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Abstract: In order to locate forest fire smoke more precisely and expand existing forest fire moni-
toring methods, this research employed Himawari-8 data with a sub-pixel positioning concept in
smoke detection. In this study, Himawari-8 data of forest fire smoke in Xichang and Linzhi were
selected. An improved sub-pixel mapping method based on random forest results was proposed
to realize the identification and sub-pixel positioning of smoke. More spatial details of forest fire
smoke were restored in the final results. The continuous monitoring of smoke indicated the dynamic
changes therein. The accuracy evaluation of smoke detection was realized using a confusion matrix.
Based on the improved sub-pixel mapping method, the overall accuracies were 87.95% and 86.32%.
Compared with the raw images, the smoke contours of the improved sub-pixel mapping results
were clearer and smoother. The improved sub-pixel mapping method outperforms traditional
classification methods in locating smoke range. Moreover, it especially made a breakthrough in the
limitations of the pixel scale and in realizing sub-pixel positioning. Compared with the results of
the classic PSA method, there were fewer “spots” and “holes” after correction. The final results of
this study show higher accuracies of smoke discrimination, with it becoming the basis for another
method of forest fire monitoring.

Keywords: Himawari-8 image; smoke detection; sub-pixel mapping; random forest; forest
fire monitoring

1. Introduction

The rapid development of satellite remote sensing technology has brought broad
research prospects for many areas. Meteorological satellites play a vital role in forest fire
monitoring. Contemporary satellite forest fire monitoring mainly uses mid-infrared bands.
When forest fires occur, the infrared radiation energy from burning combustibles emits
outward constantly. As soon as the satellite sensors receive infrared radiation, the bright
temperature values of fire pixels change sharply, forming a strong contrast with other pixels.
However, in the early stages of a forest fire, the weak infrared radiation from burning areas
cannot be detected by satellites. Additionally, the infrared radiation can be blocked by
dense forest canopy. Therefore, the mid-infrared band of a satellite cannot receive enough
infrared radiation from the ground, leading to untimely or missed forest fire detection.

In order to solve the above problems, smoke should be another key study object.
Smoke is one of the key features of forest fires, with it being produced throughout the
whole process. Smoke occurs before flames. It passes through the dense forest canopy and
rises rapidly into the sky. The more intense the combustion burning, the stronger the smoke.
In fact, smoke can be identified by satellite sensors. Synthesizing visible and near-infrared
bands can detect smoke successfully. Combining smoke detection with fire point detection
can significantly reduce the omission and delay of forest fire detection.

Smoke contains a lot of toxic and harmful gases, which endanger biological safety
and the stability of ecosystems [1,2]. Smoke usually lingers in the air for a long time. The
propagation distance of smoke can even reach the stratosphere under certain atmospheric
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circulation conditions [3]. Timely smoke detection can provide indicative signals for forest
fire prevention.

Research on satellite smoke detection began in the 1970s. The main methods are the
visual discrimination method [4], multi-channel threshold method [5], multi-image time
difference method [6], aerosol inversion method [7], and pattern recognition method. The
visual discrimination method [4] is widely used to determine the approximate position
of forest fire smoke by presenting true or false color images in different band synthesis
sequences. Xie et al. [5] proposed a multi-channel threshold method based on MODIS
(Moderate-resolution Imaging Spectroradiometer), using prior knowledge of the spectral
radiation characteristics of bands and regional optimal thresholds to gradually exclude non-
smoke pixels. The smoke area could finally be obtained when other objects were removed.
However, the threshold setting could not be unified due to the differences between sensors.
A small range of smoke can easily be identified as noise pixels. Chrysoulakis et al. [6]
proposed a multi-image time difference method that improved smoke detection based
on Advanced Very High-Resolution Radiometer (AVHRR) data from multi-period and
multi-spectral characteristics. After masking water and cloud, NDVI (normalized difference
vegetation index) and near-infrared band reflectance anomalies were obtained to detect
the plume center; then, the whole smoke range was solved by extending the plume center
with temporal and spatial information. However, this method requires cloudless images
on a sunny day. The aerosol inversion method [8–10] regards smoke as an aerosol. It
compares the optical thickness and particle size parameters between smoke and other
aerosol categories. The multiple scattering and enhanced absorption of smoke in the
blue light band are considered. However, the applicability of this method has regional
differences, and there is no fixed standard for parameter setting. The pattern recognition
method uses the spectral characteristic differences between smoke and other typical ground
objects in classification, so as to identify the smoke pixels. For example, Li et al. [11] studied
the fire smoke detection algorithm based on a combination of K-means clustering and
the Fisher classifier. Li et al. [12] also proposed a forest fire smoke identification model
based on the MODIS sensor and BP neural network and introduced the concept of seasonal
applicability into forest fire smoke detection. Rui Ba [13] proposed a wildfire smoke
detection model based on the MODIS sensor and a convolution neural network. The
model was continuously optimized by training a large number of smoke sample datasets
(USTC_SmokeRS). Machine learning algorithms are usually designed to fit the complicated
relationship between input and output, in order to find the optimal function to classify
smoke [14]. These methods require sufficient smoke sample data.

The current methods of smoke detection are at the pixel level. In Himawari-8 images,
mixed pixels are common because of the 2 km scale. In scenarios of forest fire smoke
detection, the atmospheric apparent reflectance values of low-density smoke pixels are
composed of other ground objects, because light can pass through them and be received
by satellite sensors. The pixel-level classification methods divide single pixels into single
classes, which is inclined to cause a loss of detailed information. In order to solve this
problem, this paper introduces the sub-pixel mapping idea into smoke locating, aiming
to determine the accurate location of smoke at the sub-pixel level and providing effective
information for forest fire detection.

