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Abstract: The ongoing shifts in natural vegetation zones predict the expansion of European beech
(Fagus sylvatica L.) into the Eastern Baltic region, suggesting it will become a potential alternative
to birch (Betula pendula Roth. and Betula pubescens Ehrh.) in forest regeneration. For a successful
application of alternative forest regeneration material, an evaluation of susceptibility to natural
disturbances (e.g., wind) is necessary for reliable projections of timber yield in the long term. This
study compared the loading resistance of beech growing in the northeasternmost stands in Europe to
local birch by applying the static tree-pulling test. Relationships between dimensions of aboveground
parts and resistance against intrinsic wood damages (primary failure) and fatal (secondary) failure
were similar between species. However, birch, which is more drought sensitive compared to beech, is
suggested to have a higher susceptibility to post-storm legacy effects, supporting beech as a potential
alternative to birch in terms of wind resistance.
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1. Introduction

Under changing climate, diversification of forest regeneration material with trans-
ferred genotypes or species is considered among the most effective means for sustaining
productivity and reducing environmental risks [1,2]. European beech (Fagus sylvatica L.),
which is economically important in Central Europe [3], is predicted to expand into the
Eastern Baltic region [4–7], becoming a potential alternative for forest regeneration, as
suggested by high productivity and self-regeneration [7]. There is also evidence of rapid
adaptation to local weather conditions [8]. Considering comparable forestry applications
(as stand-forming or admixture species) and wood properties [9,10], in the Eastern Baltic
region, beech appears as an alternative to birch (Betula pendula Roth. and Betula pubescens
Ehrh.), which is susceptible to snow loading [11] and is weather sensitive [12]. Still, informa-
tion on the susceptibility of alternative forest reproductive material to natural disturbances
(e.g., storms) is crucial for reliable projections of timber yield in the long term [13,14].

In Northern European forests, wind is a major disturbance, which causes most of
the damage to growing stock [15,16] and leads to severe economic consequences [17],
particularly resulting from the post-storm legacy effects such as pests, diseases, and in-
creased susceptibility to water shortage [18,19]. Accordingly, information about tree wind
resistance, which is crucial for sustainable management and the accuracy of long-term
projections, can be efficiently obtained using the static tree-pulling test [20–22]. In addition
to the resistance to fatal (secondary) failure, the static tree-pulling test can estimate the
occurrence of primary failure, which is internal structural wood damage [23–25], hinting at
the expectancy of post-storm legacy effects [18,19,26]. Under intensifying effects of storms
in the Eastern Baltic region [15,16,27,28], the forestry potential of beech is supported by its
evolutionary adaptation to wind loading [29].

The aim of the study was to assess the loading resistance of beech growing in the
northeasternmost stand in Europe and compare it with that of local birch. Considering
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differing stem and crown architecture [30], we hypothesized beech to have higher loading
resistance compared to birch.

2. Materials and Methods
2.1. Study Sites and Sample Trees

The northeasternmost beech stands of Europe, located in the northwestern part of
Latvia (hemiboreal forest zone of the Eastern Baltic region; N 57◦14′20′′, E 22◦40′06′′), were
studied. In total, 18 beech trees were sampled in 3 stands, which represented the first
(established using the planting material of unidentified provenance) and second (progenies
of the first transferred trees) generations of trees with the ages of 138 and 48–72 years,
respectively (Table 1). These stands have been established as regular plantations (planted
in a 2 × 3 m grid), and no stand thinning has been performed, except the removal of
dead trees, thus the stand structures have only changed under natural conditions. The
distribution of tree stem diameters at breast height among the stands was similar, yet the
older stand was less dense, and thus had a lower stand basal area (according to inventory
in 2021) (Table 1). Trees in the youngest stand were smaller in height than in the older stand
and hence had smaller stem–wood volumes (Table 1).

Table 1. Age, basal area (G), soil density (ρsoil), and gravimetric water content (θg) of the studied
stands, and the number (N), mean (±standard error) diameter at breast height (DBH), height (H),
stem–wood volume (Vs), depth of soil–root plate (DPr), and the volume of soil–root plate (Vr)
of the sample trees of European beech (Fagus sylvatica L.) and birch (Betula pendula Roth. and
Betula pubescens Ehrh.).

