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Abstract: The optimization of supercapacitive properties in carbon materials derived from cheap
and sustainable wood scraps exhibits great application potential. Herein, in support of interfacial
groups, polyaniline nanospheres were in situ constructed in the internal pore structure of wood
scraps; further, the B and N elements were imported by carbonized and hydrothermal methods.
The doped B regulated the species of N doping to improve the electrical conductivity of carbonized
wood scraps, and it endowed a certain pseudo-capacitance. Coupled with the fine double-layer
capacitance from the hierarchical structures constructed by carbonized nanospheres and wood scrap
channels, a high specific capacitance of 406 F g−1 at 0.5 A g−1, high energy density (17.71 Wh kg−1 at
250 W kg−1) and cycle stability (93.04% capacitance retention after 10,000 cycles) were performed
simultaneously. This study provided a new strategy to improve the supercapacitive performance of
bio-carbon materials in terms of structure and conductance.

Keywords: wood scrap; B/N co-doping; porous carbon; in situ synthesis; supercapacitor

1. Introduction

Compared with rechargeable batteries, supercapacitors with short charging time, high
power density, long service life and high cycle stability are currently one of the most popular
energy storage devices among researchers [1–5]. The electrochemical characteristics of
the supercapacitor mainly depend on the properties of electrode materials. Although
high-performance supercapacitor materials, such as graphene, carbon nanomaterials, metal
oxides and conductive polymers, have been greatly developed [6–9], the low sustainability
and high cost limit their practical applications. Therefore, the development of low-cost
carbon sources to prepare superb electrodes becomes an important topic in this field.
Carbon precursors come from a wide range of sources [10], where biomass materials are
favored by researchers due to their low cost, such as peanut shell, soybean, etc. [11–16].
However, problems, such as simple structure, single element, low specific capacitance,
low energy density and poor wettability, in electrolytes limit the application of biomass
carbon electrodes.

Wood scrap is an abundant waste biomass material in nature, which naturally pos-
sesses rich porous structure, excellent mechanical properties and multi-functional physical
and chemical properties [17–20]. However, the specific capacitance of carbon materials
prepared from traditional and single wood in aqueous electrolytes is low (<200 F g−1) [21].
According to the different modification methods, two categories could be generally divided:
the introduction of pseudocapacitor materials and the enrichment of double-layer electrode
materials. The former is pseudocapacitive active materials, such as manganese dioxide,
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cobalt hydroxide and polypyrrole, which were added to wood-derived carbon materials
to increase their capacitance [22–24]. The latter is to enrich the electrode materials of a
double-layer capacitor, such as heteroatom doping, adjusting the surface shape and etching
of carbon materials [25–30]. Many researchers have explored this method, such as B, O
and N co-doped biomass-derived graded porous carbon (382.5 F g−1 at 1 A g−l) [31], the
preparation of the B-doped wood-derived porous carbon (285.6 F g−1 at 1 A g−1) [32] and
N-doped biomass carbon (261 F g−1 at 0.5A g−1) [33] exhibited no special morphological
characteristics, leading to a relatively low specific surface area and, thus, a low contribution
rate of the pseudocapacitance [34–36]. Furthermore, the advantages of B or N elements
were not fully exploited.

The conductive polymer polyaniline (PANI) was deeply researched because of its
high theoretical specific capacity and excellent conductivity. The introduction of PANI
into wood scrap channels could enrich the surface morphology of carbon material and
increase the specific surface area. The cyclic stability of PANI was significantly improved
by using wood as the base. Due to the delignification, a large number of hydroxyl groups
are exposed on the wood cell wall, where PANI could react with hydroxyl groups to form
new bonds, making the load of PANI firmer [37–39]. Compared to synthetic impregnation
into wood channels, the in situ synthesis could prevent the agglomeration phenomenon
formed when PANI is introduced, creating special morphologies, increasing the specific
surface area and reducing the interfacial resistance between materials and PANI. The in-
troduction of PANI can change the types of N element, thus inducing the surface charge
redistribution of carbon materials, improving the electrical conductivity of carbon materi-
als and improving the electrochemical performance of porous carbon. Some researchers
have tried to prepare such composites, such as poplar/PANI composite (the specific ca-
pacity at 5 A g−1 is 312 F g−1) [40] and basswood/polyaniline composite (369.8 F g−1 at
10 A g−1) [41]. Moreover, the N and B elements are attracted to each other to form a bond
bridge to optimize the electrical properties.