The idea of sub-pixel mapping was first proposed by Atkinson [15] in 1997. The
pixel in the image is divided into several sub-pixels according to the scale factor; then,
the endmember location is carried out according to the spatial correlation theory of the
ground objects. The closer the ground objects are, the greater the similarity [16]. The
classical sub-pixel mapping algorithms include the pixel switch algorithm (PSA) proposed
by Atkinson [17] and the sub-pixel/pixel spatial attraction model (SPSAM) proposed
by Mertens [18]. The former considers the spatial attraction between sub-pixels and
adjacent sub-pixels in mixed pixels; the latter concentrates on the spatial attraction between
sub-pixels and adjacent mixed pixels. Kasetkasem et al. [19] introduced the Markov
random field theory, considering the spectral information and spatial correlation of ground
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objects. It solves the conditional probability corresponding to sub-pixels and reduces the
constraint of abundance value on sub-pixel mapping results. Tolpekin [20,21] researched
the energy function with or without prior information and applied the Markov model
to analyze the uncertainty of sub-pixel mapping. The application of sub-pixel mapping
includes water extraction, building extraction, forest land extraction, etc. Ling et al. [22]
realized building boundary extraction at sub-pixel scales using the shape and direction
information of buildings on the basis of simulation data and real IKONS and AVIRIS
images. Li et al. [23] completed flood thematic maps of the Yangtze River Basin in China
and the Murray–Darling Basin in Australia using the concept of sub-pixel mapping, based
on the Bayesian standardized BPNN and particle swarm optimization algorithm without
additional auxiliary information. Li et al. [24] used real Landsat-5 TM images, Landsat-5
ETM+ images, and MODIS images to detect changes in tropical rain forests in the Amazon
Basin, Mato Grosso, Brazil, due to excessive logging. Yin et al. [25] realized green space
extraction in the urban–rural boundary area of the Haidian District in Beijing at the sub-
pixel scale using GF-2 images. To date, there has been a research gap in using the sub-pixel
mapping method in forest fire smoke detection, which is the research focus of this paper.

In this study, smoke detection based on the improved sub-pixel mapping method and
random forest was performed. The main body of this paper consists of five sections. The
Introduction includes the background, recent studies, and the importance of this paper.
The Materials and Methods present the experimental data, introduce the main methods,
and show the method flow chart. In the Results section, the results of each procedure
are displayed in the form of maps and tables. Some comparison results are also listed.
The Discussion presents analyses of the results, and the limitations of this research are
summarized. The Conclusion summarizes the entire research. The essence and prospects
of this research are described.

2. Materials and Methods
2.1. Study Area

Xichang (schematic diagram B in Figure 1) and Linzhi (schematic diagram A in
Figure 1) are two cities with rich vegetation resources. Both of them are located in the west
of China. Xichang is situated in Sichuan Province, while Linzhi is located in Tibet. The
geographical location maps of the study areas are shown in Figure 1. Frequent forest fires
occur in these two places; the forest fire studied here occurred in Xichang on 30 March
2020. The image range is between 101.1◦–103.8◦ E and 27.5◦–28.8◦ N. The damaged forest
area was 791.6 hectares, and the fire was not completely extinguished until 2 April 2020.
The other case is the fire that occurred in Linzhi on 27 October 2021. The image range is
between 97.1◦–98.2◦ E and 28.5◦–29.5◦ N. The altitude here is 2400 m to 3500 m, and the
firefighting work was not totally finished until 3 November 2021. Detecting smoke not only
shortens the time for forest fires to be detected but also helps to reduce the losses caused.

2.2. Data Pre-Processing

In this study, Himawari-8 data were used to detect forest fire smoke, and NOAA-20
data were used to verify the accuracy. The projection of Himawari-8 HSD data is full
disk. Therefore, projection conversion is required to display the forest fire area clearly in a
plane. The most essential work lies in converting the raw and line numbers to geographical
coordinates. For NOAA-20 data, when converting the data from RDR to SDR, the “bow-tie
effect” needs to be eliminated by geometric correction, for displaying the complete image.

In addition, both kinds of raw data have several bands. Single bands were extracted
from raw data. These bands need to be radiometrically calibrated so as to the convert
digital numbers to the corresponding reflectance values of each pixel. For Himawari-8
data, synthesis bands 1–6 were used. For NOAA-20 data, all of the image bands were
synthesized. After that, the images were clipped according to the coordinates of forest fire
area. Additionally, registration procedures need to be performed between the two datasets.
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In order to verify the mapping result, NOAA-20 images with the same scene are
required. However, the spatial resolution of NOAA-20 images is 375 m. Therefore, resam-
pling is a necessary process. The pixel aggregate method can resample the spatial resolution
from 375 m to 400 m. This method comprehensively considers all the raw pixels included
in the interpolated pixels. Additionally, it determines the corresponding weight coefficient
according to the area ratio of the raw pixels included. The raw pixel values included in the
resampled pixels are multiplied by the sum of the corresponding weight coefficients and
divided by the ratio of the resampled pixels to the original image resolution to obtain the
grid values of the resampled pixels.

2.3. Forest Fire Smoke Detection Based on Random Forest

Random forest is a supervised classification method. It optimizes classification per-
formance by integrating a large number of basic classifiers (decision trees). The classic
decision tree is CART, which was proposed by Breiman [26]. Each CART decision tree
makes a judgment in the form of voting independently. The final result with the most votes
represents the class of the pixel. The indicators used for making judgments include feature
selection, decision tree generation, and pruning [27]. Therefore, the classification results
are affected by the strength and correlations of decision trees [28]. The split of a decision
tree starts from the root node, which does not end until the sample characteristics of the
sub-node and parent node are the same. Each split generates two subsets. The relationship
between splitting times and decision tree performance is positive. However, the calculation
becomes more complicated at the same time. The model of the random forest structure is
shown in Figure 2.

The concept of “random” reflects the aspects of sample extraction, sample feature
selection, and the combination of decision trees. Random forest is a flexible machine
learning algorithm with strong fitting ability and good anti-noise performance. It shows
good adaptability on image classification. Overall, the realization of random forest includes
two steps: (1) train the model; random extract samples with playback are based on a
bootstrap, which means that two-thirds of the training samples are in the bag (repeat
extraction) and one-third of the training samples are out of the bag (do not repeat extraction),
forming an “out of bag error” [29]. “Out of bag error” is an unbiased estimation of random
forest, used for testing the classification effects of each decision tree [28]. Each decision tree
splits according to the minimum principle of the Gini coefficient, forming the complete
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random forest model. (2) Input the sample sets into the model; the highest voted category
is determined as the output classification result.
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In order to ensure high accuracy and calculation efficiency of the model, the number
of decision trees was set to 100, and that of characteristic variables was set to 6. The number
of sample points for each object classification in the two areas are shown in Table 1.

Table 1. Number of samples for each class in the two study areas.

