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Abstract: Within-stem variation in the mechanical properties of Portuguese oak wood was analysed,
considering different locations (three sites in the centre and north of Portugal—Site 1, Site 2, Site 3)
and positions within the tree (two distances to pith—P1, P2). The study comprised compression
parallel to the grain, bending strength and modulus of elasticity. Ultimately, this study aims at
assuring the building of a body of knowledge on the technological quality and processing options
for this species. The results showed for one provenance, Site 1, a significant effect of the distance
to pith in the mechanical properties, which can be related to a different soil composition. For this
provenance, a decrease in the compression and bending strength was verified from pith to bark.
For the other provenances (Site 2 and Site 3), no effect was noticed. The overall behaviour showed
noticeable correlations between the mechanical properties and density.

Keywords: mechanical properties; modulus of elasticity; wood density; variation of properties;
Quercus faginea

1. Introduction

Oak woods (Quercus) are considered to be valuable timber, generally appreciated
as wooden species since they are associated with an image of beauty and mechanical
resistance, and their properties determined for structural and non-structural end uses; they
are one of the most important and widely used sources of structural timber in Europe [1–3].

Studies focused on the relationships between the mechanical properties of English oak
(Q. robur) and the effects of different features for predicting the strength and elasticity in
beams for construction concluded that the presence of sapwood did not exhibit significant
influence on strength performance [4,5]. Merela et al., 2013 rejected the hypothesis that
the properties of red oak (Q. cerris) are inferior to those of white oaks [6]. Properties like
density, bending strength, compressive strength and Brinell hardness were assessed for
white (Q. petraea and Q. robur) and red oaks (Q. cerris). In all cases, the properties of Q. cerris
had higher values than those of white oaks, and red oak sapwood had the highest values.
Green et al. demonstrated that relationships between mechanical property values for
structural lumber produced from northern oak are similar to those found for softwood
species [7]. Babiak et al. studied the differences in modulus of elasticity (MOE) of the
three-and four-point bending of oak wood and obtained an average MOE = 10,431 Nmm−2

for samples with different moisture contents [8].
Knapic et al. studied the qualities of cork oak (Q. suber L.) wood for flooring, namely

its dimensional stability, swelling, hardness, and wear resistance, and concluded that cork
oak properties present a similar performance to other oak woods currently used for floor
coverings [9]. Knapic et al. indicated that Q. suber presents a very dense and homogeneous
wood, alongside with a reduced variability in the density components within the tree along
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the stem and a small intra-ring variability regarding differences between earlywood and
latewood, as well as between minimum and maximum density values [10,11]. Although
density could be used as an indirect reference for defining wood quality, the prediction of
possible end uses is always dependent upon the determination of the strength and stiffness
as well as its durability. Xu showed that oak wood (Q. rubra) MOE increases linearly with
density [12]. An increase in density increases values for modulus of elasticity (MOE) and
bending strength.

Kránitz et al. studied MOE values of recent and old European oak; however, due to
different densities, the results cannot be directly related to aging. A study focusing on aged
wood concluded that an aging effect on the mechanical properties could not be ascertained
due to a potential influence of the annual ring structure on the elastic behaviour [13].
Analysing the mechanical and physical properties of common oak wood (Q. robur) under
the influence of heat pressure steaming (HPS) showed that the analysed modification
process does not affect the elastic properties, although a decrease in bending and tensile
strength was observed [14].

Jiang et al. determined the effects of temperature on the compressive strength of
Mongolian oak (Q. mongolica) and concluded that the relationship between compression
strength (fc0) and temperature could be described by a polynomial model [15].

Bi et al. showed that the transverse vibration method, a non-destructive test (NDT),
presents higher correlation between the dynamic elastic modulus (MOEDynamic) and static
elastic modulus (MOEstatic) when compared with other methods [16]. Hu et al. studied the
influence of the height in elastic moduli (EL, ER, and ET) and shear moduli (GL, GR, and
GT) and concluded that these parameters increased with height for the same cross-sectional
area but decreased with increasing cross-sectional area with the same height [17]. Hu et al.
concluded, through transverse vibration method, that the effect of the wood species on
MOE was significant [18].

