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Abstract: Mangroves stand out as one of the most diverse and biologically significant natural
systems in the world. Playing critical roles in maintaining the health and productivity of coastal
ecosystems, mangroves provide a range of services and functions, including habitat for local fauna
and flora, food and other goods, carbon sequestration, and protection from natural disasters such
as storm surges and coastal erosion. It is also evident that mangroves face several threats, which
have already led to the gradual depletion of mangrove areas worldwide. Based on the analysis of
current and related historical literature and data, this review summarises mangrove functions and
the threats and challenges associated with mangrove management practices. Our findings suggest
that coastal development, expanded aquaculture, deforestation, climate change, and other associated
implications such as eutrophication, diseases, and pollution are the major factors posing threats
to mangrove sustainability. We also highlight the various challenges, such as land use conflict, a
lack of stringent regulatory actions, inadequate policy and government frameworks, and a lack
of community awareness, that underlie ineffective mangrove management. The implementation
of inclusive and coordinated approaches involving stakeholders from different backgrounds and
interests, governmental and non-governmental organisations, and academia is essential for mangrove
restoration and sustainable mangrove management by adapting mitigation strategies.

Keywords: carbon sequestration; climate change; coastal development; mangrove biodiversity;
mangrove management; microbial communities; mitigation; resilience; sustainability

1. Introduction

Mangroves are coastal forests stretched between the terrene and the sea in the tropics
and subtropics across the world [1]. Mangrove forests represent an assembly of trees
and bushes that can thrive in dynamic ecological settings [2] with variable concentrations
of soil oxygen [3] and saline water influx [4]. Being biologically diverse, the mangrove
forests are known as the “rainforests of the seas” [5]. Due to their unique geographic
location (i.e., coastal areas), they are great tourist attractions [6]. Mangrove forests are the
dwelling place for local flora and fauna [7], which offer essential goods such as food in
terms of aquaculture and agriculture [8], fuel wood, building materials [9], and traditional
herbs and medicines [10]. In addition, mangrove forests protect the coastal environment
by minimising the severe impacts of natural calamities, including floods [11], storms,
and tsunamis [12], buffering salinity changes [13], sequestering atmospheric carbon [14],
reducing erosion [15], and fostering biodiversity [16].

Despite their importance, mangroves are now facing high ecological pressure, and
one-third of the total mangrove population has been lost globally in the past fifty years [17].
The losses are mainly due to clearance and conversion for aquaculture [18] or agricul-
ture [19], domestic and industrial discharge [20], oil spills [21], and poorly managed

Forests 2023, 14, 1698. https://doi.org/10.3390/f14091698 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14091698
https://doi.org/10.3390/f14091698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-4687-709X
https://doi.org/10.3390/f14091698
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14091698?type=check_update&version=1


Forests 2023, 14, 1698 2 of 38

dredging for coastal development [22]. Other than anthropogenic activities, implications of
climate change, such as soil erosion [23], inundation [24], and storms [25], play a part in
mangrove loss.

Mangroves are varyingly distributed in 118 countries and terrains, occupying a total
area of 147,000 km2 of the world [26]. Figure 1 shows the global mangrove forest distribu-
tion. Around 75% of the total mangrove population is concentrated in 15 countries [27],
of which only 6.9% thrive in protected areas [28]. The majority of mangroves exist in the
Southeast Asian region, particularly in Indonesia, Malaysia, and Myanmar [29].
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In this review, we summarise current reported knowledge on multiple aspects of
mangroves, ranging from their services and function to threats and challenges, in one frame
of reference to develop a comprehensive understanding of insights into the mangrove
ecosystem. The idea is to provide an overall view of the global status of mangroves
and the challenges they face. A systematic study of the literature has been carried out,
comprising articles from the past twenty years. Data from 1996 to 2020, sourced from
Global Mangrove Watch (GMW) 2022 and the World Atlas of Mangroves (WAM) 2010,
are the basis for the graphical illustrations. This research and resulting recommendations
will serve as a reference for conducting further evidence-based studies and will be useful
for stakeholders such as governmental agencies, environmental legislators and regulators,
and industrialists in designing strategies for mangrove forest conservation and sustainable
mangrove management.