Characteristic Class Study Area Training Samples Test Samples Total Number of Samples

Vegetation
Xichang 2092 1046 3138

Linzhi 328 163 491

Bare lands
Xichang 2851 1425 4276

Linzhi 711 355 1066

Smoke
Xichang 516 257 773

Linzhi 172 86 258

Clouds
Xichang 1186 592 1778

Linzhi 184 92 276

The original sets were divided into 67% training samples and 33% test samples.
The training set was applied to building models, and the test set aimed to evaluate the
classification effects of the models.

2.4. Mixed Pixel Decomposition Based on LMMs

Satellite remote sensing images obtain the basic information of ground objects with
pixels as the basic unit. Additionally, information recorded by the sensor is the sum of
the radiation energy of all ground objects in the pixels. Therefore, pixels with several
ground objects are called “mixed pixels”. Current research on mixed pixel decomposition
is based on the assumption that there are a few ground objects (endmembers) with stable
spectral characteristics [30]. The mixed reflectance value of mixed pixels can be expressed
as a function of the spectrum of endmembers and the proportions (abundances) of the
endmember area [31]. The function is as follows:

M = G ( f1, f2, . . . , fn; R1, R2, . . . , Rn) (1)
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In Equation (1), M is the mixed spectral vector, fn represents the endmember area
proportion, Rn denotes the spectrum of endmembers of the n class, and G is the spectral
mixture function, which is divided into the linear model and nonlinear model.

A linear mixed model (LMM) [32] assumes that the spectra of different types of end-
members are relatively independent and do not work with each other. Therefore, the spectral
characteristics of the same class of endmembers in pixels are linearly additive, and they are
linearly superimposed into a comprehensive spectrum according to a certain proportion. In
smoke detection scenes of satellite remote sensing, due to the 2 km pixel scale and density
changes in smoke, LMMs are more appropriate. The LMM equation is as follows:

M =
n

∑
k=1

fkRjk + ε (2)

In Equation (2), fk is the abundance of the endmember k (the area ratio of the endmem-
ber in a pixel), Rjk represents the reflectivity of endmember k in band j, and ε is the noise
vector, which is generally considered to satisfy the Gaussian distribution [33].

Endmember extraction includes determining the type, quantity, and the spectral
characteristics of each endmember, directly affecting the decomposition results of the
mixed pixels [34]. In this study, both the pixel purity index (PPI) [35] and Sentinel-2 10 m
spatial resolution images were used in endmember extraction. The PPI performs well in
extracting stable ground objects in a short time, such as vegetation, bare land, buildings,
etc., and is sensitive to noise. There is no suitable parameter selection rule, and it is not easy
to judge the actual endmember category from the result. Therefore, using Sentinel-2 images
in the same place and same date for reference in endmember extraction is preferable here.

Abundance inversion [36] in LMMs considers that the abundance value, fk, should be
constrained according to fully constrained least squares (FCLS). The constraint conditions
are shown in Equation (3).

n

∑
k=1

fk = 1 and fk > 0 (3)

The abundance value of each endmember must be between 0 and 1, which ensures
the non-negativity of the abundance value. The sum of the abundance values of each
endmember in each pixel is equal to 1, which ensures the full addition constraint of
abundance [37].

2.5. Sub-Pixel Mapping

In order to reflect the specific contour of smoke in the image, so as to realize the
extraction of forest fire smoke at the sub-pixel scale, sub-pixel mapping is required after
mixed pixel decomposition. According to Tobler’s first law [38], all the objects in geogra-
phy are inter-related. The closer the spatial distance, the greater the correlation between
two objects [16]. This theory provides support for sub-pixel mapping.

This study aimed to extract forest fire smoke, which means that other endmembers
can be regarded as a whole. Therefore, the smoke sub-pixels equal 1 and others equal 0 in
the final result of sub-pixel mapping. The sub-pixel segmentation scale factor is 5, which
means that the mixed pixel of the raw image has been split into 25 sub-pixels. The spatial
resolution of the sub-pixel mapping result is 400 m. The methods of PSA and SPSAM are
compared here.

2.5.1. PSA Method

The pixel switch algorithm (PSA) method was proposed by Atkinson in 2005 [39]. The
basic idea is to continuously exchange the positions of sub-pixels to maximize the spatial
attraction. Researchers have tried to adopt this method to locate sub-pixels of various
land types, and to obtain classification images by stacking them one by one [40]. The
research purpose of this paper is to extract forest fire smoke at the sub-pixel scale, without
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considering the separate positioning of other ground objects except smoke. Therefore, other
ground objects sub-pixels are uniformly set as background values.

The PSA method uses the spatial attraction between sub-pixels and neighboring
subpixels to quantify the spatial correlation [41]. Firstly, the sub-pixel images are initialized
according to the abundance inversion results; then, the space gravity of each sub-pixel
location is calculated. The spatial attraction expression of sub-pixel Pi and adjacent sub-
pixels in endmember e is as follows:

A(Pie) =
Pt

∑
j=1

λijZ(xje) (4)

In Equation (4), the quantity of adjacent sub-pixels around Pi is Pt. λij represents the
distance weight function between Pi and Pj, which is shown in Equation (5). In Equation (6),
Z(xje) is the discrimination function of the endmember, which equals a binary number 0 or 1.

λij = exp

(
−d
(

Pi, Pj
)

α

)
(5)

Z(xje) =

{
1 (sub − pixel i belongs to endmember e)
0 (others)

(6)

In Equation (5), α is the exponential parameter of distance decay model. d
(

Pi, Pj
)

repre-
sents the Euclidean distance between the sub-pixels Pi and Pj. In a two-dimensional plane, it
equals the linear distance between two points. The calculation expression is as follows:

d
(

Pi, Pj
)
=
√(

xi − xj
)2

+
(
yi − yj

)2 (7)

For the sub-pixel Pi, the number of neighborhood sub-pixels, Pt, can be calculated
according to Equation (8):

Pt = (2r + 1)2 − 1 (8)

In Equation (9), r represents the search radius of a searching neighborhood. After
calculating the spatial gravity of all sub-pixels in the image, the spatial gravity is sorted
according to the endmember category within each initial mixed pixel. For endmember e,
the sub-pixel, Pi, that belongs to endmember e with the smallest spatial gravity A (Pie) is
retrieved, and the sub-pixel Pj does not belong to endmember e with the largest spatial
gravity A

(
Pje
)
. If A (Pie) < A

(
Pje
)
, the endmember properties of sub-pixel Pi and Pj are

exchanged; otherwise, the original properties are maintained. Each endmember and each
mixed pixel are needed to perform the above operation. If endmember attribute exchanges
occur between sub-pixels, the corresponding spatial gravity needs to be recalculated. The
process operates circularly until reaching the maximum cycles or the results converge.
Finally, the endmember attributes of the final output are stable.

