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Abstract: Timely detection of forest wildfires is of great significance to the early prevention and
control of large-scale forest fires. Unmanned Aerial Vehicle(UAV) with cameras has the characteristics
of wide monitoring range and strong flexibility, making it very suitable for early detection of forest
fire. However, the visual angle/distance of UAV in the process of image sampling and the limited
sample size of UAV labeled images limit the accuracy of forest fire recognition based on UAV images.
This paper proposes a FT-ResNet50 model based on transfer learning. The model migrates the ResNet
network trained on an ImageNet dataset and its initialization parameters into the target dataset of
forest fire identification based on UAV images. Combined with the characteristics of the target data
set, Adam and Mish functions are used to fine tune the three convolution blocks of ResNet, and focal
loss function and network structure parameters are added to optimize the ResNet network, to extract
more effectively deep semantic information from fire images. The experimental results show that
compared with baseline models, FT-ResNet50 achieved better accuracy in forest fire identification.
The recognition accuracy of the FT-ResNet50 model was 79.48%; 3.87% higher than ResNet50 and
6.22% higher than VGG16.

Keywords: forest fire recognition; transfer learning; sample augmentation; ResNet50

1. Introduction

Wild forest fires occur frequently all over the world. Forest fires usually have the
characteristics of high risk and strong destructive potential, and pose a great harm to social
and economic development, environmental protection and ecosystems. Different from
other fires, forest fires present specific damage modes due to their environment. In the
open environment and with sufficient oxygen, fires are more likely to occur and spread in
forests, causing serious personal safety risks and economic losses. Early fire detection is
the only effective way to reduce the harm of forest fires [1]. Therefore, research on forest
fire identification and early warning has attracted extensive attention.

At present, forest fire detection is mainly realized through monitoring towers, aviation
and satellite systems, optical sensors, digital cameras and wireless sensor networks [2,3].
However, forest fire detection methods based on monitoring towers largely depend on the
experience of observers, and it is difficult for the monitoring range to cover a large area of
wild forest. Satellite remote sensing is very effective for detecting large-scale forest fires, but
it is limited by the difficulty in effectively identifying early regional fires [4,5]. Fire detection
systems based on sensor networks have good identification performance in indoor spaces,
but are difficult to install and maintain in wild forest areas due to high hardware costs [6,7].
In addition, due to the limitations of sensor materials, interference from the environment
may lead to false positives. At the same time, wireless sensor networks are unable to
provide important visual information to help firefighters track the fire scene. In recent years,
with the development of machine vision technology, researchers have proposed various fire
detection models based on image processing [8,9]. However, image processing methods
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based on fixed cameras are limited by the field of view, which leads to poor monitoring
ability for large scenes. In addition, undulating terrain in forests may block the scenes
of some fires. Different from the above forest fire detection methods, unmanned aerial
vehicles (UAVs) equipped with cameras can solve the problems of fixed position cameras,
can cover a larger monitoring range, and are not limited by the installation angle [10,11].
Therefore, UAV images are especially suitable for early recognition of forest fire.

Many countries have carried out relevant research and practical activities for forest
fire monitoring and identification based on UAVs [12]. Fire identification technology based
on UAV images is usually developed based on the color, motion and geometric features
of the images [13]. Jiao et al. proposed a forest fire detection algorithm using YOLOv3
to extract color and shape features from aerial images taken by unmanned aircraft [14].
Anh et al. proposed a method based on RGB color space to distinguish fire pixels and
background [15]. Yuan et al. used median filter, color space conversion, Otsu threshold
segmentation, morphological operations and blob counter to detect and track potential
fires in sequence [16].