2. Biotic Communities Associated with Mangroves
2.1. Habitat for Local Communities

Mangrove ecosystems are habitats for local fauna and flora, providing breeding places,
shelter, nesting, and nursing areas [30] (Tables 1 and 2). Mangrove canopies are home to
several wild animals, such as monkeys, monitor lizards, snakes, and otters [31]. The canopy
also provides shade and shelter to aquatic-based animals, including amphibians and larger
reptiles such as crocodiles [32] and dugongs [31]. Several birds inhabit mangroves, notably
eagles, kingfishers, herons, plovers, terns, cormorants, egrets, and ibises [33]. On tree
trunks, the residing flora includes orchids, ferns, lilies, and vines [34], which are home
to invertebrates such as spiders and various insects [35]. Other than that, mangrove
roots are swarmed by arthropods (crabs, lobsters, and shrimp) [36]; Molluscs (barnacles,
oysters, mussels, and snails) [37]; sponges [38]; worms [39]; jellyfish [31]; and fish such
as sea trout, snappers, jacks, tarpon, sea bass, red drums, and snook [40]. Moreover,
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mangroves host diverse epibiont macroalgal communities on their prop roots, trunks, and
mud surfaces [41]. Mangrove habitats provide shallow water and, in many cases, high
turbidity and fine sediment suitable for burrowing animals [42]. These factors act to protect
animals from their predators by reducing their visibility and lowering their encounter rate
with potential predators [43]. Mangrove plants, along with kelps, seagrasses, oysters, and
corals, are key foundation species of coastal ecosystems [44]. Foundation species are crucial
for maintaining the structure and resilience of an ecosystem [45].

Table 1. List of fauna associated with mangroves.

Group Common Name Genus/Species References

Sponges Common Mangrove
Sponge

Tedania sp.
Mycale sp.
Dysidea sp.

Haliclona sp.

[46]

Worms Segmented worms Sabellastarte sp. [47]

Insects
Ant Polyrachis bicolor sp. [48]

Weevils Rhynchites sp. [49]

Bettles Monolepta sp. [50]

Crustaceans

Crabs

Ilyogynis microcheirum
Portunus pelagicus

Uca sp.
Hippidea sp.

[51,52]

Prawns

Penaeus monodon
Exopalaemon styliferus

Metapenaeus affinis
Parapenaeopsis sculptilis

[53,54]

Barnacles
Balanus sp.
Euraphia sp.
Tetraclita sp.

[55,56]

Mollusks

Oyster Crassostrea sp. [57]

Clam
Tridacna derasa

Tridacna maxima
nodontia edentula

[58–60]

Sea slug/sea hares Dolobella sp. [61]

Venus clam

Bursa sp.
Paphia amabilis

Venus clam Paphia
Haliotis asinina
Tectus pyramis

Echininus cumingii
Terebralia sulcata

Rhinoclavis sinensis
Rhinoclavis vertegus

Ficus gracilis
Plicacularia pullus

Fasciolaria trapezium
Oliva reticulata

Mitra mitra
Trisodos tortuosa

Anadara maculosa
Chicoreus brunneus

[62–66]
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Table 1. Cont.

Group Common Name Genus/Species References

Echinoderms

Sea urchin

Protoreaster sp.
Archaster sp.
Linckia sp.

Clypeaster sp.
Cerithium sp.

Tripneustes sp.
Holothuria sp.

Oreaster albeolatus
Ophiarachna incrasala

Echinocardium cordatum
Diadema setosum
Laganum laganum

Echinometra mathaei

[62,67–69]

Star fish
Astropecten sp.

Protoreaster nodosus
Linkia laevigata

[69,70]

Feather star Comanthina bennetti
Comanthina schlegeli [71]

Sea star Luidia sp.
Culcita novaeguineae [72]

Tunicates Sea squirt

Didemnum molle
Atriolum robustum

Polycarpa aurata
Rhopalea sp.

[73]

Fishes
Rabbitfish Siganid sp. [74]

Mudskipper Periophthalmodon
Periophthalmus [74]

Spot-tail needlefish Strongylura strongylura [75]

Amphibians Mangrove frog Fejervarya cancrivora
Rana cancrivora [76]

Reptiles

Snake Cerberus rhybchos [62]

Lizard Tupinambis indicus [77]

Crocodiles Crocodylus porosus [78]

Birds
Eagles Haliastur indus

Pitta megarhyncha [79,80]

Kingfishers Halcyon senegaloides
Todiramphus sordidus [81]

Herons Nycticorax nycticorax
Egretta gularis [82,83]

Plovers
Charadrius sp.
Pluvialis sp.

Thinornis sp.
[84,85]

Terns Sterna paradisaea [85]

Crow Corvus splendens [86]

Green pigeon Treron olax [86]

Egrets
Egretta garzetta

Egretta immaculata
Egretta nigripes

[87,88]
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Table 1. Cont.

Group Common Name Genus/Species References

Mammals

Bats Cynopterus brachyotis
Acerodon jubatus [89,90]

Monkey Nasalis larvatus [91]

Dugong Dugong dugon [92]

Otters Lutrinae sp. [93]

Table 2. List of flora associated with mangrove.