As a processing waste, wood scraps are cheaper and more readily available than blocks
and simultaneously own the same three-dimensional porous structure characteristics,
which could be optimized and adjusted by removing lignin, providing a large number of
reaction sites for the next step to realize the modification design of physical structure [22,23].
Herein, elm wood scrap was employed as a raw and base material to synthesize the PANI
nanosphere in situ in the lumen of wood scraps treated with delignification, which not
only realized the synthesis of nitrogen-doped wood-derived carbon but also improved the
utilization of lumen channels in wood. Finally, using boric acid as a boron source and pore-
forming agent, the obtained carbon composite material was processed to obtain B/N co-
doping porous carbon material (BNPCM). The introduction of boron increased the amount
of special functional N element, improved its conductivity and wettability, high energy
density and excellent power density of the symmetric supercapacitor (SSC). This method
provides a new idea for the recombination of double electric layer and pseudocapacitor
materials to make the electrode materials for supercapacitors.

2. Materials and Methods
2.1. Materials

Elm wood scraps were purchased from a local market. Aniline (AN) monomer was
double distilled before use. Hydrochloric acid (HCl, 36%), phosphoric acid (H3PO4 AR),
sodium hydroxide (NaOH AR), hydrogen peroxide (H2O2, 30%) and potassium hydroxide
(KOH AR) were purchased from Aladdin Reagent Co., Ltd., Shanghai, China. The AN,
ferric chloride (FeCl3 AR) and boric acid (H3BO3 AR) were purchased from Macklin
Biochemical Co., Ltd., Shanghai, China. In addition to the aniline, all reagents were of
analytical grade and were used as received without further purification.



Forests 2023, 14, 965 3 of 16

2.2. Pretreatment of Elm Wood Scraps

The wood scraps were washed to remove surface impurities, soaked in about 300 mL
water, added 24 g NaOH, kept at 80 ◦C for 8 h, cleaned with distilled water to neutrality
and soaked overnight. The wood block was immersed in 200 mL of 0.1 M H2SO4 solution;
then, 12–18 g of sodium chlorite was dissolved, kept at 80 ◦C for 8 h, washed with distilled
water to neutrality and cryogenically freeze-dried for 36 h, finally producing the natural
wood scraps (NW).

2.3. Preparation of BNPCM Active Carbon

NW (0.5 g) was added into 40 mL 0.4 M H3PO4 with 0.1 mL AN; then, ultrasonic
mixing was conducted for about 30 min after 0.12 mL H2O2 solution was added. After
being stirred for 10 min, 0.1 mL 0.1 M FeCl3 solution was added. After ultrasonic mixing
for 10 min, the mixture was transferred to a Teflon-lined stainless-steel autoclave (100 mL)
and kept at 140 ◦C for 6 h, cooled to room temperature, washed with distilled water
and ethanol and dried at 60 ◦C for 12 h to obtain PANI@nature wood (PNW). The PANI
was impregnated into natural wood after aggregation produced PINW, and the PANI
aggregation after NW carbonized as PANW.

The PNW was transferred to a tubular furnace. Calcination was conducted in N2
atmosphere at 700, 800 and 900 ◦C for 2 h with different weight KOH activation. After
carbonization, the samples were washed to neutrality with distilled water and 1.5 M HCl
solution, and then kept at 80 ◦C for 12 h to obtain the PANI@nature wood-derived porous
N-doping carbon material (PNCM), depending on the carbonation temperature named
PNCM-700, PNCM-800 and PNCM-900. According to the mass ratio of KOH and PNCM,
the carbon materials were named PNCM-1, PNCM-3, PNCM-5 and PNCM-7. The NW,
PINW and PANW go through the same process to obtain NCM, PINCM and PANCM.
Finally, 0.2 g PNCM and 1 g H3BO3 were added into 50 mL H2O. After fully stirring, the
mixture was transferred into a Teflon-lined stainless-steel autoclave. The autoclave was
sealed quickly and maintained at 180 ◦C for 12 h in a digital temperature-controlled oven.
After washing, temperature was kept at 60 ◦C for 12 h to obtain the BNPCM.

