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Abstract: Urban park waterfront green spaces provide positive mental health benefits to the public.
In order to further explore the specific influence mechanism between landscape elements and public
psychological response, 36 typical waterfront green areas in Xihu Park and Zuohai Park in Gulou
District, Fuzhou City, Fujian Province, China, were selected for this study. We used semantic
segmentation technology to quantitatively decompose the 36 scenes of landscape elements and
obtained a public psychological response evaluation using virtual reality technology combined with
questionnaire interviews. The main results showed that: (1) the Pyramid Scene Parsing Network
(PSPNet) is a model suitable for quantitative decomposition of landscape elements of urban park
waterfront green space; (2) the public’s overall evaluation of psychological responses to the 36 scenes
was relatively high, with the psychological dimension scoring the highest; (3) different landscape
elements showed significant differences in four dimensions. Among the elements, plant layer,
pavement proportion, and commercial facilities all have an impact on the four dimensions; and (4) the
contribution rate of the four element types to the public’s psychological response is shown as spatial
element (37.9%) > facility element (35.1%) > natural element (25.0%) > construction element (2.0%).
The obtained results reveal the influence of different landscape elements in urban park waterfront
green spaces on public psychology and behavior. Meanwhile, it provides links and methods that
can be involved in the planning and design of urban park waterfront green space, and also provides
emerging technical support and objective data reference for subsequent research.

Keywords: urban park waterfront; psychological response; semantic segmentation

1. Introduction

According to the “World Urbanization Prospects” prepared by the United Nations,
55% of the population will live in cities by 2018, and this number is expected to rise to nearly
70% by 2050, indicating that human beings are gradually concentrating in cities. Studies
from various sources mention that urbanized life actually affects the health of residents
on a physical and psychological level. At the physical level, respiratory problems [1],
cardiovascular diseases [2,3], immune diseases [4], and kidney diseases [5] brought about
by changes in the living environment pose a challenge to human health. Urban life in
densely populated areas may also have a number of psychological effects on residents.
One study showed that people living in the most densely populated areas had a 68%–77%
higher risk of mental illness and a 12%–20% higher risk of depression than those living in
areas with low levels of urbanization [6], with urbanized environments placing varying
degrees of cognitive and emotional stress on residents [7], along with a reduction in their
sense of well-being [8]. In the current context of COVID-19 gripping the world, urban
residents are facing dramatic changes in their lives, with disruptions in daily life, the risk
of unemployment, and social isolation sounding the alarm for a range of emotional stresses
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and mental illnesses [9–11]. The emergence of these mental illnesses is a reminder that
people are becoming aware of the various stresses associated with urban life and that
mental health issues need to be taken seriously.

Wilson, a proponent of the Biophilia Hypothesis, pointed out that human beings
come from nature, instinctively such as nature, adore nature, and are attracted to na-
ture [12], and that contact with the natural environment can greatly reduce stress and
help with mental recovery [13], as well as enhancing feelings of pleasure [14]. Further
research indicates that people show higher preference, restoration, and motivation for
landscapes that contain water [15,16]. Compared with other green spaces, spending time
in or around waterfront spaces will significantly reduce people’s negative emotions and
mental stress [17] and effectively increase their sense of well-being [18]. Researchers
from environmental psychology and environmental health have pointed to the potential
of waterfront spaces to become health-promoting “therapeutic landscapes” [19]. Many
studies have confirmed the positive effects of exposure to waterfront environments. For
example, epidemiological evidence suggests that urban residents living close to blue
spaces report more positive general health conditions compared to residents in other
areas [20], and that they are significantly less likely to suffer from mental illness [21];
Gascon M et al. [22,23] based on a study of the association between waterfront landscapes
and public psychology indicated that there are mechanisms of influence between the
two that reduce stress, downplay anxiety, enhance restorative qualities, and provide
evidence of effective positive benefits, as well as positive alleviating effects on specific
psychological disorders such as mood disorders and psychological distress; Pasanen et al.
noted that waterfront spaces can encourage people to engage in sports and exercise to
regulate their lifestyles [24] and promote positive social interactions [25]; Gao et al. [26]
argue that forested water spaces, especially dynamic water features, contribute to the
public’s emotional attitude towards the environment; and Britton et al. [27] further em-
phasized that an emphasis on the exploration of the mechanisms of influence between
waterfront space and human health is key to future research. For this reason, urban park
waterfront green space has become an excellent vehicle for urban residents to engage with
nature. It provides a variety of positive benefits to residents, and it is also essential to
focus on the psychological healing benefits that this environment provides. However, it
is worth noting that the presence of an element in the environment and the differences in
its visual representation may provide different perceptual effects. For example, studies
have mentioned that changes in the sky openness, building height, vegetation area, water
proportion, etc. in the scene may also change the public’s perception attitude to a certain
extent [28–30]. This means that, in addition to the qualitative evaluation of the structure
and form of landscape elements, the quantitative visual effects conveyed by the landscape
are also an important part of measuring the public’s perception attitude. However, there is
still a lack of research on urban park waterfront green space, and systematic evaluation
indexes and quantitative methods have not been developed yet.

With the continuous development of the computer field, the interdisciplinary applica-
tion of emerging technologies is gradually gaining academic attention. In recent years, deep
learning for semantic segmentation in artificial intelligence has become a trending topic.
The principle of semantic segmentation lies in the automatic analysis of a large amount
of data and feature learning, which effectively extracts the low, medium, and high level
information from the image and achieves pixel-level predictive classification of unknown
images depending on the expressed semantics. Its powerful image processing capabilities
make automated processing of large volumes of image data a reality [31]. In addition to
applications in medical imaging and artificial driving, there is a new trend to use semantic
segmentation of images to quantify landscapes and to combine public perception to pro-
vide effective guidance for future planning and design. Currently, semantic segmentation
is more often applied in studies related to streetscapes in landscape gardening habitat
research, such as the measurement of urban street composition [32], pedestrian space [33],
quality assessment [34], and aesthetic judgement [35]. We note that there are few examples
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of this technique being applied to other landscape types, such as the urban park waterfront
that is the subject of this study. Urban park waterfront green space has different and more
complex components than street landscapes, with common elements such as sky, trees, and
buildings, as well as unique landscape elements such as landscape vignettes and landscape
structures. However, the application of semantic segmentation to urban park waterfront
green space has not yet been discussed or investigated empirically. With the continuous
development of deep learning algorithms, more and more deep learning-based segmenta-
tion models are gradually developed. The selection of models and datasets applicable to
urban park waterfront green space will help expand the scenario of landscape gardening
applications of semantic segmentation, and also provide new technical support for the
quantitative evaluation of urban park waterfront green space, and there is some room for
exploration in this area of research.