Group Common Name Genus/Species References

Angiosperm

Seagrasses

Cymodocea sp.
Thalassia sp.
Halodule sp.
Halophila sp.
Enhalus sp.

[94,95]

Orchids

Acampe sp.
Agrostophyllum sp.

Apotasi sp.
Ascocentrum sp.
Bulbophyllum sp.
Ceratostylis sp.
Cleisostoma sp.
Cymbidium sp.
Dendrobium sp.
Flickingeria sp.
Grosourdya sp.
Habenaria sp.

Liparis sp.
Malaxis sp.

Podochilus sp.
Pomatocalpa sp.

Thelasis sp.

[96–100]

Lilies

Crinum sp.
Hymenocallis sp.
Nymphaeaceae sp.

Lycoris sp.

[101,102]

Vines Cryptostegia grandiflora [41]

Bryophytes Ferns Acrostichum sp.
Waterhousea sp. [103,104]

Algae Marine algae
Padina sp.
Ulva sp.

Ventricaria ventricosa
[105,106]

2.2. Mangroves Association with Corals and Seagrass

Mangrove ecosystems are partly linked with and support corals and seagrasses [107].
Mangrove ecosystems have a positive impact on seagrass meadow traits such as shoot
length, width, and height, shoot density, root length, number of leaves, leaf biomass, and
population dynamics [108]. Mangrove roots trap the fine sediments coming from terres-
trial sources and intercept turbid water, preventing it from reaching coral and seagrass
systems [109]. On the other hand, coral reefs provide tranquil conditions that increase the
deposition of fine sediments in adjusting areas, which supports the growth and develop-
ment of seagrass beds and mangrove forests [110]. Likewise, corals and seagrasses maintain
the balance between organic and inorganic carbon contents in coastal areas, subsequently
establishing carbon sinks and sources in the mangrove ecosystem [111]. As mangrove
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forests, coral reefs, and seagrasses are interdependent ecosystems, to effectively store and
export blue carbon in tropical coastal areas, it is essential to maintain the health of each of
these coexisting ecosystems [112].

2.3. Reservoir of Microbial Communities

Mangroves are reservoirs of diverse microbial communities that include bacteria and
fungi [113]. Organic sediments swept into mangroves by tides are inhabited by bacteria that
decompose the organic debris and are primary contributors to carbon cycling [114]. Diverse
bacteria in these populations are involved in many other essential ecological functions such
as nitrogen fixation [115], photosynthesis [116], phosphate solubilisation [117], enzyme pro-
duction [118], sulfate reduction [119], antibiotic production [120], anoxygenesis [121], and
methanogenesis [122] (Table 3). Among fungi, the dominant fungal phyla are Ascomycetes
and Basidiomycetes, which have been reported to be primarily associated with the survival of
mangrove plants in waterlogged and nutrient-restricted environments [123] (Table 3). The
microbial communities of mangroves improve nutrient availability, support the growth of
vegetation, and provide protection from pathogenic bacteria, thereby positively impacting
species diversity [124].

Table 3. Major microbial groups inhabiting the mangrove forests.

Group Phyla Functions References

Bacteria Actinobacteria
• Produce highly bioactive compounds such as antibiotics

against pathogenic bacteria, anticancer, and antifungals,
and protect mangroves from disease

[125]

Chloroflexota

• Methanogenesis
• Produce secondary metabolites from root exudates or

soil organic matter that can be utilised by other
anode-coupling microorganisms

• Anaerobic degradation of organic compounds, e.g.,
sulfate reduction

[113,114]

Asgardarchaeota
• Phosphate solubilisation
• Major contributors to nitrogen cycling in the mangroves,

especially involved in nitrification
[126]

Bacteroidetes
• Release a wide range of carbohydrate-active enzymes

(CAZymes) that target the different glycans in the soil
• Phosphorus solubilisation

[45]

Thermoproteota
• Oxidisation of ammonia
• Sulfate reduction
• Methanogenesis

[127]

Calditrichota • Enable mangroves to survive in hot climates [128]

Bacillota • Maintains electrolyte balance between mangrove plants
and microbial species [129]

Thermodesulfobacteriota

• Oxidation of the precipitated sulfide
• Participate in the elimination of toxic metals
• Regulate the sulfur cycle, oxidise reduced sulfide to

sulfate, affecting the sulfur biogeochemistry
• Converts many metal ions such as Cu, Pb, Cr, Zn, Hg,

and As into low-solubility metal sulfides

[124]
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Table 3. Cont.