There is at present a renewed interest in valuing autochthonous species for reasons of
sustainability, biodiversity and conservation as well as the reduction of the risk of forest
fires. Moreover, the urgent reshape of the rural landscape has led to a more urgent need
to value all our autochthonous trees, rethinking silvicultural plans and planning added
valued products, with the underlying thought of adding value to the forest owner and the
value chain while addressing the challenges of maritime pine issues with diseases. Among
the autochthonous species, the Portuguese oak (Q. faginea Lam.) is considered a potential
source of high-quality wood products [19]. The last Portuguese National Forest Inventory
(IFN) tallied deciduous oak tree forest land of around 81.7 mil ha (IFN, 2015), around 2.5%
of the total forest land area. The extended use of oak timber mainly during the maritime
expansion policy (XIV and XVI century), along with other reasons, explains this actual
scenario [20].

Different studies addressed the variations in density of different oak species. Knapic et al.
indicated that Portuguese oak wood compares favourably with other oak species regarding
wood density characteristics [21]. The values and uniformity in wood density are an
advantage when considering using this wood for solid wood products.

Although some studies of Portuguese oak (Q. faginea) found that this wood showed
appealing aesthetics, high density and considerable mechanical strength [1,3,11,21], there
is still a lack of information regarding its compressive and bending strength. This is the
underlined objective of this paper, to contribute to the body of knowledge on Portuguese
oak (Q. faginea Lam.) focusing on the technological quality and processing options for
this species.

2. Material and Methods

Regarding the distribution of the Q. faginea population in Portuguese territory, it is
possible to verify the existence of two areas, a larger one which corresponds to the natural
occurrence area of this oak because it has favourable ecological conditions and a smaller
area that corresponds to mixed or pure populations that were mapped in the 1990s [22].
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The trees were harvested at three different locations in the centre and north of Portugal,
Alcobaça (site 1—S1), Cortiços (site 2—S2) and Gralhós (site 3—S3), in natural regeneration
stands with ages ranging from 34 to 60 years.

From S1 were sampled ten trees, three from S2 and seven from S3. According to [23],
S1 is characterized by fine soil texture; pH between 5.5–6.5; soil thickness between 25 and 30;
presence of physical barriers (narrow terraces), characterized as a soil with high ecological
value, low to moderate potential permeability and low to moderate current permeability. S2
is characterized by coarse and medium soil texture; pH between 4.5 and 6.5; soil thickness
between 10 and 30; presence of some physical barriers (R2 rocky outcrops > 25%–40%
area), characterized as soil with very low ecological value, low to moderate potential
permeability, low to moderate current permeability and some maximum infiltration area
(type I and type II). S3 is characterized by coarse soil texture; pH between 5 and 5.5;
soil thickness between 50 and 100, characterized as soil with reduced ecological value,
high potential permeability and high current permeability and considered a maximum
infiltration area (type II). The maximum infiltration areas are the current permeability class
with higher permeability. They are classified into two classes (type I and type II) that
indicate different degrees of sensitivity and the need to consider different planning and
management measures [23].

Variability occurs due to several factors, and for most species, a horizontal or vertical
pattern of variation can be detected [24]. For this reason, in each tree, two logs were cut,
one approximately at diameter at breast height (DBH) and one above 3.4 m, except for S1,
where only a log at DBH was obtained for reasons of harvest logistics.

The samples were prepared according to the standard used for the mechanical tests
IPQ standard (1973) NP 618 and 619. The mechanical testing was carried out using a
Shimadzu AG-I universal machine capable of measuring the load applied with an accuracy
of 1% in the range 1 kN to 250 kN.

Samples were cut with the dimensions indicated by the standards used at different
distances from the pith (10% and 90% of the radius, P1 and P2, respectively) and later
conditioned at 20 ◦C ± 2 ◦C temperature and 65% ± 5% relative humidity until a constant
mass state was reached.

After conditioning, the test pieces were tested in three-point bending with a distance
between supports of 280 mm, following the recommendations of ISO 13061-3 [25]. Figure 1
shows a detail of the test setup.
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The modulus of elasticity (MOE) and modulus of rupture (σm) were determined
according to Equations (1) and (2). The tests were carried out under the same deformation-
controlled rate (4 mm/min).