2.4. Characterizations

The morphology of the samples was observed by field emission scanning electron
microscopy (SEM, Nova Nano SEM 450, the FEI. Co., Ltd., Hillsboro, OR, USA, with
acceleration voltage of 10.0 kV) and transmission electron microscopy (Talos F200S, the
FEI. Co., Ltd., Shanghai, China, with operating at 200 kV). The crystal structures of the
samples were characterized using an X-ray diffractometer (XRD, D8-Discover, the Bruker
Optics. Co., Ltd., Ettlingen, Germany) with a scanning speed of 6◦ min−1 and a scanning
range of 10–80◦. Raman spectroscopy was carried out on a Raman spectrometer (inVia-
Reflex, the Renishaw Co., Ltd., Endland) at room temperature using an argon laser beam
with an excitation wavelength of 532 nm and a sampling step length of 1.45 cm−1. X-ray
photoelectron spectroscopy (XPS) measurements were performed on an Escalab 250XI
(Thermo Fisher Scientific. Co., Ltd., Shanghai, China). Brunauer–Emmett–Teller (BET) was
utilized under 77 K and N2 protection by a surface area and porosity analyzer (ASAP 2460,
the Micromeritics Co., Ltd., Norcross, GA, USA). The pore size distribution was determined
via the BJH method.

2.5. Electrochemical Properties

The BNPCM, acetylene black and polyvinylidene fluoride, according to the mass
ratio of 8:1:1 mixing, mixed with N-methylpyrrolidone paste, evenly coated on 1 × 1 cm2

nickel foam, drying at 80 ◦C for 24 h to remove moisture, followed by testing, the mass
loading of sample on the nickel foam is 1 mg. The cyclic voltammetry (CV), galvanostatic
charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) measurements
were performed on CHI660C workstation (CH Instruments, Inc., Shanghai, China). In
the three-electrode system, the prepared sample was used as the working electrode, the
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Hg/HgO electrode was used as the reference electrode, the platinum electrode was used
as the counter electrode and the electrolyte was 6 M KOH solution. CV was performed
between −1 and 0 V (vs. Hg/HgO, 6 M KOH). GCD was performed between −1 and
0 V (vs. Hg/HgO, 6 M KOH) at different current densities. The EIS was measured at
frequencies ranging from 100 K Hz to 0.01 Hz with AC perturbations of 5 mV. The life cycle
was measured using a blue battery tester (CT2001A) with a current density of 3 A g−1,
between −1 and 0 V for 10,000 consecutive cycles. The specific capacity can be calculated
according to the GCD curve using Equation (1) as follows [42]:

C =
I × ∆t

m× ∆V
(1)

where I (A) is the discharge current, ∆V (V) is the working potential window, ∆t (s) is the
discharge time and m (g) is the mass of the active substance in the electrode.

The specific capacitance of the SSC in two-electrode system was obtained by Equation (2) [43]:

Cs =
I × ∆t

M× ∆V
(2)

where I (A) is the discharge current, ∆t (s) is the discharge time (s), ∆V (V) is the potential
window and M (g) is the total mass of the active material on the two electrodes.

The specific energy density (E, Wh kg−1) and specific power density (P, W kg−1) of
the SSC can be calculated using Equations (3) and (4) as follows [43,44]:

E =
Cs× (∆V)2

2× 3.6
(3)

P =
E× 3600

∆t
(4)

where Cs is the specific capacitance of the SSC, ∆t (s) is the discharge time and ∆V (V) is
the potential window.