Group Phyla Functions References

Euryarchaeota • Organic matter decomposition
• Ammonia oxidation [113]

Firmicutes

• Produce indole-3-acetic acid (IAA) and siderophores
• Oxidize hydrogen cyanide and thiosulfate
• Produce ammonia and cellulase
• Solubilise potassium and zinc

[130,131]

Halobacterota • Increase salt tolerance and help with sulfate reduction [132]

Nitrososphaerota • Ammonia oxidation and nitrification [127]

Nitrospirota • Participates in nitrifying process [122]

Planctomycetota

• Role in methane metabolism
• Ammonia oxidation in mangroves and the exclusive

metabolic capacity to combine ammonium and nitrite or
nitrate to form nitrogen gas under anoxic condition

[133]

Pseudomonadota • Detoxification of pollutants
• Carbon and nitrogen fixation in mangrove sediments [134,135]

Thaumarchaeota • Ammonia oxidation [122]

Zixibacteria • Nutrient recycling [136]

Cyanobacteria Cyanobacteriota

• Key role in carbon and nitrogen fixation
• Helps in nitrogen fixation
• Cells provide calcium, magnesium, and phosphorous

storage in mangrove ecosystems

[137,138]

Fungi Ascomycota

• Develops mycorrhizal associations with roots of
mangroves and transports nutrients

• Helps plants survive in waterlogged conditions
• Acts as decomposers
• Produces a variety of extracellular degradative enzymes,

which include cellulase, xylanase, pectinase, and
amylase

[123,139]

Basidiomycota • Involved in detritus processing, phosphate
solubilisation, and cellulose degradation [140]

3. Mangrove Ecosystem and Economic Functions and Services

There are several functions of mangrove forests other than as habitats for flora and
fauna: They act as a carbon sink (blue carbon storage) [141], maintain water quality [142],
protect coastal land from natural disasters [143], and support coral and seagrass ecosys-
tems [144] (Figure 2). In addition, mangroves provide livelihood opportunities for coastal
communities through aquaculture, fodder, timber, and ecotourism [8].
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Figure 2. Functions and services of an intact mangrove ecosystem.

3.1. Carbon Sink

Mangroves play an important role in mitigating the effects of greenhouse gases gener-
ated by anthropogenic activities such as deforestation, agriculture, and industrial processes.
This mitigation involves removing CO2 from the atmosphere, after which mangrove flora
sequester carbon in their above- and below-ground biomass [141]. Mangroves, as a carbon
sink, can hold an estimated 1023 Mg/hectare of carbon [145]. Various studies have con-
firmed that mangroves have a faster carbon sequestering capacity than other ecosystems,
such as grasslands or tropical rainforests [146]. According to a report from the Global
Mangrove Alliance (GMA) 2022 [147], the total organic carbon stored in mangrove forests
at a global level is estimated at around 21,896.56 Mt CO2e with 2817.23 Mt CO2e stored
in above-ground biomass and 19,079.32 Mt CO2e stored in the upper 1 m of soil [148]. It
can be seen from Figure 3 that the carbon storage capacity varies quite considerably for
different countries, with Indonesia having a relatively strong capacity compared to the
other countries. In mangroves, carbon-rich soils extend from 0.5 m to ~3 m in depth and
accommodate 49%–98% of the carbon stored by the mangrove ecosystem [149]. Figure 3
represents the organic carbon storage capacity of mangrove forests in various countries as
above-ground biomass (data derived from GMW version 0.3, 2020) [150]. As mangroves
store a considerable amount of carbon, the destruction of this habitat disturbs the carbon
sink and emits huge amounts of carbon back into the atmosphere, significantly contribut-
ing to climate change. Therefore, protecting and restoring mangrove habitats can reduce
the impact of climate change [151]. Although it would be great to consider many more
countries in this discussion, due to the brevity of the paper, only 12 countries have been
included that have the most robust data, as shown in Figure 3.
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represented by a different colour. The x-axis is a scale bar of the percentages of the total forests in
each country that fall into each carbon storage range. (Data sourced from GMW, 2022).

3.2. Natural Water Filters

Mangrove forests act as natural water filters for coastal areas, improving the water
quality by trapping sediments and other solid impurities with their roots [142]. This reduces
the flow of sediments into offshore waters, thereby reducing erosion [152], maintaining
clean habitats for seagrass beds and coral reefs, and contributing to SDG 14, which talks
about life below water [153]. Mangroves can grow in saline water and filter 90% of sodium
ions (Na+) from the surrounding seawater [154]. Their roots comprise a three-layered
pore structure in the root epidermis, which facilitates Na+ filtration [155]. Additionally,
mangrove roots, such as pneumatophores and prop roots, create a low-energy environ-
ment, allowing wastewater-containing contaminants to reside for an extended period [156].
Mangrove plants also sequester other metals, including the heavy metals Zn, Mn, and
Cu [157]. The study of the mechanisms by which mangrove plants filter water has led
to novel water treatment technology: Researchers at Virginia Tech (Virginia Polytechnic
Institute and State University, USA) [158] have developed a “synthetic tree” water purifier
system inspired by the water filtration technique used in mangrove plants. Specifically, a
synthetic tree is composed of a nano-porous “leaf” to produce suction via evaporation, a
vertical column of glass tubes similar to the xylem vessels of the tree, and filters attached to
the tube inlets, mimicking roots [158]. In another recent study, a group of engineers from
Yale University (New Haven, CT, USA) invented a water purification device that mimics
the desalinisation ability of mangrove trees based on the principle of cohesion-tension
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theory in mangroves. In this technique, synthetic leaves can generate highly negative
pressures that allow desalination through a reverse osmosis (RO) membrane [159].

