observation geometry. Both Landsat 8 and ZY 3 have nadir view
zenith angle (VZA), while GF 1 has a side-swing ability of ≤35◦, so its VZA changes.
Based on a study with the SAIL bidirectional canopy reflectance model coupled with the
PROSPECT leaf optical properties model (PROSAIL), the effects of changes in the VZA
caused by side sway are found to have a greater impact on reflectance and NDVI than
that caused by the spectral response function [19]. Thus, the FVC from GF 1 estimated
by the process herein has less stability than FVC from Landsat 8 and ZY 3. For FVC
estimation, nadir observation is needed, GF 1 observation with large VZA should be
excluded in production.

5. Conclusions

Herein, we provided and analyzed a process of FVC production that is capable of
jointly using multiple satellite data. The process is based on the VI-based mixture model
with the two key endmembers for pure vegetation (Vv) and bare soil (Vs) from MODIS via
the MultiVI method. It is supposed to be able to produce high-frequency and high-temporal
FVC products, since multiple finer-resolution satellite data (i.e., Landsat 8, ZY 3, GF 1)
can be used to achieve high frequency. The inconsistent spatial resolution between Vv
and Vs from MODIS and finer-resolution satellite data and the difference in spectral band
range and spectral response function are analyzed. Results shows that FVC from Landsat
8 (RMSD = 0.121), ZY 3 (RMSD = 0.117), and GF 1 (RMSD = 0.099) has uncertainty ~0.11
with downscaled and spectral normalized Vv and Vs. The necessity of Vv and Vs down-
scaling depends on the positioning accuracy of the finer-resolution satellite data. When
the positioning accuracy is worse (i.e., greater than one pixel herein), the coarse-resolution
Vv and Vs have less uncertainty during FVC estimation. After spectral normalization, the
uncertainty (RMSD) for FVC estimation decreases by ~2.6%.

Therefore, the VI-based mixture model with Vv and Vs from MODIS via MultiVI is
flexible in producing FVC at finer resolution and shows potential for the generation of
high-frequency large-area products.
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