Virtual Reality (VR) in the field of computer simulation bridges the gap between
traditional image studies. As a method of maximizing the simulation of the perceived
spatial environment [36,37], VR provides a convenient and rapid representation of the
natural environment for the public without having to leave home. Recent studies have
shown that in addition to visual appreciation, the immersive nature scenes offered by VR
can have a near-realistic emotional and psychological healing effect on people [38–41].
Subjects experiencing virtual natural scenes within a safe period of time (5–10 min)
can significantly improve physiological stress [42,43], become more “fascinating” and
“coherent” in psychological recovery [44], and further enhance human emotions and
awareness [45]. Based on a large number of existing studies, the application of virtual
reality in scene presentation is considered novel, effective, and feasible, and has a wide
range of application prospects.

The information conveyed by the objective environment provides multisensory stimu-
lation and subsequently has an impact on human physical and mental health; this interac-
tion indicates a potential relationship between the two [46]. How to change the objective
physical environment characteristics to enhance public mental health while incorporating
feedback and application of public mental health to landscape design is the key to the
study of urban park waterfront green space and public mental health. In addition, the
emergence of new technologies has helped us conduct scientific research more efficiently
and objectively. Based on this, this paper takes Xihu Park and Zuohai Park in Gulou District,
Fuzhou City, Fujian Province, China, as the study subjects and explores the following:

(1) Analyze the differences between different semantic segmentation models and datasets
applied to urban park waterfront green space images, and find out which semantic
segmentation model and dataset are capable of efficiently and accurately obtaining
quantitative data on urban park waterfront green spaces;

(2) Using semantic segmentation and virtual reality as technical support, analyze what
impact urban park waterfront green spaces have on the public psyche;

(3) To further explore whether different landscape elements in urban park waterfront
green spaces have an impact on public psychology, and what the specific mechanisms
of impact are.

This study aims to explore the impact of urban park waterfront green spaces on public
psychology from the perspective of public response, to identify landscape elements in
urban park waterfront green spaces that may have positive or negative psychological
benefits to the public, and to further examine the specific mechanisms and the degree of
importance of these landscape elements in influencing public psychology. Through this
study, it is possible to provide links and ways to intervene in the landscape construction and
optimal design of urban park waterfront green spaces and to provide effective and targeted
solutions for the development of urban park waterfront environments with psychological
healing benefits.
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2. Materials and Methods
2.1. Study Sites

The study site, Fuzhou, Fujian Province, is located in the southeastern hills, the first
of the three major hills in China, and is a typical city in the hilly region. Xihu Park and
Zuohai Park are located in the Gulou District of Fuzhou, in the heart of the bustling city,
surrounded by famous attractions such as Three Lanes and Seven Alleys, and Fuway. The
park is surrounded by many offices, such as the Fujian Provincial Government and the
Fujian Provincial Forestry Bureau, and many residential communities, serving a wide range
of people and belonging to a typical urban park.

Xihu Park is a classical garden park with a long history and the most complete
preservation in Fuzhou and is known as the “Pearl of Fujian Gardens”. It was first built in
the third year of Jin’s Taikang dynasty and was renovated in 1914 to become the present-
day Xihu Park. The park is classically beautiful and is a citywide comprehensive park
combining history and culture with natural landscape. With a total area of about 0.4251 km2

and a water surface of 0.303 km2, Zuohai Park is one of the first and largest parks in Fuzhou.
In 1990, local farmers converted the northern part of the site belonging to the former Xihu
to create the present Zuohai Park. Zuohai Park was established with Xihu Park as a
reference and incorporates more characteristic parks and modern facilities, covering an
area of 0.3547 km2 and a water surface of 0.1814 km2. In 2015, based on the concept of
“Great Xihu”, Fuzhou City implemented a wooden walkway around the lake and the water
system to connect the two parks, making the Xihu and Zuohai Park into one, creating a
landscape planning pattern of “one water, two parks, three peaks and four shores”, thus
forming a representative urban waterfront park in Fuzhou City, which is also an important
part of the city’s landscape pattern and is regarded as one of the top ten scenic spots in
Fuzhou. Both parks are well equipped with functional zones and various facilities that can
meet the needs of Fuzhou citizens for various types of leisure and recreational activities.
Based on this, the study takes Xihu Park and Zuohai Park as the research objects, which are
typical and representative.

The completed landscape nodes of the park usually play the role of guiding visitors to
gather. In this study, the distribution map of landscape nodes in the park was used as the
basis and further combined with fieldwork to select sample sites; 36 scenes were finally
identified as sample sites for this study (Figure 1), including waterfront roads, squares,
pavilions, viewing platforms, and other important landscape nodes. The principles of
sample site selection are as follows: (1) the waterfront landscape as a linear tour space;
the experimental selection of sample scenarios with established landscape nodes that
can simulate the walking route of visitors along the waterfront trail. (2) Select sample
scenarios with a high frequency of viewing, which refers to a certain amount of human
traffic observed in the actual survey in the early stages. (3) The sample scenarios should be
able to objectively and comprehensively reflect the characteristics of the park and should
have natural (soil, vegetation, water bodies, etc.) and artificial (buildings, squares, paths,
facilities, etc.) landscape elements, with the water environment in the field of view.