σm =
3Fmaxl
2bh2 (1)

MOE =
∆F l3

∆w 4 b h3 (2)
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where Fmax represents the maximum load; l represents the distance between supports; b
represents the width and h the height of the test piece; ∆F represents the variation of load
between 10% and 40% of the maximum load; and ∆w represents the variation of deflection
between 10% and 40% for the maximum load.

After bending from each end of each test piece, a specimen for compressive parallel to
the grain was obtained with the dimensions according to the standard used. The tests were
carried out under the same deformation-controlled rate (1 mm/min) (Figure 2).
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Figure 2. Compression test setup.

The compressive strength parallel to the grain was determined (σc,0) as follows:

σc,0 =
Fmax

bh
(3)

All values were adjusted to 12% moisture content according to the recommendations
provided in each corresponding standard.

Density was determined by the determination of the ratio mass/volume adjusted
to a moisture content of 12%. For this purpose, compressive test pieces were measured
and weighed following the procedure for density determination described in ISO 13061-2.
Moisture content was determined following the procedure described in ISO 13061-1. [26,27]

Statistical analysis was performed using SPSS® statistical software (version 19.0;
SPSS Inc., Chicago, IL, USA). A statistical ANOVA was performed regarding the site
(S1 = Alcobaça; S2 = Cortiços; S3 = Gralhós), position (P1 = 10% of the radius; P2 = 90%
of the radius), bending strength, modulus of elasticity and compressive strength. In the
regression analyses, the significance level was set at 5%. In the tests for normality, the
Kolmogorov–Smirnov test was used.

3. Results and Discussion
Influence of Site and Position in the Tree

Table 1 displays the average and standard deviation of density, compressive strength
and bending strength for the three different locations and two positions (distance to the
pith) in the tree.

Büyüksari et al. studied the micro-mechanical properties of oak wood Q. petraea to
compare with standard-size test specimens’ values [28]. Six trees with straight stems were
selected as sample trees. The MOEs of the standard-size samples ranged from 9994.4 MPa
to 12,532.1 MPa. The compressive strength ranged from 42 MPa to 52.1 MPa and the
bending strength ranged from 87.4 MPa to 113.6 MPa. Similar results were observed in the
present study.
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Table 1. Density, MOE bending and compressive and bending strength for the tree sites and two
distances to the pith considered.

Site/Position
Density
(kg/m3)

Bending (Nmm−2) Compressive
Strength (Nmm−2)MOE Strength

S1/P1
N 10 10 10 20

Average 1007.7 11,700.6 119.7 54.5
St. dev. 80.20 1360.73 18.19 6.07

S1/P2
N 10 10 10 20

Average 795.5 8868.1 89.7 42.5
St. dev. 117.44 1882.80 20.92 6.10

S2/P1
N 7 7 7 14

Average 887.6 8221.4 97 49
St. dev. 114.61 1306.26 24.59 15.92

S2/P2
N 7 7 7 14

Average 875.2 8714 98.2 46.8
St. dev. 108.04 1369.14 19.85 15.67

S3/P1
N 7 7 7 14

Average 884.9 7323.8 104.2 47.7
St. dev. 96.83 1723.41 25.95 7.65

S3/P2
N 7 7 7 14

Average 809 8067.7 98.4 46.1
St. dev. 51.43 981.71 13.02 5.62

The dispersion values for the three different locations and two positions in the tree
are presented in Figures 3–5. These figures represent the variability between sites for
compressive strength (Figure 3), bending strength (Figure 4) and modulus of elasticity
and MOE (Figure 5) for S1, S2 and S3 considering different locations in the cross-section
(position 1%–10% of the radius and position 2%–90% of the radius).
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The results indicate that the location in the cross-section (P1 versus P2) showed only
significant differences for S1,for modulus of elasticity (MOE), compressive strength and
bending strength. These results are in line with the mean density values obtained for
the same provenance and location in the stem (Table 1). In the regression analyses, the
significance level was set at 5%. In the tests for normality, the Kolmogorov–Smirnov test
was used. Site S1 showed a fine soil texture, whereas site 2 and site 3 showed coarse and
medium soil textures. The effects of soil on other oak species was already stated as regards
their growth [29] and wood density [30]. In this case, a finer soil texture led to more hydric
stress, which is reflected in the first layers of wood produced, which showed higher density
(high proportion of latewood in the growth ring).