With the successful application of deep learning technology in the fields of intelligent
transportation systems [17], indoor target positioning [18], and intelligent agriculture [19],
researchers have also introduced deep learning technology into the field of forest fire
detection to improve the accuracy of forest fire identification by extracting deep semantic
features from images. Hu et al. proposed the MVMNet model to improve the accuracy
and effectiveness of forest fire smoke target detection [20]. Guan et al. proposed a FireCol-
orNet model based on color attention to extract color feature information from forest fire
images [21]. Li et al. proposed an adversarial fusion network to extract abstract features for
forest fire smoke detection [22]. Fan et al. proposed YOLOv4-Light, a lightweight network
structure for forest fire detection. YOLOv4-Light uses MobileNet to replace the backbone
feature extraction network of YOLOv4, and deep separable convolution to replace the
standard convolution of PANet [23]. Federico et al. developed a deep learning model
for forest fire detection, obtained from transfer-learning of pre-trained RetinaNet, and
established a Faster R-CNN model for object detection [24]. However, the images captured
by UAVs were overhead images. In the early detection of forest fires, the forest fire target is
very small, and the color and shape characteristics are not obvious. Therefore, the above
fire detection models based on color and shape features cannot be directly applied to UAV
images. This brings great challenges for research into forest fire early recognition based
on UAV images. In addition the lack of sufficient labeled UAV fire image samples directly
affects the accuracy of forest fire recognition based on UAV images. At the same time, the
lack of sufficient fire annotation image samples makes it difficult effectively to introduce
deep learning methods into UAV image recognition, because these methods require large
quantities of high-quality annotation data to obtain satisfactory recognition results.

In order to extract deeper abstract features from images, it is necessary to construct a
deep-level network model, and the training of a deep neural network is a time-consuming
and complex process. In addition, the training of a deep model needs a large number of
labeled samples. This has become the bottleneck in the task of forest fire identification
based on UAV images, and the emergence of transfer learning technology provides an
opportunity to solve this problem. Transfer learning [25,26] refers to transferring the trained
model to a new task, and realizing the modeling of the new task by fine-tuning the model
parameters. When there are insufficient labeled samples, transfer learning can solve the
problem of overfitting training caused by too few labeled samples.

In this paper, the idea of transfer learning is introduced into the research of forest fire
recognition based on UAV images, and a new forest fire recognition model is proposed:
FT-ResNet50, based on transfer learning. The Ft-ResNet50 model is based on the transfer
learning method, and ResNet50 pre-trained on the ImageNet dataset is used as the backbone
framework for forest fire recognition. The pre-trained weights are used as initialization
parameters for the backbone network, and the original network is improved by optimizing
network structure parameters. Finally, the optimized network is applied to the data-
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enhanced UAV forest fire dataset realize the effective identification of forest fire. The main
contributions of this paper are:

(1) The FT-ResNet50 model adopted transfer learning to solve the problem of insuffi-
cient labeled samples of UAV forest fire images. This model can also realize high-
performance forest fire recognition when UAV labeled samples are limited in size and
uneven in sample distribution.

(2) The FT-ResNet50 selected ResNet50 as the basic network to realize transfer learning
through experimental results. By fixing the shallow layers of ResNet50 and fine
tuning its deep layers, we obtained the optimal configuration of ResNet50 suitable for
the target dataset. The FT-ResNet50 model could successfully extract deep semantic
features from UAV images, thus improving the accuracy of the model for forest
fire recognition.

(3) The FT-ResNet50 model combined the mixup-based sample enhancement method
with the traditional sample enhancement method to expand the sample size of UAV
images, so as to enhance the generalization ability of the model.

The structure of this paper is organized as follows. In Section 2, the dataset used in
the experiments is presented, and the structure of the FT-ResNet50 model is discussed in
detail. Section 3 introduces the configuration of the experiment, and experimentally verifies
the influence on forest fire identification of configuration parameters such as network
depth, loss function, activation function, and optimizer, to explain the framework of the
FT-ResNet50 model. In Section 4, the experimental results are discussed in depth and
analyzed; Section 5 summarizes the full work.

2. Materials and Methods
2.1. Dataset

The FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) dataset is
a dataset of fire images collected by UAV in an Arizona pine forest [27]. The dataset used
different UAVs and cameras to collect image samples of forest fires. Table 1 describes the
technical specifications of UAVs and cameras used in the FLAME dataset, and the resolution
of the collected samples. The dataset includes video recording and heat maps taken by
infrared camera. Each frame of the video is labeled as an image. In this paper, 31501,
7874 and 8617 image samples were extracted from the FLAME data set as the training set,
verification set and test set of this experiment, respectively. Figure 1 shows some examples
of typical forest fire images in the FLAME dataset.

Table 1. Technical specifications of the UAVs and cameras used in the FLAME dataset and the
resolution of the samples acquired.

UAVs Cameras Resolution

Phantom 3 Professional/
Matrice 200

FLIR camera 640 × 512
Zenmuse camera 1280 × 720
Phantom camera 3480 × 2160

Forests 2022, 13, x FOR PEER REVIEW 4 of 21 
 

 

 

 

 

 
Figure 1. Some image samples of forest fires in the FLAME dataset. 