2.2. Virtual Reality Image Acquisition

To restore the objective integrity of the scenes, VR images were used as visual stimuli
to initiate public perception assessment. The study used the “insta 360 ONE” panoramic
camera for sample scenario scenes collection from 10:00 to 14:30 on 27 December 2020.
The camera was fixed at a level of 1.6 m above the ground with a tripod, which ensures
that the shooting height is consistent with the level of the human eye and reduces the
error caused by manual hand-held operation. A total of 98 VR images were taken, with
an output resolution of 6912 × 3456 pixels. After eliminating images with similar angles,
large differences in light perception, and more irrelevant influencing factors, 36 VR images
that could restore the whole picture of the park were selected as the research samples for
this study.
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2.3. Participants and Procedure

A total of 40 volunteers, 21 males and 19 females, aged between 19 and 30 years old
(M = 23.7, SD = 2.9), were recruited as subjects for this experiment among university teachers
and students. Young students and teachers are considered to have diverse professional
backgrounds, as well as a certain level of environmental perception and a wide range of
preferences [26,47]. The method of using young students and teachers as respondents
has been widely used in previous studies [48–51] and is considered to have low cost and
high effectiveness, so the selection of this group as subjects is feasible and representative.
Considering the purpose of the experiment, all 40 subjects were reported to have good
mental health or no mental disorders (as judged by the results of university psychological
tests); no history of cardiovascular and neuropsychiatric disease; normal or corrected
visual acuity reported in both eyes; and were able to wear VR devices continuously for
a short time without strong discomfort. The evaluation process includes the following
three steps (Figure 2): (1) stress experiment: before the experiment, participants were
invited to complete the short Spielberger State-Trait Anxiety Inventory (STAI-S), which
is used to effectively assess participants’ current psychological status. The test consists
of 20 items, each assessed on a 4-point scale, with scores from 1 to 4 corresponding to
a stepwise scale of “not at all” to “fully”. Then, the auditory continuous addition test
(PASAT) proposed by neuropsychologist Deary was used to stimulate the anxiety and
stress levels of the subjects, who were asked to complete random number calculation
questions without any computing equipment, and an alarm would be triggered if they
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answered incorrectly. Lastly, participants were asked to complete the STAI-S test again
after the experiment; (2) VR experience: subjects were asked to wear a head-mounted
display device and experience 36 VR scenes one by one by turning their heads or bodies.
To prevent dizziness, fatigue, and other discomforting reactions caused by prolonged
viewing of VR scenes, the length of continuous experience should be 5–10 min [41,52,53].
Given the large number of samples in this experiment, the samples were divided equally
into three groups to start the virtual scene experience, with each group experiencing for
8–9 min and being allowed to take a 3-min break at the end of each group experience;
(3) questionnaire completion: with the help of the short version of the recovery scale (SRRS)
proposed by Han [54], public psychological responses were collected from four dimensions:
emotional, physical, cognitive, and behavioral, as shown in Table 1. The questionnaire was
scored on a 7-point scale with scores 1 to 7 corresponding to a stepped scale of strongly
agree to strongly disagree. All 40 subjects completed the above experiment according
to the procedure, which showed that the design and time control of the VR experiment
were reasonable.
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Table 1. Short-version revised restoration scale.

Dimensions Item Score

(F1) Emotional dimensions
V1, Grouchy–Good natured 1, 2, 3, 4, 5, 6, 7

V2, Anxious–Relaxed 1, 2, 3, 4, 5, 6, 7

(F2) Cognitive dimensions V3, I am interested in the presented scene 1, 2, 3, 4, 5, 6, 7
V4, I feel attentive to the presented scene 1, 2, 3, 4, 5, 6, 7

(F3) Physiological dimensions V5, My breathing is becoming faster 1, 2, 3, 4, 5, 6, 7
V6, My hands are sweating 1, 2, 3, 4, 5, 6, 7

(F4) Behavioral dimensions
V7, I would like to visit here more often 1, 2, 3, 4, 5, 6, 7

V8, I would like to stay here longer 1, 2, 3, 4, 5, 6, 7

2.4. GSA-Based Landscape Element Screening

Based on Wang’s classification of park landscape elements [55], by consulting experts
in landscape architecture and related fields, the environmental characteristics were initially
decomposed into 20 pre-selected landscape elements from four aspects: spatial elements,
natural elements, construction elements, and facility elements.

Grey Statistic Analysis (GSA) is a fuzzy statistical method based on “little” information
and “uncertainty” [56], which can effectively solve the limitations of researchers’ knowledge
structures and is considered to be effective in improving the scientificity of element selection.
For further screening of primary selection elements with GSA, the process is as follows:
(1) the questionnaire was sent to 20 landscape architecture experts to solicit their opinions
on the importance of the indexes of the elements, and the questionnaire used a 7-level scale,
with levels 1 to 7 indicating a stepped scale from “very unimportant” to “very important”;
(2) the pre-selected elements are classified into three levels: high, medium, and low. To
construct a gray category whitening function, the calculation formula is shown in (1)–(3);
(3) to calculate the decision coefficients of gray categories, the formula is shown in (4).
Obtain the decision coefficients of high, medium, and low gray categories of each element,
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and select the elements with “high” importance to start the subsequent study. The final
selection of landscape elements is shown in Table 2.

f1(ab) =


1 hab ≥ 7

hab−4
7−4 4 < hab < 7

0 hab ≤ 4

(1)

f2(ab) =



0 hab ≥ 7
7−hab
7−4 4 < hab < 7

1 hab = 4
hab−1
4−1 1 < hab < 4

0 hab ≤ 1

(2)

f3(ab) =


0 hab ≥ 4

4−hab
4−1 1 < hab < 4

1 hab ≤ 1
(3)

ηk(b) = ∑ L(ab)× fk(ab) (4)

In the formula:
fk(ab)—denotes the value of the whitening function, with the importance of the bth

indicator as a, and k denotes the number of gray classes as 1, 2, and 3.
hab—denotes the importance of the bth indicator as the value of the assignment of a.
ηk(b)—indicates that the bth indicator is the decision coefficient of the kth gray class.
L(ab)—indicates the number of experts whose importance factor of the bth indicator

is an assignment of a.

Table 2. Landscape element index selection.