3.3. Barriers to Natural Disasters

Mangroves not only prevent soil and coastal erosion by retaining sediments in their
aerial roots [152] but also act as barriers against natural disasters. The canopy, trunk, and
roots of mangrove plants restrain storm surges [143] and waves [160]. In the aftermath of
the Asian tsunami on 26 December 2004 [161], Hurricane Katrina on 23 August 2005, on
the US Gulf Coast [162], and the Transoceanic tsunami on 23 January 2022 [163], persuasive
evidence emerged from field studies in several countries justifying the role of mangroves
as natural barriers protecting coastal habitats and communities. It is quite evident after
the tsunami survey that the intact and dense mangroves with higher structural complexity
near coastal areas offered fewer fatalities and minimal damage to assets as compared to
the areas where mangroves had either been destroyed or transformed to alternate land
uses [164,165].

3.4. Livelihood Opportunities for Coastal Communities

About 90% of the global mangrove forests grow in economically less privileged
countries [166]. Approximately 100 million people live within a 10 km range of mangrove
forests and directly benefit from this ecosystem as a source of livelihood opportunities [167].

3.4.1. Aquaculture

Mangroves are considered hotspot locations for aquaculture [168]. The species com-
monly reared include various fish, shrimp/prawns, crabs, molluscs, and other inverte-
brates [169]. Approximately 80 million tonnes of fish were produced globally through
aquaculture in 2022 [170]. Extensive mangrove-associated aquaculture has been observed in
Indonesia, Malaysia, and the Philippines [171]. Mangrove-associated aquaculture accounts
for 21% (1.4 million tons annually) of the coastline fisheries of the ASEAN (Association of
South East Asian Nations) region [172]. Of the annual fish and seafood resources, fin fish
alone contribute around 1.09 million tons [173], while shrimp/prawn contribute around
0.4 million tons [174]. In addition, fish products from these aquaculture activities are
a principal source of food for coastal communities.

Large-scale aquaculture [175], fish farming in cages or in ponds [176], and integrated
rice-fish farming [177] have reduced pressure on overexploited fisheries by diversifying
fish production other than wild stocks. Small-scale aquaculture, in particular, enables
fish farmers to provide food for their families while generating income from the sale of
surplus stock [178]. Such activities also create employment opportunities through vari-
ous enterprises ranging from the processing, distribution, and sale of fish linked to the
aquaculture value chain [179]. These livelihood opportunities facilitate the sustainable
mangrove ecosystem’s ability to successfully contribute to the outcomes of various sus-
tainable development goals set by the United Nations, such as SDG 1, SDG 2, SDG 8,
SDG 11, SDG 13, SDG 14, and SDG 15. (The detailed agenda of these SDGs can be seen
at https://www.un.org/development/desa/disabilities/envision2030.html, accessed on
11 July 2023) [180].

3.4.2. Fodder, Timber and Traditional Medicines

Mangroves also provide fodder, timber, and medicine resources for coastal indigenous
communities (Figure 2). Cattle, sheep, goats, and buffaloes are domestic animals that are
generally fed on mangrove foliage [181]. Mangrove foliage, particularly from Avicennia
marina, is considered healthy fodder for domestic animals (Mitra, 2020). Mangrove wood,
being highly resistant to rot and insects, is frequently utilised as timber as well as for fuel
wood [182]. Rhizophora spp., Xylocarpus sp., Bruguiera sp., and Sonneratia sp. are significantly
important for timber due to the durability of their wood and their large trunk size [183]. The
timber of these species is used for small watercraft, shipbuilding, and for making utensil
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handles, furniture, poles, piles, and other building materials [184]. Mangrove firewood has
been widely used as an energy source by rural communities.