2.2. Mixup 
In order to give the forest fire recognition model better generalization ability, this 

paper presents an expansion strategy for the forest fire image training samples. By in-
creasing the number of training samples, the distribution of training samples can be im-
proved and the robustness of the model to noise can be improved. 

Zhang et al. [28] proposed a sample enhancement method based on mixup. This 
method is a sample expansion algorithm for computer vision, which can expand the size 
of a dataset by mixing different types of images. Two image samples are randomly se-
lected from the training dataset, and the pixel values and labels of the two image samples 
are weighted according to a certain weight. Specifically, the mixup builds virtual training 
samples in the following ways: 

(1 )i jx x xλ λ= + −  (1)

(1 )i jy y yλ λ= + −  (2)

( , ) (0, ), (0, )Beta α β α β∈ ∞ ∈ ∞  
(3)

Where ( , )i ix y  and ( , )j jx y  are the two random examples extracted from training sam-

ple data, and [0,1]λ ∈ . λ  follows a Beta distribution, namely ( , )Betaλ α α . This 
mixup-based data enhancement method has the advantages of processing decision 
boundary blurring, providing smoother predictions, and enhancing the prediction ability 
of the model beyond the scope of training dataset. Figure 2 shows the process of mixup-
based image sample augmentation. The experiment shows that when λ   = 0.5, α β= , the 
best data-fusion effect is achieved. 

 

Image A
(3840×2160)

Image B
(3840×2160)

Patch A
(254×254)

Patch B
(254×254)

Mixing Mixing Patch
(254×254)

Figure 1. Some image samples of forest fires in the FLAME dataset.
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2.2. Mixup

In order to give the forest fire recognition model better generalization ability, this paper
presents an expansion strategy for the forest fire image training samples. By increasing the
number of training samples, the distribution of training samples can be improved and the
robustness of the model to noise can be improved.

Zhang et al. [28] proposed a sample enhancement method based on mixup. This
method is a sample expansion algorithm for computer vision, which can expand the size of
a dataset by mixing different types of images. Two image samples are randomly selected
from the training dataset, and the pixel values and labels of the two image samples are
weighted according to a certain weight. Specifically, the mixup builds virtual training
samples in the following ways:

x̃ = λxi + (1− λ)xj (1)

ỹ = λyi + (1− λ)yj (2)

Beta(α, β) α ∈ (0, ∞), β ∈ (0, ∞) (3)

where (xi, yi) and (xj, yj) are the two random examples extracted from training sample
data, and λ ∈ [0, 1]. λ follows a Beta distribution, namely λ ∼ Beta(α, α). This mixup-based
data enhancement method has the advantages of processing decision boundary blurring,
providing smoother predictions, and enhancing the prediction ability of the model beyond
the scope of training dataset. Figure 2 shows the process of mixup-based image sample
augmentation. The experiment shows that when λ = 0.5, α = β, the best data-fusion effect
is achieved.
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2.3. Residual Network (ResNet-50)

Following the success of VGGNet architectures [29], researchers believe that deeper
models outperform shallower models. However, as the number of model layers increases,
the complexity and training difficulty of the model also increases, and the accuracy de-
creases. In 2016, Kaiming He and colleagues at Microsoft Research solved the problem of
gradient disappearance and gradient explosion by building ResNet, making feasible deeper
network training. They introduced a new learning framework to simplify the training of
deeper networks [30], and called the framework residual learning; accordingly, the model
using this framework is called residual network (ResNet). ResNet allows original input
information to be directly connected to subsequent neurons, and takes as its goal minimiza-
tion of the difference (residual) between input and output. Specifically, the original input to
the network is set to x and the final desired output is set to H(x). When the original input
x is passed directly to the tail of the network as the initial result, the objective to be learned
in this case becomes F(x) = H(x)− x. Figure 3 illustrates the principle of residual learning
in ResNet.
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This paper is devoted to extracting deeper semantic information from forest fire
images, beyond color and structural features, so the ResNet-50 network was selected as
the backbone network of our model. Table 2 lists the architecture of ResNet-50. ResNet-50
contains 49 convolution layers, one of which is 3 × 3, an average pool layer, and a fully
connected layer. The classical ResNet-50 model involves 25.56 million parameters, of which
the rectification nonlinearity (ReLU) activation function and batch normalization (BN)
function are applied to the back of all convolution layers in the “Bottle-neck” block, and
the softmax function is applied to the full connection layer.