2.5.2. SPSAM Method

The sub-pixel/pixel spatial attraction model (SPSAM) method [18] is also a classic
method. The basic principles are as follows: (1) the spatial attraction of neighboring pixels
is determined by the abundance value and distance; (2) the sub-pixel can only generate
spatial attraction with its neighboring pixels, and the number of neighboring pixels is
determined by the size of the search window; (3) the space attraction between the pixel out
of the neighborhood and sub-pixel is ignored due to the large distance [42]. The attraction
calculation formula of the SPSAM method is as follows:

Ae

(
PS2

ij

)
=

T

∑
t=1

λtFe(Pt) =
T

∑
t=1

Fe(Pt)

d(Pij ,Pt)
(9)
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In a two-dimensional coordinate, Ae

(
PS2

ij

)
represents the attraction of sub-pixel Pij by

the endmember e in the search window. In Equation (9), i and j represent the horizontal
and vertical coordinates, respectively. S is the scale factor of pixel segmentation. Therefore,
S2 represents the number of segmented sub-pixels in a raw pixel. T represents the number
of pixels in the search window; Fe(Pt) represents the abundance value when neighboring
pixel Pt belongs to endmember e. λt is the spatial correlation weight, and the calculation
formula is as follows:

λt =
1

d(Pij ,Pt)
(10)

In Equation (10), dt represents the Euclidean distance between the center of sub-pixel
Pij and adjacent pixel Pt, and the calculation formula is the same as Equation (7).

Solving the number and location of sub-pixels belonging to endmember e in the mixed
pixel refers to spatial attraction Ae

(
PS2

ij

)
. The sum of spatial attraction in the search window

is maximized; then, the number of sub-pixels belonging to endmember e in the mixed pixel is
constrained according to the abundance value. The calculation formula is as follows:

Ne
ij = S2Fe(Pt) (11)

The number of sub-pixels belonging to endmember e in the mixed pixel is obtained
by multiplying the number of sub-pixels in a mixed pixel by the abundance value of
endmember e. The location of the top Ne

ij sub-pixels in spatial attractiveness rankings
belong to endmember e.

2.6. Sub-Pixel Mapping Correction Based on a Random Forest Classification Map

Sub-pixel mapping relies on images without auxiliary information. However, due to
the lack of constraint information and reference to setting parameters, the mapping results
have uncertainties. The results have some noise pixels, including commission errors and
errors of smoke omission, which are shown as “spots” and “holes” in images. In order to
improve the accuracy of sub-pixel mapping, it is necessary to obtain more information that
can reflect the internal spatial distribution characteristics of mixed pixels as the constraint
conditions for sub-pixel positioning [43]. Smoke floats in the air with changing shapes,
determined by the distribution of fire. It is unpractical to record smoke shapes, especially
from the perspective of satellites. Therefore, a classification map with considerable accuracy
can provide more information for correction.

To some extent, a clumping process can solve the problem of spatial discontinuity
caused by sub-pixel positioning. The principle of clumping is using morphological opera-
tors to cluster or merge adjacent similar classification regions. First of all, the classification
objects are merged by expanding operation according to the dilate kernel value. Next, the
classification images are eroded according to the erode kernel value. Finally, most “spots”
and “holes” in the images are eliminated. The smoke edge becomes smoother. In this study,
there were five extended kernels and three eroded kernels.

The clumping process is unable to handle those “spots” and “holes” on a larger scale.
In this case, a random forest classification result map was introduced, which can help
reduce the commission error and omission error of smoke in sub-pixel mapping results.
The main approach is called the “sliding window” method. If the category of a pixel is
inconsistent with those of the surrounding eight pixels, the center pixel will be decomposed,
and its category will be determined by sub-pixel mapping. If the category is consistent
with those of the surrounding pixels, the center pixel is directly determined as the same
category as the adjacent pixels. Finally, some pixels with misclassification between smoke
and others can be corrected.
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2.7. Accuracy Evaluation

For both forest fire smoke detection and sub-pixel mapping parts, accuracy evaluations
are necessary. In this study, a confusion matrix was used in the accuracy evaluation. The
evaluating indicators were overall accuracy, kappa coefficient, producer accuracy, user
accuracy, commission error, and omission error.

When the classification is correct, the results are arranged on the main diagonal of the
matrix, and the misclassified sub-pixels are arranged on both sides of the main diagonal.
The larger the element value on the main diagonal, the more accurate the classification,
and the higher the classification accuracy. The larger the element values on both sides of
the main diagonal, the more serious the misclassification, and the lower the classification
accuracy. The confusion matrix structure of smoke detection is shown in Table 2.

Table 2. Confusion matrix structure of smoke detection.

Smoke in Classification Others in Classification

Smoke in real True Positive (TP) False Negative (FN)
Others in real False Positive (FP) True Negative (TN)

The basic statistical estimates of the confusion matrix are as follows:

(1) Overall Accuracy

The overall classification accuracy is equal to the proportion of correctly classified sub-
pixel numbers in the total number of sub-pixels involved in the classification. In a confusion
matrix, overall accuracy [44,45] represents the ratio of the sum of elements on the main
diagonal to the sum of all elements in the square matrix. It is used to measure the overall
classification quality of the model. The expressions of the four indicators are as follows:

Overall Accuracy =
TP + TN

TP + FN + FP + TN
(12)

Producer accuracy [46] and user accuracy [47] are used to reflect the omission error
and commission error, respectively. The calculation equations are as follows:

(2) Producer Accuracy

Producer Accuracy =
TP

TP + FN
(13)

(3) User Accuracy

User Accuracy =
TP

TP + FP
(14)

The kappa coefficient [48,49] is generated by statistical testing to evaluate the accuracy
of classification. The equation is as follows:

(4) Kappa coefficient

Kappa coefficient =
po − pe

1 − pe
(15)

In Equation (15), po is the ratio of correct classified sub-pixels number to the total
number of sub-pixels, which equals the overall accuracy. The equation of pe is as follows:

pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

(TP + FN + FP + TN)2 (16)

The kappa coefficient is used to test the consistency between classification and fact [50].
The threshold range is [−1, 1]. The kappa coefficient is usually greater than 0; the greater
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the value, the higher the consistency. The judging basis of the kappa coefficient is as follows:
0.00–0.20 (slight consistency), 0.21–0.40 (fair consistency), 0.41–0.60 (moderate consistency),
0.61–0.80 (substantial consistency), and 0.81–1.00 (almost perfect) [51–53].