3. Results and Discussion

The process used to prepare BNPCM electrodes for the supercapacitor is illustrated in
Figure 1.
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The surface morphologies of the samples were studied via SEM, as shown in Figure 2a.
Under high temperature and pressure, aniline was polymerized as a spherical structure by
the action of hydrogen peroxide and ferric chloride. The distribution PANI nanospheres,
compared with PINW (Figure S1) and PANW (Figure S2), was more uniform, and the
loading was higher. Meanwhile, by the combination between the amino group in PANI
and the hydroxyl group on the cellulose inside the wood, the PANI was firmly riveted on
the surface of the wood hole and did not easily fall off, which led to the enhanced stability
and increased the morphology amounts of biomass carbon [41]. As shown in Figure 2b,
after carbonization, the BNPCM exhibited an irregular bulk structure, and the volume of
PANI shrunk into carbon spheres on the surface of wood-derived carbon, thus improving
the surface area (Table 1) and providing more active sites. The TEM image of BNPCM
materials (Figure 2c) illustrates that a large number of holes existed on the surface, and no
obvious lattice appeared, indicating that amorphous carbon was predominant. The holes
and the phases in the porous structure played an important role as ion transport channels
in the charging and discharging process of the supercapacitor, which is conducive to the
adsorption and transport of electrolyte ions. Compared with non-carbonized materials,
carbonized materials possessed obvious defect morphologies on the surface, which im-
proved the specific surface area of the composites, thus significantly affecting the specific
capacitance. For the stable bonding, the B and N atoms were successfully doped, and all
elements were evenly distributed, as exhibited in Figure 2d–h, which would enhance the
wettability, conductivity and stability, thus improving the capacity, both by the double-layer
capacitor and pseudocapacitor.
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N and O.

Table 1. BET specific surface area, pore volume and pore size of NCM, PNCM and BNPCM samples.

Samper BET Specific Surface
Area (m2 g−1)

BJH Pore Volume
(cm3 g−1)

BJH Adsorption Average
Pore Size (nm)

NCM 1335.194 0.359 2.388
PNCM 2294.941 0.757 2.412

BNPCM 2333.507 0.957 2.426

The specific surface area and pore size distribution characteristics of the sample were
further explored through N2 sorption. As shown in Figure 3a, the isotherm of the samples
showed type I behavior, and the adsorption was significant at low relative pressure due
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to micropores and small mesopores [45]. P/P0 increased rapidly between 0 and 0.1 and
still increased rapidly when 0.3 > P/P0 > 0.1, implying that the material owned a large
number of micropores and equivalent mesopores. The curves of BNPCM and PNCM were
much higher than those of NCM, indicating that the adsorption amount is much larger than
that of NCM, which is mutually confirmed with the specific surface area data in Table 1.
PNCM increased slightly between 0.9 and 1.0, indicating that it contained a small number of
macropores. The three porous carbons possessed many small mesopores (2–10 nm), the pore
size decreased sharply between 5 and 10 nm and the pore volume increased slowly when
the pore size was larger than 10 nm, indicating that a small mesopore existed (Figure 3b).
This is corroborated by the N2 sorption isotherm (Figure 3a) and the average pore size in
Table 1. The micropores provided a larger specific surface area for ion adsorption, and
mesoporous pores provided a more favorable channel for ion transport [34,35], which
provide a highly specific surface area of as high as 2333.5 m2 g−1, higher than those of
relevant materials reported [32,33,40,46]. The pore size distribution images showed that
BNPCM contained the most micropores and small mesopores, proving that BNPCM could
provide a large number of attachment sites for electrolyte ions and possessed low ion
conduction resistance, which were important determinants of specific capacitance [46].
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XRD images confirmed the amorphous state illustrated in TEM, as shown in Figure 4a.
The wide peaks of (002) produced at 2θ ≈ 21.2◦ and (100) at 2θ ≈ 43.3◦ in all samples were
typical amorphous carbon [30,41]. The peak value of (100) for BNPCM became less intense,
indicating that the doping of B elements would lead to a decrease in the order of the carbon
material, and the degree of disorder and the active sites was increased, which induced
a material storage performance increase. To further verify the degree of disorder of the
carbon material, Raman spectroscopy was used for characterization shown in Figure 4b.
The samples exhibited two peaks located at approximately 1340 cm−1 (D-band, defect and
disorder) and 1590 cm−1 (G-band, graphitic) [47]. Due to the presence of disordered and
graphitic carbon, the height ratio of the Raman signals originating from the D-bands and
G-bands (ID/IG) was generally considered as a measure of the degree of overall disorder in
the sample; a higher ID/IG ratio denoted a higher degree of disorder in the carbon material.
Due to the introduction of PANI, the C-N content of the PNCM increased, with its Raman
spectra corresponding to peaks at 1339 cm−1; then, the PNCM has a higher ID/IG ratio than
NCM. BNPCM owned a higher ID/IG ratio than the others and higher than those of relevant
materials reported [5,30,32,40]. Hence, a higher degree of disorderly carbon significantly
affected the electron transport rate, enhanced the wettability of the material, reduced the
internal resistance of the device and further improved the electrochemical performance.
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Furthermore, the bonding relationship between N and B determined lots of electoral
performances. Figure 5a exhibits XPS spectra of BNPCM. The spectrogram of the sample
confirmed the existence of characteristic peaks of elements C, N, O and B matching the
mapping. The characteristic peak of element B in the sample measurement spectrum
indicated that the doping of element B was successful. Based on the high resolution, the C
1s peak was divided into four peaks at 284.3, 285.2, 286.9 and 289.6 eV, corresponding to
C-C, C-N, C-O and C-B, respectively (Figure 5b) [46]. O 1s consists of three peaks located at
535.3, 531.1 and 532.7 eV, corresponding to O-C, O-B and O-N, respectively (Figure S3b),
proving the successful doping of the B element. N 1s consists of three peaks located at
397.6, 399.5 and 400.8 eV, corresponding to pyridinic-N (N-6), the quinoid amine (N-5)
and the benzenoid amine (N-Q), respectively (Figure 5c). N-6 and N-5 created defects and
provided electroactive sites, while N-Q was beneficial in improving the conductivity of
porous carbon [32]. Comparing Figure S3c with Figure S3d, it is found that the amount
of N-Q increased significantly, indicating that B doping could induce the increase in N-Q
content, the redistribution of electrons on the surface of carbon materials and improvement
in the electrochemical performance [5,46,48]. The B 1s peak was divided into two peaks at
190.0 and 192.6 eV, corresponding to BC2O and BCO2, respectively (Figure 5d) [32,49–51].
According to the comparison with the spectra of NCM, PNCM and BNPCM in Figure S3a,
boron mainly came from boric acid. The quantitative analysis of each element (Table S1)
illustrated that the nitrogen content in BNPCM was higher than that of other samples.
The element B could anchor N, thereby increasing the content, the surface wettability, the
adsorption ability and the stability, thus enhancing the electrochemical performance of
carbon materials.