Table 2. Network configuration for ResNet-50.

Layer Name Output Size 50-Layer

Conv 1 112× 112 7× 7, 64, stride 2

Conv 2_x 56× 56

3× 3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv 3_x 28× 28

1× 1, 128
3× 3, 128
1× 1, 512

× 4

Conv 4_x 14× 14

 1× 1, 256
3× 3, 256

1× 1, 1024

× 6

Conv 5_x 7× 7

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

1× 1 Average pool, 1000-d fc, softmax

FLOPs 3.8× 109

2.4. Transfer Learning

The idea of transfer learning was introduced to solve the problem of limited sample
size of UAV forest fire images. In this study, the ResNet50 network trained on ImageNet
dataset [31] was migrated to the experimental dataset of UAV forest fires. The ImageNet
dataset contains about 1.2 million images in 1000 categories. Using the network model
pre-trained on such a large dataset, it can be effectively migrated to classification tasks of
various images [32]. The ResNet50 network was trained on the Imagenet dataset, taken as
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the preliminary training model, and the optimal configuration of the ResNet50 network
was realized by fixing the convolution block of shallow feature extraction, fine-tuning the
convolution block of deep feature extraction, and adjusting the Mish and Adam parameters,
to complete feature extraction and recognition based on UAV forest fire images.

2.5. Adam Optimizer

In this study, an Adam optimizer was used to accelerate the convergence of the
FT-ResNet50 model. Adam is a first-order gradient-based stochastic objective function
optimization algorithm [33]. Adam combines the advantages of the AdaGrad [34] and
RMSProp [35] algorithms; the former is used for sparse gradient problems, and the latter is
used for nonlinear and unfixed optimization objective problems. Adam has the advantages
of easy implementation, high computing efficiency and low memory requirements [36]. Its
gradient diagonal scaling is invariant, so it is suitable for solving problems with large-scale
data or parameters. For different parameters, Adam can adaptively adjust the learning
rate and iteratively update the weights of the neural network according to the training
data [37,38]. The calculation process and pseudocode of the Adam algorithm are shown
in Algorithm 1.

Algorithm 1. The calculation process and pseudocode of Adam algorithm.

g2
t indicates the elementwise square (gt�gt). Good default settings for the tested machine

learning problems are α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8. All operations on vectors are
element-wise. With βt

1 and βt
2 we denote β1 and β2 to the power t:

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f (θ): Stochastic objective function with parameters θ

Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t + 1
gt ← ∇θ ft(θt−1) (Get gradient w.r.t stochastic objective at timestep t)
mt ← β1·mt−1 + (1− β1)·gt (Update biased first moment estimate)
vt ← β2·vt−1 + (1− β2)·g2

t (Update biased second raw moment estimate)
mbt ← mt/

(
1− βt

1
)

(Compute bias-corrected first moment estimate)
vbt ← vt/

(
1− βt

2
)

(Compute bias-corrected second raw moment estimate)
θt ← θt−1 − a·mbt/(

√
vbt + ε) (Update parameters)

end while
return θt (Resulting parameters)

2.6. Focal Loss

Focal Loss function [39] is mainly used to solve problems such as unbalanced sample
number and sample difficulty. When training the FT-ResNet50 model, Focal Loss was used
as a loss function to updateω and b. The Focal Loss function is defined as follows:

FL(pt) = −αt(1− pt)
γ log(pt) (4)

pt reflects the proximity to ground truth. The larger pt is, the closer it is to the ground
truth, i.e., the more accurate the classification. γ is the adjustable factor. Focal Loss’s
modulation factor is (1− pt)

γ; for the accurately classified sample pt → 1 , modulating
factor approaches 0; for the inaccurately classified sample 1− pt → 1 , modulating factor
approaches 1. Compared with traditional cross entropy loss, Focal Loss does not change
for samples with inaccurate classification, and for samples with accurate classification,
loss decreases. On the whole, it is equivalent to increasing the weight of the inaccurately
classified samples in the loss function.
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pt also reflects the difficulty of classification. The larger pt, the higher the confidence
of classification, and the easier it is to divide the sample. The smaller pt is, the lower the
confidence of classification, and the more difficult it is to distinguish the sample. Therefore,
Focal Loss increases the weight of difficult samples in the loss function, making the loss
function tend towards the difficult samples, which helps to improve the accuracy of difficult
samples and improve the learning ability of the network for the current task.