2.8. Method Flow Chart

The method flow chart of this study is shown in Figure 3.
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Step 1: The random forest algorithm is used to confirm whether there is smoke and to
locate smoke pixels. It shows superior pixel-level classification ability in classifying smoke,
clouds, vegetation, and bare lands. The result map also becomes the constraint information
of sub-pixel mapping correction.

Step 2: Mixed pixel decomposition is used to determine the abundance value of each
endmember in mixed pixels, providing information for sub-pixel mapping. The results
contain the abundance maps of each endmember.

Step 3: Sub-pixel mapping and correction are utilized to locate smoke in the sub-
pixel unit. This method not only enhances the spatial resolution, but also determines the
distribution of smoke in mixed pixels. Based on the improved sub-pixel mapping method,
those “spots” and “holes” in images caused by lacking constraint information have basically
been eliminated, restoring the more realistic appearance of smoke.

3. Results

All the results are based on the two forest fires which occurred in Xichang and Linzhi
on 30 March 2020, and 28 October 2021, respectively.

3.1. Results of Spectral Characteristics Extraction

The visible and near-infrared bands (1–6 channels) of Himawari-8 data were selected
to analyze the spectral characteristics of smoke, clouds, vegetation, and bare land. The
statistical results of atmospheric apparent reflectance mean values are shown in Figure 4.

According to Figure 4, in the visible light band and channel 4 near-infrared band
(0.86 µm), the average reflectance values of smoke are lower than those of clouds. Addition-
ally, the clouds’ reflectance mean values are the highest among the four ground objects. For
vegetation and bare lands, these are less than 0.1; both values are less than that of smoke.
In near-infrared band 5, the average reflectance values of bare lands are higher than those
of smoke. The average reflectance values of smoke in near-infrared band 6 are the lowest
among the four ground objects.
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Figure 4. Statistical results of the reflectance mean value of the endmember. (a) Xichang study
area; (b) Linzhi study area. The x-coordinate represents different bands of the satellite, and the
y-coordinate represents the mean values of reflectance. The red polyline represents smoke; the blue
polyline represents clouds; the green polyline represents vegetation; the yellow polyline represents
bare lands.

3.2. Results of Forest Fire Smoke Detection

In the pixel-level classification of images, there are four classes: vegetation, bare lands,
smoke, and clouds. Figure 5 shows the classification result of the Xichang forest fire based
on random forest.
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Figure 5. Random forest classification result of the Xichang study area. The vegetation pixels are in
green, bare lands pixels are in yellow, smoke pixels are in red, and clouds pixels are in blue.

Table 3 shows the pixel quantity statistics of the four classes in the Xichang study area.
It is obvious that the sum of the area proportion of vegetation and bare lands is 74.40%,
which is much higher than those of smoke and clouds. In addition, the area proportion
of clouds is more than twice as that of smoke. From the perspective of Figure 5, the main
body of smoke was not sheltered by clouds.

Table 3. Random forest classification results statistics of the Xichang study area.

Vegetation Bare Lands Smoke Clouds

Area proportion (%) 31.49 42.91 7.76 17.84
Number of pixels 2870 3911 707 1626

Figure 6 shows the classification result of the Linzhi study area based on random
forest. The ground objects were marked in four colors. Figure 6 has the same form as
Figure 5.
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smoke, clouds pixels are in green, yellow, red, blue colors, respectively.

Table 4 shows the pixel quantities statistics of the four classes in the Linzhi study area.
It can be seen that the sum of the area proportion of vegetation and bare lands is 74.46%.
However, the area proportion of smoke and clouds is almost equivalent. Moreover, the
smoke and clouds are irregularly distributed in Figure 6.

Table 4. Random forest classification results statistics of the Linzhi study area.

Vegetation Bare Lands Smoke Clouds

Area proportion (%) 23.48 50.98 12.34 13.20
Number of pixels 491 1066 258 276

Both images detected forest fire smoke successfully. However, the scale of the forest
fire in Xichang was larger than that in Linzhi. In Xichang, the average elevation is below
2000 m; thus, smoke and clouds existed separately in this fire image. However, because
the elevation of Linzhi is higher, the smoke and clouds existed in the same area from the
satellite perspective, which disrupted the classification.

Using Sentinel-2 data as a reference, test samples of each category were selected
homogeneously on the Himawari-8 images. In order to determine the classification accuracy
of smoke in the two fires, the overall accuracy, kappa coefficient, producer accuracy, and
smoke user accuracy were used for analysis, as shown in Table 5.

Table 5. Accuracy evaluation of smoke detection based on random forest.

Overall
Accuracy (%)

Kappa
Coefficient

Smoke Producer
Accuracy (%)

Smoke User
Accuracy (%)

Xichang 83.52 0.66 88.06 72.84
Linzhi 84.68 0.69 90.57 77.42

The overall accuracy and kappa coefficient are based on the four classes of classifica-
tion. Both kappa coefficients are larger than 0.6. Therefore, the classification results are
highly consistent with the fact. The smoke producer accuracies were 88.06% and 90.57%,
respectively, which means that the omission errors of smoke were low. However, the smoke
user accuracies were 72.84% and 77.42%, respectively. The commission errors of smoke are
mainly caused by misclassification between smoke and clouds. An accurate distinction
between smoke and clouds is still a challenge for random forest classification.
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3.3. Results of Mixed Pixel Decomposition

According to the classification, the endmembers of the two forest fire images were
vegetation, bare lands, smoke, and clouds. The grey maps of endmember extraction in the
two study areas are shown in Figures 7 and 8.
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Figure 8. Endmember extraction grey maps of the Linzhi study area. (a) Vegetation; (b) bare lands;
(c) smoke; (d) clouds.

Figures 7c and 8c represent the abundance of smoke. The grey level reflects the
possibility of smoke. The pixel value ranges between 0 and 1; a higher grey value means
that the pixel is purer (with fewer other endmembers), and the endmember extraction is
more complete. In order to reflect the effects of overall abundance inversion, the abundance
maps in RGB form are shown in Figures 9 and 10.
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Figure 10. RGB abundance map of the Linzhi study area.