Type Landscape Indicators Calculation Method Quantification
Methods No.

Spatial elements

Sky openness Proportion of the sky in the view Semantic segmentation K1
Visual complexity Space composition complexity index

Matlab
K2

Colorfulness of space Colorful index of space elements K3

Natural elements

Green viewing ratio Proportion of vegetation in the view Semantic segmentation Z1
Blue viewing ratio Proportion of water in the view Z2

Plant layers Number of tree, shrub, and herb strata
in the plant landscape Counting statistics Z3

Plant colorfulness Number of colored foliage and
flowering plant species Z4

Soil exposure Proportion of bare soil in the view Semantic segmentation Z5

Plant growth condition
Condition of decaying and dead

plants in the plant landscape, with = 0,
without = 1

Assignment statistics Z6

Building elements

Building proportion Proportion of buildings in the view Semantic segmentation J1
Pavement proportion The proportion of paving in the view J2

Pavement form Masonry = 0, wood = 1, pebbles = 2 Assignment statistics J3
Vignette proportion Proportion of vignettes in the view

Semantic segmentation
J4

Humanistic
atmosphere

Proportion of traditional buildings in
the view J5

Facility elements Commercial facilities
The proportion of commercial

facilities, such as cruise ships and
amusement facilities

S1
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2.5. Scene Quantization Decomposition Based on Semantic Segmentation

We used semantic segmentation as an auxiliary technique to quickly obtain objective
and accurate quantitative data from the scenes, which can quickly achieve pixel-level
classification based on the semantic information contained in the image. It is usually based
on both CNN models and datasets. In order to improve the segmentation accuracy of
waterfront green space, we intend to compare the current excellent model algorithms and
build a training dataset with urban green space as the main part, so as to select the optimal
model for subsequent analysis.

2.5.1. Model Selection and Semantic Segmentation Accuracy Improvement

Using PASCAL VOC, a world-class challenge in computer vision, three models
(DeepLabV3+ [57], PSPNet [58], and HRNet [59]) with excellent performance on this
dataset were initially selected. The three models are widely used in the current study. The
models used scenes that contained streets, natural landscapes, remote sensing images, etc.,
and showed a high level of accuracy (Table 3).

Table 3. Model overview.

Name of Model Model Network Architecture

DeepLabV3+
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model refers to the paper: Deep High-Resolution Representation Learning for Human Pose Estima-
tion, doi:10.1109/CVPR.2019.00584. 

2.5.2. Semantic Segmentation Accuracy Calculation 
Semantic Segmentation accuracy is usually measured in terms of Mean Intersection 

over Union (MIoU) [60], which describes the overlap ratio of predicted and real pixels of 
an image. 

𝑀𝐼𝑜𝑈 = 1𝑘 + 1෍ 𝑝௜௜∑ 𝑝௜௝௞௝ୀ଴ + ∑ 𝑝௝௜ − 𝑝௜௜௞௝ୀ଴
௞
௜ୀ଴  (5) 

In the formula: 𝑘—indicates total number of landscape tag categories. 
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Semantic segmentation requires learning and obtaining laws from scenes with a large
number of annotated objects (a training dataset). In addition to the structural conditions
of the model itself, the quantity, quality, and diversity of the training dataset will have a
significant impact on the segmentation accuracy. To improve the recognition accuracy of
the model on urban park waterfront green space images, this study expanded the annotated
samples of urban green space images on the basis of ADE20K dataset in a targeted manner
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to establish the training dataset of this paper, and the specific steps are as follows: (1) image
acquisition: a large number of images were acquired using panoramic cameras, DSLR
cameras, and other devices, and the acquisition image conditions cover different weather,
lighting, etc.; (2) sample labeling: the image labeling software LabelMe, developed by
the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts
Institute of Technology (MIT), was used to label the acquired images with polylines. The
label categories were based on the ADE20K dataset labels; and (3) dataset establishment:
sample data were stored in JSON files with annotation information and output.

2.5.2. Semantic Segmentation Accuracy Calculation

Semantic Segmentation accuracy is usually measured in terms of Mean Intersection
over Union (MIoU) [60], which describes the overlap ratio of predicted and real pixels of
an image.

MIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(5)

In the formula:
k—indicates total number of landscape tag categories.
pii—indicates the total number of pixels of real pixel category i that are predicted to

be of category I.
pij—indicates the total number of pixels of real pixel category i that are predicted as

category j.
pji—indicates the total number of pixels of real pixel category j predicted to be of

category I.

2.6. Statistical Analysis

Different analysis methods were used for different data: (1) SPSS 20 statistical software
was used to conduct multiple reliability and validity tests on the subjective questionnaire
to verify its scientific and accuracy; (2) a paired sample t-test was conducted to compare
STAI-S data (pre-PASAT vs. post-PASAT) to ensure the PASAT increased the stress level of
subjects significantly; (3) partial correlation analysis was used in analysis of subject–object
correlations, using partial correlation coefficient as a criterion, the factors with low correlation
were gradually removed; (4) conduct multiple linear regression analysis. The adjusted
coefficient of determination R2 was used to test the fit of the multiple regression line to
the observed values and used analysis of variance (ANOVA) to test whether the multiple
regression estimation equation was statistically significant. The significance level (p < 0.0001)
and the p-value indicated the significant level of the single factor (p < 0.05). The statistical
analysis was completed in SPSS Statistics 22.0.

3. Results
3.1. Results of Semantic Segmentation

The semantic segmentation results show that the three models trained by the dataset
of this paper can correctly identify and classify the elements with a larger pixel share, such
as sky, greenery, roads, and pavements, along the contour of the image (Figure 3). PSPNet,
compared with DeepLabV3+, is less likely to miss identifying small-scale landscape ele-
ments, such as distant buildings, low shrubs, and scenic rocks, and it can also achieve better
accurate label classification. HRNet’s recognition performance was relatively inaccurate.
There were many misclassifications, omissions, and multiple classifications of the same
object for both near and distant landscape elements, which were subject to the influence of
light and other factors in the segmentation process.
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Figure 3. Segmentation results comparison.