Site Age N DBH
(cm)

H
(m)

Vs
(m3)

DPr
(m)

Vr
(m3)

G
(m2 ha−1)

ρsoil
(kg m−3)

θg
(%)

Beech

1 72 6 34.7 ± 4.6 30.6 ± 2.1 1.59 ± 0.43 1.01 ± 0.11 2.93 ± 0.49 44.2 ± 3.2 1362 ± 60 15.6 ± 0.6
2 138 6 33.4 ± 4.9 30.0 ± 1.4 1.46 ± 0.38 0.66 ± 0.14 2.57 ± 0.98 33.6 ± 7.3 1324 ± 88 18.7 ± 1.1
3 48 6 32.7 ± 5.3 26.6 ± 0.5 1.23 ± 0.36 1.04 ± 0.18 3.23 ± 1.44 38.8 ± 2.3 1348 ± 59 15.7 ± 1.5

Birch

4 73 9 27.0 ± 1.4 29.0 ± 1.7 0.75 ± 0.09 0.83 ± 0.09 1.71 ± 0.40 48.9 ± 6.0 1233 ± 36 7.3 ± 1.8
5 104 16 34.8 ± 3.7 32.9 ± 1.4 1.42 ± 0.30 0.86 ± 0.05 3.71 ± 1.06 38.1 ± 5.0 1268 ± 50 9.2 ± 1.0
6 46 6 30.0 ± 4.4 30.1 ± 1.0 0.99 ± 0.33 0.86 ± 0.06 1.84 ± 0.69 60.8 ± 3.6 1273 ± 39 10.0 ± 1.8
7 46 6 28.1 ± 3.0 30.6 ± 1.5 0.87 ± 0.21 0.77 ± 0.12 1.60 ± 0.70 69.9 ± 4.7 1260 ± 51 9.0 ± 4.1
8 53 6 29.4 ± 2.6 29.7 ± 1.1 0.92 ± 0.18 0.79 ± 0.12 2.20 ± 0.71 26.3 ± 0.3 1258 ± 10 26.2 ± 3.6

The study area is situated on flat terrain in lowland (<110 m a.s.l.) with freely draining
mesotrophic loamy deep soils (Table 1). The climate of the study area (western part
of Latvia) is humid continental [31], which is influenced by air masses from the North
Atlantic [32]. The mean annual sum of precipitation is 673.3 mm, and the highest and lowest
monthly mean air temperature is in July (17.6 ◦C) and February (−2.7 ◦C), respectively [33].
The mean annual wind speed is 3.1 m s−1 [33], and the mean maximum wind speed at the
elevation of 10 m is 16.2 m s−1 [34].

In each stand, six canopy trees without visual signs of mechanical damage, pathogen
infection, or pest infestation were selected for sampling according to the stem diameter
at breast height distribution of the stand. Trees growing close together, as well as edge
trees, were avoided to minimize edge effects on the loading resistance. To characterize the
differences in loading resistance with local species, previously published data on 43 birch
trees from 8 stands [35,36] with similar dimensions and ages were used (Table 1). The
birch stands, which represented an area (N 56◦40′ to N 57◦13′ and E 22◦51′ to E 23◦53′)
with comparable meteorological and site conditions, have been managed conventionally,
presuming one to two thinnings during a 70-year rotation cycle.

Soil parameters, such as density and gravimetric water content (Table 1), were deter-
mined from the 100 mL volume samples. They were obtained near each soil–root plate at
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the depths of 0–0.1, 0.1–0.2, 0.2–0.4, and 0.4–0.8 m and stored in sealed bags. Samples were
brought to a laboratory and dried for 24 h at 105 ◦C temperature. The gravimetric water
content of the soil was expressed as the difference in weight between the original and dried
samples. Soil density was expressed for dried samples.

2.2. Static Tree-Pulling Tests

The loading resistance of beech and birch was estimated using the destructive static
tree-pulling tests performed under non-frozen soil conditions during 2019–2022 corre-
sponding to previously applied methodology [22]. Under this approach, a pulling line
(rope/cable) on the sample tree was placed on height, which corresponded to 50% of the
total height. Prior to pulling, selected sample trees were detopped and pruned to reduce
the possible underestimation of the loading resistance caused by the effects of canopy
mass above the half height of the sample tree, as well as wind. Sample tree detopping
was performed one meter above half of the total height (anchoring point) to prevent the
slipping-off of a polyester loop sling Aro Bull (Kong, Monte Marenzo, Italy; static loading
limit of 35 kN) used to fix the puling line on the sample tree.