In Figures 9 and 10, red represents smoke, green represents vegetation, blue represents
clouds, and the remaining part indicates bare lands. Mixed pixels with unpurified colors
contain more than one endmember.

3.4. Results of Sub-Pixel Mapping before and after Correction

The smoke sub-pixel mapping results are images with two classes: smoke and others. The
smoke pixel values equal 1; other pixel values equal 0. The sub-pixel mapping results before
and after correction based on the PSA and SPSAM methods are shown in Figures 11 and 12.
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Figure 11. Sub-pixel mapping result of the Xichang study area. (a) Before correction based on the
PSA method; (b) after correction based on the PSA method; (c) before correction based on the SPSAM
method; (d) after correction based on the SPSAM method.
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Figure 12. Sub-pixel mapping result of the Linzhi study area. (a) Before correction based on the PSA
method; (b) after correction based on the PSA method; (c) before correction based on the SPSAM
method; (d) after correction based on the SPSAM method.

Figures 11 and 12 present comparisons of the PSA and SPSAM methods;
Figures 11a,b and 12a,b show the PSA method results, and Figures 11c,d and 12c,d show
the SPSAM method results. Figures 11b,d and 12b,d exhibit fewer spots and holes than
Figures 11a,d and 12a,d. Figure 12b has a clearer smoke outline at the bottom, which can
be inferred as the origin of the fire. Through the comparison of the sub-pixel mapping
results before and after correction, it can be found that most “spots” and “holes” caused by
misclassification have been eliminated.

In order to highlight the effects of the improved sub-pixel mapping method in smoke
detection, the raw Himawari-8 images and corresponding final smoke detection results are
shown in Figures 13 and 14.
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Figure 13. Comparison between the raw image and the final result in the Xichang study area.
(a) Himawari-8 band 1 image with a 2 km spatial resolution (single band image); (b) the final result
after correction with a 400 m spatial resolution (binary image).
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(a) Himawari-8 band 1 image with a 2 km spatial resolution (single band image); (b) the final
result after correction with a 400 m spatial resolution (binary image).

Figures 13b and 14b contain more detailed spatial information of smoke than the raw
image. The spatial resolution was enhanced from 2 km to 400 m, and the endmember
classes contained within the pixels were relocated. The red rectangular box areas are
regarded as the origin positions of the forest fire. Moreover, the smoke origin positions
are clearer in Figures 13a and 14a. In particular, the outline of the smoke has been clearly
distinguished.

In the accuracy evaluation, NOAA-20 images with a resampled 400 m spatial resolution
were set as a control group. Sub-pixel mapping results before and after correction were set
as the experimental groups. They have the same pixel scale. Accuracy evaluation has four
indicators: overall accuracy, kappa coefficient, smoke producer accuracy, and smoke user
accuracy. The results are shown in Tables 6 and 7.

Table 6. Accuracy evaluation of the sub-pixel mapping results before and after correction in Xichang.

Method Overall Accuracy (%) Kappa Coefficient Smoke Producer
Accuracy (%)

Smoke User
Accuracy (%)

Before
correction

PSA 84.36 0.62 74.07 71.94

SPSAM 83.92 0.62 80.85 70.56

After
correction

PSA 87.95 0.74 92.31 75.52

SPSAM 86.88 0.73 84.91 73.85

Table 7. Accuracy evaluation of sub-pixel mapping results before and after correction in Linzhi.

Method Overall Accuracy (%) Kappa Coefficient Smoke Producer
Accuracy (%)

Smoke User
Accuracy (%)

Before
correction

PSA 83.52 0.62 82.69 67.72

SPSAM 84.38 0.64 82.65 70.20

After
correction

PSA 86.32 0.69 83.51 75.70

SPSAM 85.22 0.68 83.65 71.28

The results of the two methods show accuracy differences in smoke sub-pixel posi-
tioning. In most cases, the effects of the PSA method are better than those of the SPSAM
method. Even though the overall accuracies were all maintained in a certain range between
80% and 90%, the spatial detailed information of the PSA method was still richer than that
of the SPSAM method.
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The accuracy evaluation part shows that the overall accuracies of the two methods
have been improved after correction to different extents. For the PSA method, the overall
accuracies of the two forest fires were 87.95% and 86.32%, increases of 3.59% and 2.80%, re-
spectively. The kappa coefficients were 0.74 and 0.69, increases of 0.12 and 0.07, respectively.
For the SPSAM method, the overall accuracies of the two forest fires were 86.88% and
85.22%, increases of 2.96% and 0.84%, respectively. The kappa coefficients were 0.73 and
0.68, which increased by 0.11 and 0.04, respectively. After correction, the producer accuracy
and user accuracy were enhanced, which demonstrated the effect of introducing random
forest results. However, the user accuracies were lower than the producer accuracies, which
reflected the existing commission errors. The small range of confusion between smoke and
clouds in the edge of the clouds is the main reason. However, the smoke detection in this
study still exhibited high accuracy according to the three other indicators.

Most “spots” and “holes” were eliminated; thus, the commission errors and omission
errors decreased after correction. Therefore, the smoke user accuracies and producer
accuracies were enhanced accordingly. These phenomena demonstrate the superiority of
the improved sub-pixel mapping method developed in this study.

3.5. Comparisons between Sub-Pixel Mapping Correction and Traditional Classification Methods

Compared with traditional classification methods, the improved sub-pixel mapping
method performed better in terms of smoke location. This study selected the BP neural
network, random forest, and support vector machine (SVM) as traditional classification
methods for comparison. The results are shown in Figures 15 and 16.

In order to highlight the smoke parts, the smoke pixels are shown in white. Other
pixels, representing vegetation, bare lands, and clouds, are all shown in black. The spatial
resolution of the images in Figures 15b and 16b are 400 m, whereas the other subfigures
have a 2 km spatial resolution. The accuracy evaluation results are shown in Tables 8 and 9.
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(a) BP neural network (2 km spatial resolution); (b) the improved sub-pixel mapping method (400 m
spatial resolution); (c) random forest (2 km spatial resolution); (d) SVM (2 km spatial resolution).
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Figure 16. Smoke detection results (binary image) based on four methods in the Linzhi study area.
(a) BP neural network (2 km spatial resolution); (b) the improved sub-pixel mapping method (400 m
spatial resolution); (c) random forest (2 km spatial resolution); (d) SVM (2 km spatial resolution).