The semantic segmentation accuracy of the three models on the urban park waterfront
green space was obtained after excluding the indoor landscape categories such as “Sofa”
and “Chair” in the ADE20k dataset (Figure 4). Using MIoU as the criterion, the ranking
performance of the three models is PSPNet (0.6865) > DeepLabV3+ (0.6816) > HRNet (0.5179).

To confirm the validity of the dataset constructed in this study, the segmentation results
of PSPNet trained by the ADE20k dataset and our dataset were compared. The PSPNet
trained by the ADE20k dataset on the scene was unsatisfactory, as shown in Table 4, with
fragmented and disordered segmentation, uneven recognition and classification of objects,
low edge fit, and almost no recognition of small-scale elements such as distant scenes and
facilities. The PSPNet model trained by our dataset greatly improved on the above failures,
and most of the elements can be segmented and correctly classified independently. The
edge recognition was finer, while the segmentation effect of small-scale elements had been
improved, and in general, the segmentation integrity and completeness were significantly
better than the previous model. The data show that the PSPNet model trained by the
dataset of this paper has significantly improved in both PA and MIoU test criteria, and the
MIoU is improved by about 26.8%, which verifies the advantageousness of the dataset of
this paper.
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Table 4. PSPNet segmentation results based on different datasets.

PA MIoU Schematic Diagram 1 Schematic Diagram 2

PSPNet-trained by
ADE20k dataset 0.8039 0.4189
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3.2. The Public Psychological Response of Urban Park Waterfront Green Space 
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The scores for each dimension showed that F3 > F1 > F2 > F4 (Figure 5). The sample 
scenarios convey a higher restorative benefit to the public in F3, while it still falls short in 
F4. In terms of standard deviation, the subjects’ perceptions were more consistent in F3 
(0.17), and the perceived differences were greater in F4 (0.43). 

The two scenarios with the highest and lowest psychological response scores were 
explored further. As shown in Tables 5 and 6, the scores of psychological dimensions 
(4.89) and cognitive dimensions (4.97) in scenario 4 were lower than those of behavioral 
dimensions (5.00) and emotional dimensions (5.32). The highest scoring emotional dimen-
sion was particularly demonstrated by the switch from anxiety to relaxation (E2 = 5.38), 
which was the highest mean score for the subfeature factor in this scenario. In scenario 7, 
the behavioral dimensions (3.30) and the cognitive dimensions (3.59) scored lower than 
the emotional dimensions (4.19) and the psychological dimensions (4.49). The psycholog-
ical impact of the scenario on the public is particularly evident in the reduction of people’s 
dwell time (B2 = 3.24) and frequency of visits (B1 = 3.35); in addition, two sub-trait factors 
of the cognitive dimensions (C1 = 3.57 and C2 = 3.62) contributed to the lower mental 
response scores in scenario 7. 
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3.2. The Public Psychological Response of Urban Park Waterfront Green Space
3.2.1. Test on Reliability and Validity

The questionnaire reliability test showed that the overall Cronbach’s α value of the
study scale was 0.741, which was greater than 0.6, indicating that the scale has a relatively
good internal consistency and a high degree of reliability; the Kaiser-Meyer-Olkin (KMO)
was 0.758, and the significance of the Barlett’s spherical test statistic was 0.000, indicating
that the questionnaire has a high degree of association and good structural validity.

3.2.2. Public Psychological Response Results

The question items of the psychological dimension (F3) of the SRRS measure psycho-
logical arousal [54], so the scores of this dimension were calculated upside down. The
results of the questionnaire analysis and cluster analysis showed that the distribution of the
public’s psychological response levels to the 36 scenarios tended to be moderate to high,
with the highest score being sample 4 (5.05), and the lowest being sample 7 (3.89).

The scores for each dimension showed that F3 > F1 > F2 > F4 (Figure 5). The sample
scenarios convey a higher restorative benefit to the public in F3, while it still falls short
in F4. In terms of standard deviation, the subjects’ perceptions were more consistent in
F3 (0.17), and the perceived differences were greater in F4 (0.43).
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The two scenarios with the highest and lowest psychological response scores were
explored further. As shown in Tables 5 and 6, the scores of psychological dimensions (4.89)
and cognitive dimensions (4.97) in scenario 4 were lower than those of behavioral dimen-
sions (5.00) and emotional dimensions (5.32). The highest scoring emotional dimension
was particularly demonstrated by the switch from anxiety to relaxation (E2 = 5.38), which
was the highest mean score for the subfeature factor in this scenario. In scenario 7, the
behavioral dimensions (3.30) and the cognitive dimensions (3.59) scored lower than the
emotional dimensions (4.19) and the psychological dimensions (4.49). The psychological
impact of the scenario on the public is particularly evident in the reduction of people’s
dwell time (B2 = 3.24) and frequency of visits (B1 = 3.35); in addition, two sub-trait factors
of the cognitive dimensions (C1 = 3.57 and C2 = 3.62) contributed to the lower mental
response scores in scenario 7.

Table 5. Psychological response results of scenario 4.

Emotional
Dimensions (E)

Cognitive
Dimensions (C)

Physiological
Dimensions

(P)

Behavioral
Dimensions (B)

E1 E2 C1 C2 P1 P2 B1 B2

Mean score of each subconstruct 5.27 5.38 5.16 4.78 4.73 5.05 4.92 5.08
Mean score of each construct 5.32 4.97 4.89 5

Table 6. Psychological response results of scenario 7.

Emotional
Dimensions (E)

Cognitive
Dimensions (C)

Physiological
Dimensions (P)

Behavioral
Dimensions (B)

E1 E2 C1 C2 P1 P2 B1 B2

Mean score of each subconstruct 4.11 4.21 3.57 3.62 4.32 4.65 3.35 3.24
Mean score of each construct 4.16 3.59 4.49 3.30

3.3. How Do Landscape Elements Affect Public Psychology
3.3.1. Psychological Response Model Construction

Four dimensions (emotional dimension, cognitive dimension, psychological dimen-
sion, and behavioral dimension) were used as dependent variables, and the quantified
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values of landscape elements were used as independent variables to carry out the partial
correlation analysis. The elements with low bias correlation coefficients were gradually
eliminated according to the results, and the linear regression model of the four dimensions
was established with the final retained elements.