The pulling line was made as a pulley block system, consisting of oppositely placed
two double pulleys from Roll Double (Edelrid, Germany; static loading limit of 50 kN), and
a 12 mm rope (Capstan Winch Cable, Nordforest, Germany; static loading limit of 17 kN)
was used to make the pulling line, which was extended by adding a static polyester rope
(Tenex Tec 12; diameter 12 mm; static loading limit of 53 kN; Samson Rope Technologies
Inc., Ferndale, WA, USA). All connections of the pulling line were secured using steel
carabiners from Big Dan Arborist (ISC, Bangor, Wales, UK; static loading limit of 50 kN).

Tree pulling was performed using a motor winch (1800 Capstan Cable Winch, Nordfor-
est, Germany; static loading limit of 17 kN), anchored at the base of an oppositely located
tree at a distance of 30–40 m. Trees were pulled until the occurrence of uprooting or stem
breakage (fatal failure). The pulling force and the angle of the pulling line (dynamometer
placed between the pulley block system and the extension rope anchored at the sample
tree) and stem tilting (inclinometers placed on the stem at the base and at 5 m height) were
recorded using the TreeQinetic System (Argus Electronic GmbH, Rostock, Germany).

For each uprooted tree, the dimensions of the soil–root plate were determined. The
maximum depth was approximated by penetrating through a measuring rod at the central
(thicker) part of the soil–root plate. The height and width of the soil–root plate were
determined by measuring five radii (at 0◦, 45◦, 90◦, 135◦, and 180◦) on the surface from the
tree stem base until the edge of the soil–root plate. The length of individual roots, which
stretched out from the main body of soil–root plate, was not counted as the edge.

2.3. Data Processing and Analysis

The obtained data on the pulling force and the angle of the pulling line were used to
estimate the loading resistance of trees as the bending moment at stem base (BBM, in kNm)
as follows:

BBM = F · hanchor · cos(median(αline)) (1)

where the recorded force of pulling is F, hanchor is the attachment height of the pulling line
on the sample tree (half of the initial tree height), and the angle between the pulling line
and the surface of the ground is αline.

The inclinometer data on the recorded stem tilting at the base and at 5 m height were
used to calculate the deflection of the stem (N∆, ◦) as the difference between them:

N∆ = N5m − Nbase, (2)

The occurrence of primary (PF) and secondary (SF) failures was estimated according
to BBM and N∆ [22]. As a result of tree bending, the PF occurs under the compression as a
structural damage of wood either in roots or stem [23–25]. PF was estimated graphically
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as the end of the proportional increase of BBM and N∆ [22]. The SF was estimated as the
maximum BBM, as the fatal failure either by uprooting or stem breakage occurred.

The volume of the soil–root plate, which is a proxy for tree anchorage [37,38], was
approximated as half of an elliptical paraboloid:

V =

(
1
2

)
· π · h · a · b, (3)

where h is the depth, and a and b are the shortest and longest radii of the soil–root
plate, respectively.

The stem–wood volume was calculated for each of the species according to the local
equations by Liepa [39] as follows:

Vbeech =

(
0.785 · DBH2 · H

10000

)
·
(

0.99 ·
(

750
1500 + DBH

)
+

2.3
DBH2 −

DBH
2000

)
, (4)

Vbirch = 0.0000909 · H0.71677 · DBH0.16692 · 0.4343 · ln(H) + 1.7570, (5)

where H and DBH is tree height (m) and the stem diameter at breast height (cm), respectively.
The differences in the volume of the soil–root plate, as well as in BBM at both the

PF and SF between the species were evaluated using the analysis of covariance (linear
mixed-effects models) relating to stand and tree dimensions. The models in general form
were as:

yijk = µ + Vij + spk + Vij : spk + (standj) + εij, (6)

where Vij is the tree size covariate (stem–wood volume) [22,35,36], spk is the fixed effect
of species, and Vij : spk is the interaction between the covariate and species. In the
models, the stand was included as the random effect (standj) to account for local specifics,
pseudoreplication, as well as unbalanced sample groups. The models were fit with the
maximum likelihood approach. The significance of the fixed effects was estimated using
Type II Wald’s χ2 test. Data analysis was conducted in R (v. 4.2.2) [40] using the package
“lme4” [41].