To investigate the best PANI composite method, different synthesis and entry times of
AN were explored, and the electrochemical performance of the carbon materials obtained
was compared, which is shown in Figure S4. The in situ synthesis of PANI possessed high
specific capacitance and the best performance. After exploring the optimal carbonization
temperature (Figure S5) and activation ratio (Figure S6) of PNCM material, BNPCM was
prepared using the hydrothermal method. The electrochemical properties of NCM, PNCM
and BNPCM were investigated in a three-electrode system. As shown in Figure 6a, the
closed curve area of BNPCM was the largest, and the discharge time in Figure 6b was the
largest, illustrating that the BNPCM electrode possessed the largest specific capacitance.
The CV curve of BNPCM in Figure 6a exhibited a redox peak, which was due to the pseudo-
capacitive property of heteroatom N and B [33,50]. The B and N groups in the electrode
occurred in the following redox reactions.

C* = NH + 2e− + 2H+ ←→ C*H − NH2 (5)

C* − NHOH + 2e− + 2H+ ←→ C* − NH2 + H2O (6)
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C* − B − C = O + 2H+ + 2e− ←→ C* − B − CH − OH (7)

C* denotes the carbon skeleton.
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After the fitted equivalent circuit inset, the Nyquist plot of the samples (Figures 6c and S7)
showed that the arc radius of BNPCM material was the smallest in the high-frequency
region, which indicated its electron conduction resistance was the smallest (0.74 Ω), and
the slope was the largest in the low-frequency region corresponding to the smallest ion
transport resistance (0.01 Ω), lower than 0.77 Ω and 0.06 Ω of PNWC and the 0.78 Ω and
0.012 Ω of NWC, indicating that the best performance of B-doped carbon material and the
wettability of the material were improved. In order to clearly compare the capacitance of the
samples at different current densities, the change curve of specific capacitance calculated
by GCD (Figure 6d), the BNPCM electrode reached 406 F g−1, which was much larger
than that of PNCM electrode (340 F g−1) and NCM electrode (153.7 F g−1) at a current
density of 0.5 A g−1. Moreover, when the current density increased to 10 A g−1, 77.34% of
the material specific capacitance of BNPCM was still retained, presenting a superior rate
capability on BNPCM.