2.7. Mish

Mish function [40] is a novel self-regularized non-monotonic activation function. Its
shape and properties are similar to those of Swish. It plays an important role in the
performance and training dynamics of neural networks. The Mish activation function can
be expressed as follows:

Mish(x) = xtanh(log(1 + ex)) (5)

Compared with the ReLU function, which is the common activation function in the
neural network, Mish is differentiable anywhere in its domain, so there is no hard turning
point at zero. Figure 4 shows the curve of the Mish function.
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This section introduces the FT-ResNet50 model in detail. Figure 5 shows the architec-
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FLAME-Cls is the extended data set after sample enhancement. The FT-ResNet50
model uses five-level residual blocks for feature extraction. The first two residual blocks
are mainly used to extract the edge, texture and color features of the image. Because the
extraction process of these features is highly universal for all types of images, the structure
of the first two-stage residual block is the same as that of ResNet50 in the FT-ResNet50
model. The next three-level residual block mainly extracts the abstract semantic features
of the image, which is the key to improving the accuracy of forest fire recognition. The
FT-ResNet50 model adjusts the last three residual blocks of the ResNet50 network, and
adds the Adam random gradient descent algorithm to residual blocks 3, 4 and 5 to avoid
training falling into local optimization, and to ensure that the model can obtain more
accurate recognition results. The feature map output from the last convolution layer of the
FT-ResNet50 model is converted into a 2048-dimensional vector through the global average
pool, and the forest fire identification results are output in the form of probability through
the SoftMax function.

Meanwhile, in the FT-ResNet50 model, the original activation function ReLu was
replaced by the Mish function to improve the gradient vanishing problem in model training.
In addition, the Focal Loss s was employed to replace the traditional binary cross-entropy
loss. Focal Loss pays more attention to the training of difficult samples, which is more
helpful for improving the learning ability of the model.

3. Results
3.1. Experiment Setup
3.1.1. Experimental Condition Configuration

Table 3 lists the experimental conditions. In order to verify the performance of the
FT-ResNet50 model based on the enhanced FLAME-Cls dataset, this study compared the
recognition performance of the FT-ResNet50 model with VGG, Inception, and ResNet.
Table 4 shows the setting of super parameters of the FT-ResNet50 model.
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Table 3. Experimental condition configuration.

Experimental Enviroment Details

Programming language Python 3.8
Operating system Ubuntu 18.04

Deep learning framework PyTorch 1.7.0
GPU type GeForce RTX 2080Ti
CPU type Intel(R) Xeon(R) Silver 4110

Table 4. Hyperparameter settings.

Hyperparameters Values

Batch size 32
Training epoch 40

Initial learning rate 0.001
Optimization algorithm Adam

Activation function Mish

3.1.2. Evaluation Indicators

In order to evaluate comprehensively the effect of the forest fire identification method
proposed in this paper, we used accuracy (Acc), precision (Pre), recall (Rec), specificity (Spe),
and F1 score as evaluation indicators shown in Equations (6)–(10). True negative (TN),
called the true negative rate, indicates the number of samples among the negative samples
that are actually predicted to be negative. False positive (FP), called the false positive rate,
indicates the number of samples among the negative samples that are actually predicted
to be positive. False negative (FN), called the false negative rate, indicates the number
of samples among the positive samples that are actually predicted to be negative. True
positive (TP), called the true positive rate, indicates the number of samples among the
positive samples that are actually predicted to be positive.