3. Results and Discussion

The resistance against static loading for both species was dependent on the soil–root
anchorage, as most of the trees uprooted during the test (except two beeches in the older
stand), indicating that stem resistance exceeds the strength of the soil–root anchorage. The
prevailing uprooting suggests that a higher volume of quality timber could be retracted
using salvage logging, as stems are less likely to be cracked [42]. Still, the occurrence of stem
breakage of beech could be related to a more dynamic and adaptive root system [3,43,44],
suggesting the capability of stronger root anchoring compared to birch, given that the size
and volume of the soil–root plate were similar (Table 1). Accordingly, differences in stem
breakage suggested the relevance of root architecture [3,43,44], even though the soil–root
plate dimensions are considered a tree stability proxy [37,38]. The prevailing uprooting
also suggested that the root system is the main location of PF.

Tree stability is tightly linked to the dimensions of the aboveground parts [45], hence
significant (p < 0.001) relationships between the PF and SF and the stem–wood volume
were observed for both sampled species (Figure 1, Table 2). Still, these relationships were
weaker compared to the other native tree species, such as Norway spruce (Picea abies (L.)
Karst.) [46] and common aspen (Populus tremula L.) [22], as suggested by the lower marginal
R2 (Table 2). Apparently, beech might be more sensitive to microsite conditions, suggesting
higher uncertainty in estimating the relationship between tree size and loading resistance
against both PF and SF. However, the relationships between tree size and loading resistance
for beech appeared to be less influenced by site compared to aspen and spruce [22,46], as
indicated by a lower variance in the stand (intraclass correlation; Table 2).
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Figure 1. The relationships between the stem–wood volume and the basal bending moment of
European beech (Fagus sylvatica L.) and birch (Betula pendula Roth. and Betula pubescens Ehrh.) at
the (A) primary (BBMPF) and the (B) secondary (BBMSF) failures. The coloured area indicates a 95%
confidence interval.

Table 2. Strength (Wald’s χ2) and significance of the fixed effects (model ANOVA) of the stem–
wood volume (Vstem) and species on the basal bending moment at primary (BBMPF) and secondary
failures (BBMSF), as well as the volume of the soil–root plate (Vroots), model performance (R2),
and random variances in site for European beech (Fagus sylvatica L.) and birch (Betula pendula
Roth. and Betula pubescens Ehrh.) on freely draining mineral soil in the Eastern Baltic region.
σ2—total variance in the response; τ00—variance associated with random effects (site); ICC—
intraclass correlation coefficient.

BBMPF BBMSF VROOTS

Predictors (χ2) χ2 χ2 χ2

(Intercept) 1.57 0.29 0.11
Vstem 47.71 *** 52.71 *** 19.33 ***

species [birch] 0.23 0.01 0.03
Vstem:species [birch] 1.95 0.90 0.15

Random Effects

σ2 1111.71 1424.36 0.71
τ00 176.50site 423.33site 0.16site
ICC 0.14 0.23 0.19
N 8site 8site 7site

Observations 61 61 53

Marginal R2 0.67 0.69 0.52
Conditional R2 0.71 0.76 0.61

Level of significance: *** p < 0.001
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Contrary to the study hypothesis, beech and birch showed similar loading resistance
against PF and SF, as indicated by uniform (p > 0.05) relationships between BBM and
the stem–wood volume Figure 1, Table 2). This suggests a comparable adaptability of
both species to local wind climates, supporting beech as a potential alternative to birch in
terms of wind resistance. Under such circumstances, susceptibility to post-storm effects
appears as the main concern regarding the selection of species [19]. Trees weakened by
wind are more prone to droughts [18,47], as internal structural wood damage disrupts
tree hydraulics [24,25], thus increasing the physiological water deficit [48]. This, in turn,
can enhance the negative post-storm legacy effects [19] and increase the susceptibility
of trees/stands to wind damage [18,26], thus forming a negative feedback loop [48]. In
this regard, birch, which is more drought sensitive compared to beech [12,49], appears
to increase the forest susceptibility to post-storm legacy effects [18,19], supporting the
greater forestry potential of beech under projected climate changes in the Eastern Baltic
region [15,28].
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