The electrochemical performance of BNPCM was further measured. The CV curves of
the electrode prepared by BNPCM material presented an approximate rectangular shape at
scan rates from 5 to 200 mV s−1 (Figure 7a), indicating that the material possessed classic
EDLC behavior. Meanwhile, the charging and discharging performance of the electrode
material at current densities ranging from 0.5 A g−1 to 10 A g−1 was measured (Figure 7b).
The GCD curves at different current densities presented an isosceles triangle, indicating
that the electrode material possessed high reversibility. The specific capacitance reached
406 F g−1 at 0.5 A g−1, much higher than other materials (Table 2). In the Nyquist diagram
of the BNPCM electrode (Figure 7c) after the fitted equivalent circuit inset, the semicircle
diameter in the high-frequency region of the charge transfer resistance was very small,
indicating that the wetting effect of the electrode was good, and the liquid connection
resistance was very small (the resistance only 0.74 Ω), and the slope was very large in
the low-frequency region; the resistance was 0.01 Ω. The low resistance of the electrode
implied a high electronic transfer rate ability, which would improve the capacity. The
cycling performance of the BNPCM electrode was performed in the three-electrode system
(Figure 7d). The excellent and stable capacity retention rate of the electrode was 97.27%
after 10,000 cycles of charge and discharge at a current density of 3 A g−1.

Table 2. The comparison of electrochemical performance of this work with others’ work.

Carbon Materials Electrolytes Working Window
of Electrolyte

Current Density
(A g−1)

Capacitance
(F g−1) Ref.

Azadirachta Indica wood 3 M KOH 0~1 V 1.0 285.6 [33]
Camellia oleifera shell 1 M H2SO4 −0.2~0.8 V 1.0 259.0 [42]

Cornstalks 6 M KOH −1~0 V 0.5 323.8 [51]
Mung bean jelly 6 M KOH −1~0 V 0.5 330.2 [52]

RL and SSBC 6 M KOH 0~1 V 0.5 373.0 [53]
Chitosan 6 M KOH −1~0 V 0.2 230.0 [54]

Lacquer wood 1 M H2SO4 −0.8~0.4 V 0.2 354.0 [55]
Poplar wood 6 M KOH −1~0 V 0.5 323.0 [56]