Acc =
TP + TN

TP + FN + FP + TN
(6)

Pre =
TP

TP + FP
(7)

Rec =
TP

TP + FN
(8)

Spe =
TN

TN + FP
(9)

F1 =
2 ∗ Pre ∗ Rec

Pre + Rec
(10)

3.2. Experimental Results
3.2.1. Sample Augmentation

In this study, the traditional sample augmentation method was combined with the
mixup-based sample augmentation method to expand the samples of the FLAME dataset,
and a new forest fire dataset, FLAME-Cls, was obtained after the sample augmentation.
Figures 6 and 7 show the expansion effects of the traditional sample augmentation method
and the mixup-based sample augmentation method, respectively.
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Using ResNet50 as the forest fire identification model (the parameters in each con-
volutional block determined by the ImageNet dataset), the effects of different sample
augmentation methods were verified, and the results are shown in Table 5. As an online
augmentation strategy (as the training process proceeds), mixup does not change the
number of training samples in each round. The traditional augmentation scheme (offline
expansion, supplementing the number of samples in the basic training set) can improve
identification accuracy to a certain extent (73.66% to 75.18%) but also brings additional
training costs. We finally adopted a combination of two augmentation strategies and
achieved a level of performance improvement, namely 77.47% recognition accuracy.

Table 5. Influence of sample augmentation strategy on forest fire identification accuracy.

Augmentation Strategy Number of Samples Accuracy (%)

Original dataset 31,501 73.66
Traditional sample

augmentation 50,000 75.18

Mixup-based sample
augmentation 50,000 76.24

Proposed method 50,000 77.47

3.2.2. Forest Fire Identification Results

Table 6 shows the respective recognition accuracy and loss for the proposed method
on the training set, validation set and test set. It can be seen that it achieved relatively
good results with both the training set and the validation set, while the performance for the
test set was relatively lower, reflecting a large domain offset between the test set data and
the training and validation data, improving the generalization requirements of the model
to a certain extent. Domain shift can be understood as the difference in data distribution
between two sample sets. Generalization refers to how well a model has been tested on
different distributions. For example, there is a large difference between training samples
and test samples, so a robust model is needed to generalize samples that have not been
seen before.

Table 6. Identification accuracy and loss for different datasets.

Dataset Loss Function Value Accuracy (%)

Training set 0.0612 97.14
Validation set 0.0398 97.71

Testing set 0.6823 79.48

The convergence curves of the loss function and the recognition accuracy with the
number of iterations are shown in Figures 8 and 9. It can be seen that the performance of
the proposed network in the validation set also improved, reflecting its relatively reliable
generalization performance.
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3.2.3. Influence of Different Backbone Networks on Recognition Accuracy

This research used VGG, Inception, and ResNet50 as the backbone network to test
forest fire recognition rates. As shown in Table 7, compared with the other two structures,
choosing ResNet50 with residual structure as the backbone network can to a certain extent
alleviate the problem of gradient disappearance, which is beneficial for model training.
ResNet50 replaces the fully connected layer in VGG with global average pooling in the final
output, which greatly reduces the network parameters and the risk of overfitting. Figure 10
shows the comparison of confusion matrices for three different backbone network structures.
It can be seen that ResNet50 achieved more accurate predictions than other methods.

Table 7. Recognition accuracy and loss for different datasets.

Network Loss Function Accuracy (%) Parameter Quantity

VGG
BCE loss 72.12

138 MFocal loss 73.26

Inception BCE loss 74.87
23.2 MFocal loss 76.64

ResNet
BCE loss 75.91

25.5 MFocal loss 77.47
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3.2.4. Influence of ResNet Network Depth on Identification Accuracy

This research explored the impact of network depth on model performance from the
aspects of recognition accuracy and inference time. The experimental results are shown
in Table 8. The backbone network used in this experiment was ResNet, and four different
configuration structures were tested here, which are respectively represented as ResNet18,
ResNet34, ResNet50, and ResNet101. Among these, ResNet18 and ResNet34 use the
BasicBlock model structure, and the latter two use another model structure called Bottleneck.
For deeper convolutional networks, the Bottleneck structure can reduce parameters to a
certain extent and can prevent overfitting. Observing the data, it can be concluded that
as the number of network layers deepens, the inference time also increases, that is, the
efficiency of image recognition becomes lower. Although ResNet101 achieved the highest
recognition accuracy, the inference speed was 1/3 slower than the second-ranked ReNet50.
In summary, it is important to choose the most appropriate network depth for a specific
task. In this study, after balancing model complexity, training cost, test accuracy and other
factors, ResNet50 was finally selected as the backbone network for feature extraction.
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Table 8. Effects of different ResNet network depths on forest fire recognition performance.