The multiple linear regression model shows that colorfulness of space (K3) plays the
greatest positive influence in F1 and F3 (p < 0.05), commercial facilities (S1) is the factor
with the greatest negative influence in the F1 (p < 0.05), and visual complexity (K2) shows
the greatest negative influence in F3 (p < 0.05); in F2 and F4, those showing the greatest
positive as well as negative influence are plant layers (Z3) and commercial facilities (S1)
(p < 0.05).

The results of the goodness of fit and significant level tests showed that the adjusted
R2 for the 4 models were 0.570, 0.452, 0.480, and 0.421, respectively. The established
regression equations were considered to have a good degree of explanation, corresponding
to a p ≤ 0.001, indicating a high level of significance and a statistically significant equation
(Table 7).

Table 7. Multiple linear regression models for the psychological dimensions and the significant
influences obtained.

Model B Std.
Error

Standardized
Coefficients t Sig.

F1
(R = 0.795 a, R2 = 0.632, Adjusted

R2 = 0.570; F = 10.296, Sig. = 0.000 b)

(constant) 4.855 0.218 22.272 0.000
K3 0.420 0.183 0.302 2.300 0.029
Z3 0.158 0.065 0.282 2.412 0.022
Z5 −0.077 0.022 −0.463 −3.418 0.002
J2 −0.013 0.005 −0.367 −2.851 0.008
S1 −0.653 0.111 −0.690 −5.901 0.000

F2
(R = 0.739 a, R2 = 0.546, Adjusted

R2 = 0.452; F = 5.808, Sig. = 0.000 b)

(constant) 5.991 0.552 10.852 0.000
K2 −0.462 0.176 −0.398 −2.622 0.014
Z1 −0.013 0.004 −0.614 −3.163 0.004
Z3 0.234 0.092 0.348 2.545 0.017
Z5 −0.075 0.027 −0.379 −2.743 0.010
J2 −0.032 0.008 −0.748 −4.160 0.000
S1 −0.558 0.148 −0.490 −3.768 0.001

F3
(R = 0.783 a, R2 = 0.614, Adjusted

R2 = 0.480; F = 4.591, Sig. = 0.001 b)

(constant) 5.839 0.438 13.321 0.000
K2 −0.291 0.113 −0.521 −2.575 0.016
K3 0.331 0.132 0.410 2.498 0.019
Z1 −0.012 0.004 −1.193 −3.122 0.004
Z2 −0.033 0.010 −0.773 −3.305 0.003
Z3 0.217 0.054 0.668 4.050 0.000
Z6 −0.114 0.053 −0.293 −2.138 0.042
J1 −0.015 0.004 −0.936 −3.675 0.001
J2 −0.015 0.006 −0.706 −2.597 0.015
S1 −0.172 0.078 −0.314 −2.214 0.036

F4
(R = 0.721 a, R2 = 0.520, Adjusted

R2 = 0.421; F = 5.240, Sig. = 0.001 b)

(constant) 5.776 0.684 8.448 0.000
K2 −0.551 0.218 −0.394 −2.525 0.017
Z1 −0.012 0.005 −0.454 −2.275 0.030
Z3 0.320 0.114 0.393 2.802 0.009
Z5 −0.107 0.034 −0.444 −3.130 0.004
J2 −0.032 0.010 −0.611 −3.307 0.003
S1 −0.583 0.183 −0.426 −3.183 0.003

a, b: Predictors

3.3.2. Specific Mechanisms of Influence of Landscape Elements on Public Psychology

From the coefficients of the established regression model, it was clear that there
were differences in the contribution of each factor indicator in different dimensions, with
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the overall performance of spatial elements (average = 37.9%) > facility elements (aver-
age = 35.2%) > natural elements (average = 25.0%) > construction elements (average = 2.0%).

Among the types of elements that have an impact on the public’s psychological
response, the spatial elements include K2 and K3; the facility element is S1; the natural
elements include Z1, Z2, Z3, Z5, and Z6; and the construction elements include J1 and J2.
Among them, we note that the 3 elements Z3, J2, and S1 provide some contribution to all
4 dimensions of the public’s psychological response (Figure 6).
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4. Discussion
4.1. Semantic Segmentation Model and Dataset for Urban Park Waterfront Green Space

Through the comparison of the three models, the PSPNet trained by the dataset of
this paper is considered to be a more suitable semantic segmentation model for urban park
waterfront green space, and its accuracy exceeds 0.60, which was considered to reach a good
level of semantic segmentation accuracy [61]. The single-element data show that the model
performs well (MIoU > 0.60) for 14 of the 18 element categories, including the sky, water,
and trees, and achieves an accuracy level of more than 0.90 for 2 elements in particular:
the sky and water. The reason was that the morphological and color characteristics of
these elements were more fixed in this study [62], which made it easy for the model to
determine and recognize them. However, the model is still deficient in identifying small-
scale elements, such as sculptures, people, and streetlights. This was due to the fact that
small-scale landscape elements contain a relatively low percentage of pixels in the scene
representation, and their information, such as color, texture, and semantic features, were
weakened in a series of pooling and convolution operations, which increased the difficulty
of detection [63]. On the other hand, there were spatial sequences of the foreground and
background in the image, and the depth setting of the dataset’s annotated objects makes the
segmentation process usually recognize the complete outline of the foreground landscape
(e.g., trees) as a unit and ignore the pores between trunks, branches, leaves, etc. [64]. The
background elements that are heavily obscured by the foreground landscape were difficult
to accurately recognize in the complex environment due to the incompleteness of the
appearance outline, which leads to a bias in recognition.