Q. faginea wood has a global average MOE of 8815 Nmm−2 (static bending). It is
well below the values reported in the literature for other oak species, such as [25], which
identified Q. Petrae MOEs between 9994.4 Nmm−2 and 11,553.7 Nmm−2. Carvalho pre-
sented values from 10,500 Nmm−2 (Q. robur) to 13,000 Nmm−2 (Q. rubra) [2]. As regards
bending strength, the mean result found (101.2 Nmm−2) agrees with the values found in
the literature for other oaks [1].

It was verified that the density determined for the test pieces used in the mechanical
tests has a normal distribution (normality test). According to the classification table for the
characteristic values of the woods presented by [1], Q. faginea wood falls within the heavy
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wood class according to the density range for other oak species [31]. When considering
the densities presented for Q. rubra, Q. alba and Q. robur, the results are higher but with no
significative differences [2].

Figures 6–9 present correlations between MOE and density, bending strength and
density, compressive strength and density and bending strength and MOE, respectively.
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Sonderegger et al. investigated various aspects of natural aging on European oak and
presented a correlation of MOE and bending strength depending on density for recent and
aged oak [32]. The mechanical properties of oak wood Q. petraea were studied, namely bent
at different radii for locations of the tension and compressive sides of wood using micro-
mechanical test specimens [33]. This study obtained MOE values between approximately
9000 and 11,000 Nmm−2, which indicates that the order of magnitude is close to the values
obtained in the bending tests of this study.

It was possible to observe that strength of wood increases as its density increases. The
density is important in determining the strength properties and according to [34] correlates
more with bending strength than with MOE. The values obtained are consistent with the
correlation based on the literature and were verified in Figure 6 for MOE, Figure 7 for
bending strength and Figure 8 for compression parallel to the grain.

4. Conclusions

The results for site 1 showed a significant effect of the distance to pith, which could
be related to its different soil composition as compared with site 2 and site 3. This higher
density led to higher compression and bending strength as well as modulus of elasticity
near the pith, with the results obtained closer to the bark similar to the ones observed for
the other provenances. A noticeable correlation between the mechanical properties and
density was observed (r2 = 0.47 for modulus of elasticity; r2 = 0.57 for bending strength
and r2 = 0.65 for compression parallel to the grain).

Author Contributions: Conceptualization, J.S.M. and S.K.; investigation, S.K. and C.S.F.L.; writing—
original draft preparation, S.K. and C.S.F.L.; writing—review and editing, J.S.M. and S.K.; visualiza-
tion, J.S.M. and S.K.; supervision, J.S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partly financed by FCT/MCTES through national funds (PIDDAC) under
the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE) under
reference no. UIDB/04029/2020 and the project F4F—Forest for Future under reference no. CENTRO-
08-5864-FSE-000031.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Forests 2022, 13, 1056 9 of 10

References
1. Carvalho, A. Madeiras Portuguesas: Estrutura anatómica, Propriedades, Utilizações; Direcção-Geral das Florestas: Lisboa, Portugal,

1997; Volume II.
2. Casaus, G.; Esteban, G. Especies de Maderas Para Carpintería, Construcción y Mobiliario; Asociación de Investigación Técnica de las

Industrias de la Madera, AITIM: Madrid, Spain, 1997; p. 250.
3. Knapic, S.; Louzada, J.L.; Leal, S.; Pereira, H. Radial variation of wood density components and ring width in cork oak trees. Ann.

For. Sci. 2007, 64, 211–218. [CrossRef]
4. Muñoz, G.R.; Gete, A.R. Relationships between mechanical properties of oak timber (Q. robur L.). Holzforschung 2011, 65, 749–755.

[CrossRef]
5. Muñoz, G.R.; Gete, A.R. Prediction of strength and elasticity in oak beams on the basis of external wood characteristics. Adv.

Mater. Res. 2013, 778, 152–158. [CrossRef]
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