Network Accuracy (%) Precision Sensitivity Specificity F1 Score
Inference

Speed
(FPS)

ResNet18 75.24 79.21 79.27 69.28 79.24 22.7
ResNet34 76.13 79.78 80.32 69.94 80.49 19.6
ResNet50 77.47 80.57 81.99 70.80 81.27 18.1

ResNet101 77.62 80.79 82.13 71.18 81.45 12.3

To further explore the impact of training methods on recognition accuracy, this study
used different activation functions and optimizers for the testing, and the results are shown
in Table 9. The experimental results show that the best recognition effect was provided by
the combination of Mish and Adam. A schematic diagram of activation functions and the
convergence curves for different optimizers are shown in Figures 11 and 12, respectively.

Table 9. Effects of different activation functions and optimizers on test accuracy.

Types Schemes Accuracy (%) Rank

Activation functions

tanh 73.22 5
Sigmoid 73.01 6

ReLU 75.36 4
LReLU 75.98 3
Mish 76.82 1
Swish 76.23 2

Optimizers

SGD 75.12 5
Momentum 76.54 3
RMSprop 76.69 2

Adam 77.28 1
Adagrad 75.31 4
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3.2.5. The Effect of Transfer Learning Strategy on Identification Accuracy

This paper explores the impact of transfer learning strategies on model testing accuracy
under different network architectures. ResNet50 and VGG16 networks were used as
backbone networks to extract features, both composed of five convolution blocks, denoted
as ConvBlock1–ConvBlock5. The transfer learning strategy used the weight parameters of
the original network model trained on the ImageNet dataset as the initialization parameters
for the corresponding part of the FT-ResNet50 model proposed in this paper, and selected
fixed and fine-tuned parameters on this basis to achieve the effect of accelerating network
convergence. To this end, the authors designed six transfer learning schemes for each
network model, as shown in Table 10.

Table 10. The impact of different transfer learning strategies on test accuracy.

Types Schemes Fixed Fine-Tune Accuracy (%)

ResNet50

0 (baseline) ConvBlock1-5 no Fine-tune 75.61
1 ConvBlock1-4 ConvBlock5 76.98
2 ConvBlock1-3 ConvBlock4-5 77.79
3 ConvBlock1-2 ConvBlock3-5 79.48
4 ConvBlock1 ConvBlock2-5 77.42
5 no fixed ConvBlock1-5 78.23

VGG16

6 (baseline) ConvBlock1-5 no Fine-tune 66.01
7 ConvBlock1-4 ConvBlock5 68.14
8 ConvBlock1-3 ConvBlock4-5 73.26
9 ConvBlock1-2 ConvBlock3-5 72.97
10 ConvBlock1 ConvBlock2-5 70.53
11 no fixed ConvBlock1-5 72.69

In order to explore the method and process of extracting the features of a given input
image by the model proposed in this paper, the features captured by the model backbone
network ResNet50 were visualized as shown in Figure 13. It can be seen that ResNet50
can extract richer features. The combination of low-level edge information and high-level
semantic information more specifically guides the process of feature acquisition in the
target-related regions, thereby improving the accuracy of target classification.
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Figure 14 shows the visualization effect for 64 convolution kernels of ConvBlock1 in
the ResNet50 network. It can be observed that different convolution kernels can obtain
different image features, which ensures that the FT-ResNet50 model has strong feature
acquisition ability.
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4. Discussion

The experimental results in Table 5 show that the proposed sample expansion strat-
egy had a positive impact on improving the accuracy of forest fire identification. The
expansion of the sample size made the training data more diversified, which can reduce
the field transfer of training and testing to a certain extent. Therefore, compared with
the dataset before the sample expansion, the expanded dataset achieved higher forest fire
recognition accuracy.

The choice of loss function also affects the accuracy of forest fire identification. The
experimental results in Tables 6 and 7 show that, compared with the traditional cross-
entropy loss function, the Focus Loss function focused more on the training of difficult
samples, which helped to improve the learning ability of the network.

The experimental results shown in Table 8 indicate that different depths of the ResNet
network affect the recognition accuracy and operational performance of the model. With the
deepening of network layers, although the accuracy of forest fire identification is improved,
the time consumption of operations also increases. After weighing the model complexity,
training cost, test accuracy and other factors, this study finally selected ResNet 50 as the
backbone network for feature extraction.

The selection of activation function and optimizer affects forest fire recognition accu-
racy. The experimental results shown in Table 9 show that better recognition results can
be obtained by fine-tuning the convolution block with Mish as the activation function and
Adam as the optimizer. This is because the Mish activation function can effectively improve
the gradient loss in network training. The Adam optimizer can avoid the model falling into
local optimization during training.