Table 8. Accuracy evaluation of smoke detection based on the four methods in Xichang.

Method Overall Accuracy (%) Kappa Coefficient

BP neural network 76.92 0.54
Sub-pixel mapping correction 87.95 0.74

Random forest 83.52 0.66
SVM 76.92 0.51

Table 9. Accuracy evaluation of smoke detection based on four methods in Linzhi.

Method Overall Accuracy (%) Kappa Coefficient

BP neural network 81.45 0.63
Sub-pixel mapping correction 86.32 0.69

Random forest 84.68 0.69
SVM 83.06 0.65

According to Tables 8 and 9, both the overall accuracy and kappa coefficient indicators
reflect the superiority of the improved sub-pixel mapping method; this method performed
better in smoke detection than the three other traditional classification methods. Compared
with the three other traditional classification methods, random forest showed better perfor-
mance in pixel-level smoke classification. Thus, the improved sub-pixel mapping method
used the random forest result map as constraint information.

3.6. Results of Continuous Smoke Monitoring

The high timeliness of Himawari-8 data is reflected in the continuous monitoring of
forest fire smoke. The forest fire smoke occurring in Liangshan Yi Autonomous Prefecture,
Sichuan Province, on 30 March 2020, was selected as the research object for time sequence
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monitoring. The downloaded remote sensing images were taken at 13:00, 14:00, 15:00, and
16:00 Beijing time.

Smoke detection based on the random forest algorithm was performed on four images;
the results are shown in Figure 17.
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Figure 17. Results of hourly forest fire smoke detection based on the random forest algorithm. The
smoke, clouds, vegetation, and bare lands pixels are in red, blue, green, and brown colors, respectively.
(a) 13:00; (b) 14:00; (c) 15:00; (d) 16:00.

The red pixels represent smoke. The four maps in Figure 17 show that the range of
smoke kept expanding from 13:00 to 16:00 continuously. The statistical results of the area
proportion of each endmember are shown in Table 10.

Table 10. Area proportion statistics of hourly smoke detection based on random forest.

Time Smoke Clouds Vegetation Bare Lands

Area
Proportion (%)

13:00 0.78 24.45 43.31 31.46
14:00 1.72 20.87 44.93 32.48
15:00 10.74 20.58 34.04 34.64
16:00 27.57 21.05 35.57 15.81

From the aspect of time sequence, the area proportion of smoke increased from 0.78%
to 27.57% over the three hours. The classification results and the raw Himawari-8 image
were overlaid; the accuracy evaluation results are shown in Table 11.

Table 11. Accuracy evaluation statistics of hourly smoke detection based on random forest.

Time Overall Accuracy (%) Kappa Coefficient Smoke Producer Accuracy (%) Smoke User Accuracy (%)

13:00 82.59 0.76 70.83 98.08
14:00 81.18 0.74 72.56 95.34
15:00 82.67 0.75 78.63 93.37
16:00 83.52 0.78 83.57 88.69

From the accuracy evaluation results, the overall accuracies of the four images are
82.59%, 81.18%, 82.67%, and 83.52%; the kappa coefficients are 0.76, 0.74, 0.75, and 0.78,
which show that the recognition of forest fire smoke based on the random forest algorithm
and Himawari-8 images is highly consistent.
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After mixed pixel decomposition and sub-pixel mapping correction had been per-
formed, the smoke abundance results in the form of grey maps are shown in Figure 18.
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Figure 18. Results of abundance inversion based on hourly forest fire smoke detection. (a) 13:00;
(b) 14:00; (c) 15:00; (d) 16:00. The grey level represents the area proportion of smoke in a pixel.

A higher grey value shows that the smoke endmember is purer in the pixel, and
the smoke abundance value is higher. Figure 19 shows the results of sub-pixel mapping
correction and corresponding raw images of Himawari-8. Although the smoke gradually
expanded over time, the clouds basically retained their primary shape and size, and the
two objects existed relatively independently. Therefore, misclassification between them in
the cloud edge position could be corrected to some extent.

Forests 2023, 14, x FOR PEER REVIEW 21 of 26 
 

 

 
(a) (b) 

Figure 19. Comparison between raw Himawari-8 images and sub-pixel mapping correction results. 
(a) Raw Himawari-8 images (synthetic bands image with a 2 km spatial resolution); (b) sub-pixel 
mapping correction results (binary image with a 400 m spatial resolution). 

The accuracies of the sub-pixel mapping correction results were evaluated based on 
the confusion matrix method, as shown in Table 12. 

Table 12. Accuracy evaluation of hourly smoke detection based on sub-pixel mapping correction. 

Time Overall Accuracy (%) Kappa Coefficient Smoke Producer Accuracy (%) Smoke User Accuracy (%) 
13:00 89.75 0.78 78.38 86.57 
14:00 88.31 0.77 77.93 88.21 
15:00 88.69 0.76 80.46 89.94 
16:00 86.65 0.75 77.58 85.72 

Table 12 shows that the overall accuracies during each time period (13:00, 14:00, 
15:00, and 16:00) were 89.75%, 88.31%, 88.69%, and 86.65%, respectively, which are 7.16%, 
7.13%, 6.02%, and 3.13% higher than those of the random forest results, respectively. The 
kappa coefficients of the sub-pixel mapping correction results are 0.78, 0.77, 0.76, and 0.75, 
respectively. After correction and clustering, most of the holes and spots in the sub-pixel 
mapping results were eliminated. As a result, the smoke map looked more realistic, and 
the smoke producer accuracy and user accuracy were higher. 

4. Discussion 
Most research on smoke detection concentrates on the image level and pixel level 

[54,55]. Sub-pixel mapping technology is mainly used in the accurate identification of var-
ious objects on the ground, such as land cover [56], forest lands [57], water boundaries 
[58], etc. Smoke floats in the air, similar to clouds, causing difficulties in detection from 
the perspective of satellite sensors. There are some studies about pixel-level smoke detec-
tion, such as using machine learning methods [11,12], using deep learning methods 

Figure 19. Comparison between raw Himawari-8 images and sub-pixel mapping correction results.
(a) Raw Himawari-8 images (synthetic bands image with a 2 km spatial resolution); (b) sub-pixel
mapping correction results (binary image with a 400 m spatial resolution).



Forests 2023, 14, 485 21 of 25

The accuracies of the sub-pixel mapping correction results were evaluated based on
the confusion matrix method, as shown in Table 12.