Mangrove services also include the provision of traditional medicine for treating
skin ailments and stomach issues [185]. Extracts from mangrove-associated species, for
example, Abonnema and Nypa fruticans, have shown antimicrobial activity against some
plant and animal pathogens [186]. The bioactive compound ecteinascidin, extracted from
the mangrove tunicate Ecteinascidia turbinate, has been reported to show strong in vivo
activity against various cancerous cells [187]. Furthermore, the bark of Ceriops sp. is a good
source of tannin, and its decoction is used in Vedic medicine to stop haemorrhage and in
the treatment of malignant ulcers [188].

3.4.3. Ecotourism

Ecotourism refers to the form of tourism that focuses on responsible travel that min-
imises environmental impact and supports local communities [189]. Ecotourism in man-
grove regions places a strong emphasis on mangrove conservation, education of visitors
about the mangrove forest, and providing economic benefit to local communities [190].
Ecotourism syndicates three key aspects, viz., (i) ecology, which includes the existence
of the elements upon which the mangrove ecosystem depends and also its conservation
efforts [191], (ii) financial revenue generated as a result of ecotourism activities in sus-
tainable mangroves, a share of which is expended to maintain the ecosystem [192], and
(iii) empowerment and engagement of the local community in the ecotourism business [193].
The species diversity of both fauna and flora and the unique characteristics of mangrove
plants have been a great attraction for ecotourism [194]. Mangrove areas offer several forms
of ecotourism activities, such as sports and recreational activities such as fishing, boating,
and camping [195]; educational and research tourism in the form of field trips to man-
groves to observe and study the mangrove vegetation and life inside the mangroves [196];
and health tourism as sites for self-meditation and other therapy [197]. Many mangrove
forests have been established as tourist attractions by governmental or non-governmental
organisations in different regions [198]. For example, areas of mangrove forest in Bali,
Indonesia, have been established by local communities for the purpose of ecotourism and
to maintain the conservation of biodiversity, landscapes, and the ecosystem overall [199].
Ecotourism activities carried out by these community groups are supported and fostered
by the relevant stakeholders of the region and/or the state government and have been
incorporated as a part of their CSR (corporate social responsibility) program [200]. The
use of mangroves for ecotourism is in accordance with the development directions of the
Sustainable Development Goals (SDGs), 12, 13, 14, 15, and 17 [201].

4. Major Threats to Mangrove Ecosystems

Mangrove forests are home to some of the world’s most endangered plant species [202]
(Table 2). Deforestation is aggressively practiced in many mangrove areas for the purpose of
land use for farming, aquaculture, and coastal development [203]. Over one-third (35%) of
total mangrove populations have been lost over the past 50 years [17]. Asia has contributed
to 36% of the mangrove losses so far [204]. Figure 4a illustrates the mangrove loss in
the twelve affected countries, documented in the years 2010, 2015, and 2020. Mangrove
losses are highest in Indonesia, followed by Myanmar and Australia. The rate of mangrove
loss over the last decade was estimated at 0.04% per year globally [205] and surpasses
the losses of tropical rainforests and coral reefs, the two other most highly threatened
ecosystems [206]. According to Global Mangrove Watch, the global area of mangroves has
decreased by 5245.24 km2 from 1996 to 2020 [150,207], as shown in Figure 4b. Among the
64 species of mangrove plants in the world, a total of 12 species have been declared
threatened species by the International Union for Conservation of Nature (IUCN) Red
List [208] (Table 4). Interestingly, although the African continent has several mangrove areas,
all of the species are listed as “least concern” in the ICUN red list, with none mentioned as
critically endangered, endangered, vulnerable, or near threatened.
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The overall threats to mangroves have been categorised into three groups based
on D. Alongi’s classification of threats [209] (Figure 5). Among them, coastal devel-
opment, expanding aquaculture and agriculture, and the acquisition of timber for do-
mestic use are severe threats [210]. Climate change, eutrophication, and hydrological
alteration are considered moderate threats [211], and diseases, tourism, and pollution
(noise/thermal/chemical/oil) come under low-level threats to mangrove ecosystems [212].
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Table 4. International Union for Conservation of Nature (IUCN) red list of mangrove plant species.

Country Total
Species

Critically
Endangered

(CR)

Endangered
(EN)

Vulnerable
(VU)

Near
Threatened

(NT)

Data
Deficient

(DD)

Least Concern from All
(LC)

Indonesia 47

Sonneratia
griffithii

Bruguiera
hainesii

Camptostemon
philippinense

Heritiera
globose

Avicennia
rumphiana

Aegialitis
rotundifolia
Aegiceras
floridum

Sonneratia
ovata

Aglaia
cucullata

Excoecaria
indica

Acrostichum speciosum
Bruguiera gymnorhiza

Pemphis acidula
Acrostichum aureum

Acrostichum danaeifolium
Avicennia germinans
Conocarpus erectus

Laguncularia racemosa
Rhizophora mangle

Rhizophora racemosa
Avicennia schaueriana
Acanthus ebracteatus
Acanthus ilicifolius
Aegialitis annulata