Semantic segmentation is based on a combination of two aspects: the model and the
dataset. In terms of datasets, the current one that is often used is usually collected from
streetscapes and does not include annotated samples of elements specific to park scenes.
This makes the model unable to learn and summarize the semantic patterns, which leads to
the disadvantage of identifying urban park images. In this paper, we increase the sampling
rate and annotation amount of elements specific to park landscapes (e.g., landscape street-
lights, scenic stones, pavilions) based on the ADE20k dataset. Comparing the results of
the PSPNet trained by the ADE20k dataset and the dataset of this paper, it is noted that
the model trained by our dataset shows a significant advantage (a 26.8% improvement
in MIoU), confirming that this initiative can effectively improve the recognition accuracy
of the model for urban park images, which is consistent with the previously mentioned
approach [65].
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In addition, the distortion caused by the conversion of VR scenes to flat projection can
degrade the segmentation performance of the model [66]. This is due to a certain degree of
distortion or stretching at the edges and bottom of the converted image, which leads to a
reduction in segmentation accuracy due to non-compliance with the semantic laws of the
model. Semantic enhancement inputs can mitigate the distortion of target detection based
on this condition [66]. We added a large number of annotated samples taken by panoramic
cameras to this study, and a comparative study shows that the initiative effectively helps
the model learn the patterns of panoramic images and shows a significant improvement in
recognition accuracy.

4.2. The Impact of Virtual Reality-Based Urban Park Waterfront Green Space on Public
Psychological Response

The public’s psychological response ratings for these 36 sample sites tended to be
moderate to high, in line with Kaplan’s concept of a restorative environment, which refers
to the public’s ability to recover and relax physically and mentally after spending time in
such an environment [67]. The public’s psychological response reflects differences in four
dimensions: first, the public showed higher restorative benefits and higher consistency on
the psychological dimension, which may be due to the fact that green spaces were usually
places of relaxation, and subjects were less experience excessive physiological arousal
when exposed to natural landscapes [68]; second, the public harvested less recovery in the
behavioral dimension and showed more variation. It is possible that this is related to the
season, as people are less likely to stay outdoors In the cold winter. In addition, subjects
may express different behavioral intentions when facing the same scenario due to their
personalities and emotional differences; for example, Scenario 26 was a more remote corner
in a park, and some subjects believed that a quiet place to get away from the noise and
enjoy solitude could bring better healing effects [69]. Additionally, some subjects would
feel insecure due to the remoteness of the scenario, which led to a reluctance to stay for a
long time.

Ulrich, a proponent of environmental stress relief theory, argues that the physical
environment can be a source of stress or relief and that a healing natural environment
should have the following characteristics: an abundance of natural elements, especially
greenery and water; a complexity of environmental content with focal points in the spatial
structure; a medium to high level of visual depth; winding view corridors; and the absence
of things that could pose a danger [70]. Analysis of the scenarios with the highest and lowest
public psychological response scores revealed that the scene (scenario 4) with the highest
psychological response is a pavilion environment to the left of the entrance to Zuohai Park.
The overall style here tends to be classical with a quiet environment, which is thought to
be effective in regulating public mood. Through the interviews, we know that the public
focuses on resting and other experiences. In addition to visual experiences when visiting,
the presence of the pavilion seats in Scenario 4 enhances the public’s willingness to act.
In the psychological dimension, the public felt slightly faster breathing (P1 = 4.73), which
may be related to the scenario being close to water and without a safety guardrail. The
results of the scenario analysis found that Scenario 7 has a significantly higher percentage
of commercial facilities (0.65%) than other scenarios, with the top 3 percentages. Based on
the significant impact factors, we know that commercial facilities have a negative impact
on all four dimensions to varying degrees, which is likely the biggest reason for the low
score of this scenario. In addition, the scene space is monotonous in color, the plant growth
condition is poor, and the overall lack of visual appeal makes it difficult for the public to find
attention and interest when viewing. Poor environmental shade may also be responsible
for reducing the length of sustained exploration and the frequency of visits by the public.

This study introduced virtual reality technology in the acquisition of public psycho-
logical data, and the results of the study showed convergence with the results of the field
experiment. That is, near-natural environments in cities, including urban park water-
front green space, provide an effective restorative environment in which experiences can
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bring positive benefits such as fatigue relief, emotional recovery, and improved cognitive
functioning [49,71], while increasing their willingness to act [72]. In previous studies,
virtual reality has been used to compare landscape representations with real environments,
pictures, videos, and other methods. The results show that virtual reality provides a
three-dimensional environment that closely resembles the real environment and gives the
viewer a more “immersive” experience than traditional media such as pictures [36,37].
The subjects’ view of VR was largely consistent with the live view, and the psychological
evaluations yielded feedback that was significantly closer to the live scene [73].

4.3. Mechanisms of Influence of Urban Park Waterfront Green Space Landscape Elements on
Different Psychological Dimensions of the Public

The four element types have different degrees of influence and mechanisms of action
on the four dimensions of public psychological response. Spatial elements show the
highest contribution rate (37.9%), while construction elements show the lowest contribution
rate (2.0%).

4.3.1. Spatial Element

Among the spatial elements, K2 and K3 were two factors that affected the public’s
psychological response. Scenes with high visual complexity reduced the public’s psycho-
logical perception of F2, F3, and F4, and showed a greater negative effect in F2 (33.6%)
and F4 (34.3%). This is consistent with previous research findings, where dealing with
complex scenarios often requires greater cognitive effort on the part of the public [74],
which may also further influence the public’s willingness to behave. K3 as the element with
the greatest positive contribution in both F1 (31.8%) and F3 (24.3%), the color experiment
in the last century pointed out that when people are looking at things, color will first
attract 80% of attention, and at the same time, color will have a lot of complex effects
on people’s psychology and physiology through visual contact [75]. This paper further
suggests, from a psychological perspective, that rich spatial colors can liberate people from
negative emotions and enhance the level of psychological recovery.