In this study, six transfer learning schemes were designed for each network model,
given in the second column of Table 10. Specifically, “Scheme 0” represents the base scheme
baseline in which the pre-training weights of all five convolutional blocks were fixed, and
the network did not require fine-tuning during the training; “Scheme 1” to “Scheme 4”
indicate the fine-tuning scheme from deep to shallow layers respectively, which gradually
unlocked the fine-tuning operation of the deep layer network; “Scheme 5” indicates the fine-
tuning of all the pre-training parameters. Observing the results in Table 10, we can see that
the ReNet50 network achieved the highest recognition accuracy by fixing the first two and
fine-tuning the last three ConvBlocks, while the VGG16 network achieved a higher detection
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result by fixing the first three and fine-tuning the last two ConvBlocks. The accuracy of
“Scheme 1” and of “Scheme 7”, which only fine-tuned the last convolutional block, is lower
than that of schemes that fine-tuned the last two convolutional blocks; e.g., in the ResNet
architecture “Scheme 1” was reduced by 0.81 percentage points compared with “Scheme 2”,
and by 2.5 percentage points compared with “Scheme 3”. This is because features acquired
by deeper networks are often abstract and have strong category correlation, therefore, fixed
parameter information inhibits to a certain extent the ability of the network to capture
discriminant information for the current task. In other words, the images in the ImageNet
dataset tend to depict natural landscapes, animals, plants, etc., with low applicability after
training on these images for transferring high-level semantic information obtained by the
backbone network to the current forest fire image task. Low-level information such as edge,
texture, color, etc., is often universal, and no matter the type of image it will cover similar
features to a certain extent. Transferring and fixing trained shallow network weights to
the proposed model will help improve the network convergence performance and prevent
the deterioration of training. However, the parameters before which convolution blocks
are to be fixed need specific analysis for different problems, so it is difficult to identify
from the theoretical level the specific level most beneficial to the migration effect, and
the situation is different for different models. For example, for the current forest fire
image recognition problem, it is better to use ResNet50 to fix the first two convolution
blocks, and VGG16 to fix the first three convolution blocks. “Scheme 5” and “Scheme 11”
provide a training scheme for fine-tuning all migration parameters. It can be seen from the
results that this training method achieved relatively good performance. “Scheme 5” and
“Scheme 11” are poor than “Scheme 3” and “Scheme 8” because fine tune all parameters
are prone to large fluctuations, especially in the initial stage, the training of the layered
transmission characteristics influence each other, more “error” may occur between to
optimize parameters of cumulative phenomenon, resulting in instability in the process of
training. Finally, we selected “Scheme 3” as the fine-tuning method for the transfer learning
strategy in the subsequent experimental process.

In order to verify that the FT-ResNet50 model can effectively extract image features,
this paper visually displays the features captured by FT-ResNet50. The results in Figure 13
show that with the increase of network depth, the extracted feature level also increases.
Low-level features initially extracted from Convblock1 and Convblock2, such as edge,
texture and color, are transformed in Convblock3 and subsequent convolution blocks into
high-level abstract features with stronger task relevance. The results shown in Figure 14
show that different convolution kernels also help to obtain different features of the image.
The more types of convolution kernels, the better the feature extraction ability. Therefore,
the FT-ResNet50 model proposed in this paper can extract more abundant features from
fire images, and can better improve the accuracy of forest fire classification by combining
low-level edge information with high-level semantic information.

5. Conclusions

Forest fire recognition based on image processing is an important method to assist
with the early detection of forest fire. Deep learning is an important research direction for
forest fire identification. Taking the improved ResNet50 as the backbone framework, this
paper proposes a forest fire identification model, FT-ResNet50. FT-ResNet50 combines the
mixup-based augmentation method with the traditional sample augmentation method to
increase the number of training samples, thereby improving the generalization ability of the
model. Considering the effects on the accuracy of forest fire identification of loss function,
backbone network, network depth and transfer learning strategy, this study determined
the optimal configuration of the model. At the same time, this paper also discusses the
influence on forest fire recognition of different block parameter convolution adjustments.
The experimental results show that, based on UAV images with limited labeled samples,
the FT-ResNet50 model proposed in this paper can realize high-performance forest fire
recognition tasks.
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