Aegiceras corniculatum
Avicennia marina

Bruguiera cylindrica
Bruguiera exaristata
Bruguiera parviflora
Bruguiera sexangula

Camptostemon schultzii
Ceriops australis

Ceriops tagal
Cynometra iripa

Dolichandrone spathacea
Excoecaria agallocha
Heritiera littoralis
Lumnitzera littorea

Lumnitzera racemosa
Nypa fruticans

Osbornia octodonta
Rhizophora apiculata

Rhizophora mucronata
Rhizophora stylosa

Scyphiphora hydrophylacea
Sonneratia alba

Sonneratia caseolaris
Sonneratia lanceolata
Xylocarpus granatum

Xylocarpus moluccensis
Avicennia alba

Avicennia officinalis
Kandelia candel

Sonneratia apetala
Kandelia obovate

Malaysia 40

Bruguiera
hainesii

Sonneratia
griffithii

Heritiera
fomes

Heritiera
globose

Avicennia
rumphiana

Aegiceras
floridum
Ceriops

decandra
Sonneratia

ovata

Aglaia
cucullata

Excoecaria
indica

India 37 Sonneratia
griffithii

Heritiera
fomes

Aegialitis
rotundifolia

Ceriops
decandra

Aglaia
cucullata

Excoecaria
indica

Myanmar 36 Sonneratia
griffithii

Heritiera
fomes

Aegialitis
rotundifolia

Ceriops
decandra

Aglaia
cucullata

Excoecaria
indica

Thailand 35 Sonneratia
griffithii

Heritiera
fomes

Aegialitis
rotundifolia

Ceriops
decandra

Sonneratia
ovata

Aglaia
cucullate

Australia 35 Avicennia
integra

Sonneratia
ovata

Philippines 34 Camptostemon
philippinense

Avicennia
rumphiana

Aegiceras
floridum

Sonneratia
ovata

Aglaia
cucullate

Vietnam 33

Aegiceras
floridum

Sonneratia
ovata

Colombia 12

Avicennia
bicolor
Mora

oleifera
Pelliciera

rhizophorae
Tabebuia
palustris

Rhizophora
samoensis

Nigeria 7

4.1. Severe Threats
4.1.1. Coastal Development Leading to Degradation

Coastal development poses a severe threat to mangrove ecosystems. Coastal develop-
ment includes the formation of resorts, desalination plants, power plants, nuclear plants,
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harbour facilities, docks, dams, and aquaculture ponds [213]. Figure 6 presents some
developmental activities near coastlines. Coastal development is inevitably accompanied
by grave issues such as soil erosion [214], pollution [215], and altered hydrology [216],
which hinder the rehabilitation of any adjacent mangrove forests. Coastal development
also often causes the blockage or divergence of rivers that previously passed through
mangroves before entering the sea, leading to changes in alluviation [217], infiltration [218],
salinity [219], and temperature [220]. These changes adversely affect not only the mangrove
plant population but also aquatic life, including fish, shrimp/prawns, and other edible
species [221].
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Stock Photos).

4.1.2. Expansion of Aquaculture/Agriculture Leading to Over-Exploitation of
Mangrove Forests

Aquaculture practices, primarily for large-scale shrimp/prawn farming, have de-
stroyed gigantic areas of the mangrove forests [222]. Globally, shrimp farming and other
forms of aquaculture have been reported as the main reasons for the conversion of 52% of
the mangrove forest areas in the last three decades [203]. Several Southeast Asian countries,
such as Indonesia, Myanmar, and Malaysia, have lost up to 10% of their mangrove areas
in just twelve years (from 2000 to 2012) due to aquaculture [223]. Thailand and Vietnam,
which are considered hotspots for aquaculture, have lost their mangrove forests at a rate of
0.09 km2/year between 1990 and 2020 [224]. In Vietnam, 1020 km2 of mangrove areas have
undergone conversion for aquaculture over the last three decades, followed by Thailand
and Bangladesh with the loss of 694 km2 and 65 km2, respectively [203]. About 2055 km2

of mangrove wetlands have been converted into shrimp and other fish farms in the Philip-
pines. Furthermore, Indonesia has lost 2110 km2 of the total mangrove area as a result of
aquacultural activities [225], with Java alone seeing 90% of the mangroves compromised for
aquaculture and agriculture-related activities [226]. Similarly, a large area of the mangrove
forests in India has been destroyed due to expanded aquaculture. In India, about 40% of
mangrove habitats on the western coastline have been transformed for aquaculture [227].
Large-scale shrimp farming has been one of the key factors in the decline of mangrove
forests in Ecuador and Honduras (Latin America), with mangrove losses of 216 km2 and
115 km2, respectively [203].