4.3.2. Facility Element

S1 affects the public’s psychological changes to a large extent, which are reflected in
F1 (49.4%), F2 (40.6%), and F4 (36.3%), especially in F1, which shows a contribution of nearly
50%, indicating that with the increase in the proportion of commercial facilities, the public
is very prone to negative emotions such as anxiety and irritability. In addition, the frequent
appearance of S1 greatly weakens the attraction of the scene; the degree of interest and
psychological calming effect of the crowd decrease; the frequency of visits and the intention
to stay for a long time also decrease; and the overall psychological feeling develops in a
negative direction. This is a distinctive feature; the public was repulsed by messy and
disorderly commercial facilities [76]. This is reflected in this study by the presence of
commercial signs, brightly colored boats, etc. in the sample, which form a clear difference
in the park landscape. This suggests that future planning should focus on the location of
large commercial facilities and a coordinated and uniform style of commercial elements.

4.3.3. Natural Element

Linear regression models indicated that Z3 was the natural element with the largest
contribution (average = 16.8%) to public psychology, and showed positive correlation with
all 4 dimensions of psychological response. Previous studies have noted that greenery is
the element that receives the most attention in visual evaluation and can have positive
psychological benefits [77]. We further found in this study that Z3 in particular stimulates
and prolongs the frequency and duration of public visits, contributing to the public’s
willingness to visit the space for extended periods of healthy activity. Z5 is the element
with the second largest contribution (4.5%) to public psychology, as reflected in F1, F2,
and F4. Previous studies often ignore the impact of surface vegetation on people’s visual
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and psychological response. One study mentioned that when people viewed the natural
environment with restoration needs, shrubs are the longest viewed component of the
environment [78]; spending time observing trees, bushes, and lower ground vegetation
resulted in a higher likelihood of restoration [79]. This suggests that the creation of low-level
plant landscapes, such as grass and flowers, also need attention and more soil exposure
can have a negative psychological impact. Plant landscapes with conditions such as dead
branches and fallen leaves were usually considered to reduce the restorative qualities [51],
which in this study were specifically shown to have a psychological arousing effect on
the public. There was a negative correlation between Z1 and the public’s psychological
response, which is contrary to the existence of previous studies. The green-visibility
environment in this study mostly consisted of tall trees and less grass and shrubs; this type
of planting may create a sense of psychological unease due to the strong sense of enclosure,
and may make it difficult to find a visual focus due to the monotony of the landscape,
which in turn reduces the desire to stay. Z2 showed a negative effect on F3 but has no
obvious effect on other dimensions. This may be related to the fact that the sample sites in
this study are all watered environments; however, great blue ratings means that it is closer
to the water, while the lack of safety fences also leads to a sense of insecurity.

4.3.4. Construction Element

In comparison, the construction element provides a much lower contribution (2.0%)
than the other three element types. This may be due to the fact that the sample parks
contained relatively few built elements (mean building proportion = 4.46%, mean paving
proportion = 29.6%) or were better integrated with the park style and, therefore, less
likely to provide a greater impact on public psychology. Both two elements included in
construction element show a negative correlation with the public’s psychological response;
this supports a well-established understanding [77]. The increase in the proportion of the
hard landscape leads to the lack of naturalness of the scene, which breaks the continuity
and immersion of people enjoying the natural landscape, making it impossible for people
to obtain a higher psychological healing effect [80,81].

5. Limitations

There were still some limitations in this study: (1) the public’s perception of the
scene and a series of complex psychological and behavioral activities are related to each
other’s perception indicators. Focusing on other rich sensory experiences and the public’s
dynamic perception and recreational behavior in the park will further help us collect more
comprehensive feedback data; (2) in terms of research objects, urban waterfronts usually
include multiple types, and other different types of waterfront green spaces should be
included in the follow-up research to summarize a sound urban waterfront green space
characteristic system with a psychological healing effect; (3) there was still room for PSPNet
to improve the recognition of small-scale landscape elements. We should target to improve
the sampling rate and sample annotation of small-scale elements, and further enhance the
detection rate and recognition accuracy of small-scale targets in order to provide more
accurate and effective environmental data. In addition, the subjects selected in this study
were all university faculty and students, which did not take into account the variability of
social groups, and the population sample should be expanded in the future to obtain more
comprehensive and in-depth findings.

6. Conclusions

As an important place that provides urban residents with access to nature, research
on the association between urban park waterfront green space and public psychology is
necessary. However, the specific mental health benefits provided by urban park waterfronts
and the role of each of the microscopic landscape elements on public psychology remain to
be further explored. Based on the above, this study selected 36 sample sites in Xihu Park
and Zuohai Park in Gulou District, Fuzhou City, Fujian Province, China, and introduced
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semantic segmentation and virtual reality as the technical support for obtaining subjective
and objective quantitative data to conduct a study on the association between urban park
waterfront green space and the public’s psychological response. The following conclusions
were eventually drawn:

(1) In terms of the application of semantic segmentation, the results indicate that PSPNet
is a more suitable semantic segmentation model for urban park waterfronts. In terms
of dataset, compared to the model trained by the ADE20k dataset, the PSPNet trained
by the dataset in this paper shows a higher level of accuracy, which can be used as a
technical support to obtain quantitative environmental data of urban park waterfront
green space efficiently and accurately;

(2) In terms of the results of the public’s psychological response to urban park waterfront
green spaces, urban park waterfront green spaces provide a psychologically healing
environment for the public, with the psychological dimension > emotional dimension
> cognitive dimension > behavioral dimension in the different psychological response
dimensions. The public’s psychological relief is better in urban park waterfronts,
while the effects of the behavioral dimensions, such as frequency of visits and length
of stay, need to be improved;

(3) In terms of the specific role played by landscape elements in urban park waterfront
green spaces, among the four types of landscape elements, the spatial element is the
element type with the greatest contribution to public psychology, followed by the
facility element and the natural element, with the construction element producing the
lowest impact. Specifically, rich spatial color, complex plant community forms, and
good plant growth can provide positive effects on public psychology, while complex
spatial composition, a higher proportion of construction, and facility elements can
reduce people’s psychological mitigation effects.

These results confirm the effectiveness of the emerging technologies in the application
of urban park waterfronts and the specific ways in which they can be applied. In addition,
the findings suggest the psychological healing effects of waterfront green spaces in urban
parks. In future planning and design, attention to the construction of spatial and facility
elements will have a significant effect on the construction of urban park waterfront green
spaces with psychological healing as the main theme.
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