Laver 6 M KOH −1~0 V 1 382.5 [57]
BNPCM 6 M KOH −1~0 V 0.5 406.0 This work

Based on the results of the above, an SSC was assembled with BNPCM electrodes
to further explore and evaluate the application performance. The CV curves of SSC at
different scanning rates from 5 mV s−1 to 200 mV s−1 were approximately rectangular
(Figure 8a). The GCD curves of the SSC at different current densities are shown in Figure 8b,
which exhibits a typical isosceles triangle shape. The specific capacitance was 127.5 F g−1 at
0.5 A g−1, the specific capacitance was 109 F g−1 at 10 A g−1 and the capacitance retention
rate was 85.49% (Figure 8c). The symmetric supercapacitor assembled by the BNPCM
electrode possessed an excellent rate performance. The Nyquist plot (Figure 8d, after the
fitted equivalent circuit inset) implied that resistance could only reach 1.12 Ω, indicating
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that the charge transfer rate of the electrode material was slightly reduced compared with
the three-electrode system after assembly. Significantly, the electrode material possessed
excellent cycle stability, and the SSC device showed a capacity retention rate that reached
93.04% at a current density of 3 A g−1 after 10,000 cycles (Figure 8e). Moreover, the device
possessed a high energy density. The energy density of 17.71 Wh Kg−1 could be achieved
at 0.5 A g−1, and it still maintained 15.51 Wh Kg−1 at a maximum power density of
5000 W kg−1, much higher than those reported (Figure 8f).
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The energy density in the supercapacitor was the most important feature for practica-
bility [58]. An SSC was assembled of BNPCM and testes in 1 M Na2SO4. The doping of
boron has the function of an expanding voltage range in CV plots (Figure 9a) [59]; therefore,
in a voltage window of 0–1.8 V, the CV curve changed a little, showing an approximately
rectangular shape and isosceles triangle shape, with only a little deformation at the voltage
window of 2 V. However, it still maintained the corresponding shape, indicating that the
SSC possessed the ideal performance under a large electrochemical window. Thus, electro-
chemical performance tests under different scanning rates (Figure 9b) and different current
densities (Figure 9c) were conducted under a working voltage of 0–2 V. Under different
voltage rates, the CV curve presented a classical rectangle, indicating good reversibility.
At a current density of 0.5 A g−1, the specific capacitance reaches 75 F g−1, which was
higher than that previously reported [60]. The Nyquist plot (Figure 9d, after the fitted
equivalent circuit inset) implied that the resistance could only reach 1.32 Ω, indicating
that the charge transfer rate of the electrode material was slightly reduced compared with
the three-electrode system after assembly and the SSC in KOH. The electrode material
possessed excellent cycle stability, and the SSC device showed a capacity retention rate,
reaching 91.76% at a current density of 3 A g−1 after 10,000 cycles (Figure 9e). Benefiting
from the large working voltage and specific capacitance, the SSC in Na2SO4 exhibited a
high energy density 41.67 Wh Kg−1 at a power density of 500 W kg−1. It still maintained
24.72 Wh Kg−1 at a maximum power density of 5000 W kg−1 (Figure 9f).
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Figure 8. Electrochemical performance of the SSC. (a) The CV curves at 5–200 mV s−1. (b) The GCD
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Nyquist plot. (e) The diagram of charge and discharge cycle at 3 A g−1. (f) Ragone plots of BNPCM
device compared with other carbon materials.
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4. Conclusions

This study proposed a method in elm wood scraps for internal channel in situ growth
of a PANI nanoball for supercapacitor carbon electrode materials with special morphology.
Through the hydrothermal method, it is easy to implement B element doping. Excellent
specific capacitance was found in B-doped PANI elm composite carbon material under a cur-
rent density of 0.5 A g−1, quality specific capacitance reached 406 F g−1 after 10,000 cycles
of charge and discharge and the capacity retention rate was 97.27%. Then, in the test of the
assembled symmetric supercapacitor, it has a high mass specific capacitance of 127.5 F g−1

at a current density of 0.5 A g−1; moreover, it has a high energy density of 17.71 Wh kg−1

at an excellent power density of 250.02 W kg−1. The capacity retention rate is 93.06% after
10,000 cycles of charge and discharge at 3 A g−1. Furthermore, in 1 M Na2SO4, the specific
capacitance reaches 75 F g−1, with a high energy density of 41.67 Wh Kg−1 at a power
density of 500 W kg−1. The excellent specific capacitance and cycle stability of this material
are due to the combination of an amino group of aniline and hydroxyl group on the wall of
the wood channel, which makes it more firm, stable and will not easily fall off. It provides
a new idea and a new reference method for the research of the modification of carbon
electrode materials for supercapacitors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f14050965/s1, Figure S1: The SEM of polyaniline was impregnated
into nature wood after aggregation; Figure S2: The SEM of the polyaniline aggregation after NW
carbonized; Figure S3: The XPS of the samples. (a) The full XPS survey spectrum of three samples,
(b) the O1s high resolution spectra of BNPCM (c) the N1s high resolution spectra of PNCM. (d) the
N1s high resolution spectra of NCM; Figure S4: Comparison of electrochemical data of different
introduction times of aniline; Figure S5: Comparison of electrochemical data of PNWC carbonized at
700 ◦C, 800 ◦C and 900 ◦C; Figure S6: Comparison of electrochemical data of PNWC at C:KOH = 1, 3, 5
and 7 respectively; Figure S7: The enlarged view of high frequency region of Figure 6c; Table S1: Table
of element content distribution of samples.
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