Table 12. Accuracy evaluation of hourly smoke detection based on sub-pixel mapping correction.

Time Overall Accuracy (%) Kappa Coefficient Smoke Producer Accuracy (%) Smoke User Accuracy (%)

13:00 89.75 0.78 78.38 86.57
14:00 88.31 0.77 77.93 88.21
15:00 88.69 0.76 80.46 89.94
16:00 86.65 0.75 77.58 85.72

Table 12 shows that the overall accuracies during each time period (13:00, 14:00,
15:00, and 16:00) were 89.75%, 88.31%, 88.69%, and 86.65%, respectively, which are 7.16%,
7.13%, 6.02%, and 3.13% higher than those of the random forest results, respectively. The
kappa coefficients of the sub-pixel mapping correction results are 0.78, 0.77, 0.76, and 0.75,
respectively. After correction and clustering, most of the holes and spots in the sub-pixel
mapping results were eliminated. As a result, the smoke map looked more realistic, and
the smoke producer accuracy and user accuracy were higher.

4. Discussion

Most research on smoke detection concentrates on the image level and pixel level [54,55].
Sub-pixel mapping technology is mainly used in the accurate identification of various
objects on the ground, such as land cover [56], forest lands [57], water boundaries [58],
etc. Smoke floats in the air, similar to clouds, causing difficulties in detection from the
perspective of satellite sensors. There are some studies about pixel-level smoke detection,
such as using machine learning methods [11,12], using deep learning methods [59,60], etc.
However, sub-pixel smoke detection is very rare. This study selected two typical forest fires
with large-scale characteristics occurring in Xichang and Linzhi and proposed an improved
sub-pixel mapping method based on the random forest algorithm for locating smoke. A
discussion of the results is presented subsequently.

In pixel-level smoke detection, random forest [61,62] performs better than the BP
neural network [63] and SVM [64]. In this paper, the aim of the technique was to determine
the spatial distribution of smoke in 2 km Himawari-8 images. The overall accuracies of
the two forest fire images based on random forest were 83.52% and 84.68% for Xichang
and Linzhi, respectively. However, smoke has different concentrations at various spatial
scales, which results in different pixel reflectance values. In the classification result maps,
the pixels inside the smoke are correctly classified, but those pixels on the edge of smoke
are easily misclassified due to the limitations of pixel scale. In order to break through the
limitations of pixel scale and determine the endmember distribution of mixed pixels, a
sub-pixel mapping method is required.

In mixed pixel decomposition, LMMs are widely used in multi-spectrum images,
without considering light reflection between ground objects [65]. In addition, endmember
extractions in current research are mainly surface coverage [66]. This paper regards smoke
and clouds as two kinds of independent endmembers, as a novel attempt at sub-pixel
mapping. This approach completes abundance inversion, determining the endmember
abundances in mixed pixels. The abundance map reflects the concentration differences of
smoke in different areas.

The PSA and SPSAM methods [67,68] were compared in terms of sub-pixel mapping.
These two methods can realize the sub-pixel positioning of smoke. However, the spatial
detail information of the PSA results was richer than that of the SPSAM, and the overall ac-
curacies of the PSA results after correction were higher than those of the SPSAM. Therefore,
the PSA method is more suitable than the SPSAM method for smoke detection.

Due to the lack of constraint information, sub-pixel mapping corrections are designed
to improve accuracy. The existence of noise caused by misclassification is almost a common
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problem for satellite remote sensing data [69]. Some noise reduction methods have been pro-
posed in some research, such as rank approximation [70], second-generation wavelets [71],
double logistic function-fitting [72], introducing extra information for correction (such as
introducing DEM in water detection) [73], etc. In this paper, random forest classification
maps and clumping processes were introduced to address this. After correction based on
the “sliding window” method, the overall accuracies and kappa coefficients of the PSA
and SPSAM methods all increased to some extent; most spots and holes disappeared in the
result maps.

Through the continuous monitoring [74] of forest fire smoke at the same location for a
period of time based on the PSA method, it was found that using highly timely Himawari-8
data for smoke detection research is feasible. The variation in smoke range can provide
scientific information for forest fire identification. Detecting smoke can solve the problem
of fire point misjudgment due to insufficient infrared radiation energy in the early stages.
Smoke lingers throughout the whole process of a forest fire; therefore, the development and
spreading trends in forest fires can be observed through the continuous monitoring of smoke.

One limitation of this study is that smoke detection requires daytime in optical remote
sensing. In addition, when the smoke range is smaller than one pixel, it is difficult to carry
out research due to the requirements of spatial correlation information. When clouds block
smoke, smoke detection based on satellite remote sensing will be affected, causing the
shape of smoke to be incoherent. However, once the planar satellite images can be used to
identify the existence of smoke, research can be carried out.

5. Conclusions

At present, the most common method of detecting forest fires is searching for high-
temperature infrared points. However, infrared energy in the early stages of a fire is too
weak to be identified. This phenomenon is usually caused by the inadequate burning of
combustible materials and the occlusion of dense tree canopies. Smoke is generated first
when forest fires occur. The combination of visible and near-infrared bands of meteorologi-
cal satellites can be used to detect forest fire smoke, and a combination with the infrared
detection of high-temperature points of forest fire can solve the problem of missed and
delayed judgment in forest fire monitoring.

For Himawari-8 data, the traditional random forest classification method can realize
the pixel-level detection of smoke. However, the boundary of smoke is not clear due to the
2 km scale pixel. In order to determine the smoke distribution in mixed pixels, the improved
sub-pixel mapping method based on the random forest algorithm was introduced. This
method can enhance the accuracy of smoke detection and restore the more real form of
smoke. Continuous monitoring can determine the variation in smoke. This can provide
information on searching for sites of fire and predicting fire spread directions. Therefore,
searching for forest fires through smoke detection is feasible. One of the contributions of
this paper is that it fills the research gap of using the sub-pixel mapping concept in locating
smoke. Another contribution is that this study employed a random forest result map
to determine constraint information in smoke sub-pixel positioning. In smoke detection
scenarios, the results of the improved sub-pixel mapping method based on the random
forest algorithm have higher accuracies than those of traditional classification methods and
classical sub-pixel mapping methods.

Smoke morphology simulation and traversing fire points through smoke detection
results will be the focus of future research. When fire points can be determined, fire suppres-
sion actions will be more precise. In practical applications, fire points with geographical
coordinates can be provided to improve decision-making.
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