The increasing agricultural activity near mangrove areas is another main driver of
deforestation, particularly in Latin America and South Asia [228]. Enormous mangrove
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areas in the Philippines and Indonesia have been replaced by agriculture. The escalating
trends of growing oil palm plantations in Thailand, Malaysia, Indonesia, and Colombia
have caused the drastic conversion of mangrove forests in these areas [229]. Similarly,
around 150,000 ha of mangroves have been destroyed only for agriculture practices in
India and Bangladesh during the last 100 years [227]. In addition, in Central America,
mangrove forests have been cleared for cattle grazing and industrial farming [230]. These
practices are encouraged by the growing international market value of shrimp/prawns,
resulting in local policy changes to allow mangrove clearing to support aquaculture [231].
Public sector funding for fisheries has been a key driver of mangrove conversion for
aquacultural development [232]. The increase in shrimp farms has promoted mangrove
deforestation, which has caused the loss of their ecological and socio-economic functions
and the salinization of groundwater, along with other implications such as the introduction
of non-native species, excessive use of fishmeal in shrimp feed, and overharvesting of wild
stock [233]. Adding to the problem is that poorly managed fish and shrimp/prawn ponds
are susceptible to pollution and disease, leading to abandonment and leaving behind a
degraded habitat. This sweeping conversion not only destroys the mangrove forests but
also disrupts fish and shrimp breeding, impacting fishery stocks [234,235].

4.1.3. Deforestation for Acquisition of Timber

Mangroves have been overexploited for timber and fuel for decades [9]. An estimated
26% of existing mangrove loss is from deforestation for fuel and timber [236]. Usually,
mangroves are harvested without any precise management framework, resulting in an
unjustifiable decline in the forest yield [237]. Deforestation of mangroves has been linked
to worsened impacts from climatic variables such as flooding, hurricanes, drought, precipi-
tation, salinity, and rises in sea level and sea surface temperature, which have drastic effects
on coastal environments and communities [225]. Mangrove deforestation has also resulted
in CO2 emissions to the atmosphere and soil organic carbon (C) loss in mangrove soils [238].
Mangrove forests have always been significant for their biodiversity, but extensive forest
tree cutting to fulfil domestic needs has resulted in the loss of not only flora but habitat for
wildlife in mangrove ecosystems [184,239].

4.2. Moderate Threats
4.2.1. Climate Change

Climate change is causing a rise in sea level, increased temperature, increased CO2 con-
centration, oceanic acidification, and changes in precipitation/storm patterns, all of which
have negative effects on mangroves and lead to the extinction of mangrove species [240].
The predicted outcomes of different climate change factors are summarised in Table 3.
Among all the components of climate change, rises in sea levels and increases in oceanic
acidification are the greatest threats to mangroves [241]. Since 1993, the average rise in
sea level has been at a rate of 0.3 cm per year. The USA National Oceanic and Atmo-
spheric Administration [242] predicted sea level rises as high as 1.5 to 2.5 m by the end of
this century.

The oceanic uptake of CO2 slows down global warming by reducing the CO2 con-
centration in the atmosphere; however, this also leads to major changes in the chemical
composition of seawater through acidification [243]. An increase in oceanic acidity caused
by the absorption of atmospheric CO2 decreases the bioavailability of plant nutrients
such as phosphorus and molybdenum and increases the absorption of toxic metals such
as aluminium [244], which are detrimental to mangrove species. In the last 250 years,
560 billion tons of CO2 have been absorbed by the oceans, thereby increasing the acidity
of surface waters by 30% [245]. Over the last four decades, the pH level of ocean surface
water has declined at a rate of 0.02 pH units per decade [246]. Continuous CO2 uptake
by seawater will further intensify oceanic acidification in the future, impacting ocean bio-
geochemical cycling [247] and potentially having lethal consequences for mangroves and
marine life [248] Table 5.
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Table 5. Impact of climate change implications on mangrove forests.

Threat/Challenge Forecast Changes Outcome References

Rise in sea level Sea levels may rise 1.5 to 2.5 m by 2099.

• Inland progression of mangrove forests
(where possible)

• Offshore erosion, exposing more nutrients
and contributing to eutrophication, may
increase secondary productivity

[242]

Rise in temperature (air and water) Temperatures may rise by 4 ◦C
by the end of 21st century.

• Increased aridity and reduced survival of
local flora and fauna

• Expanion of the latitudinal range of
mangroves

• Increases in water vapour pressure deficit
• Changes in biodiversity owing to changes

in phenological patterns of growth and
reproduction

[249]

Increased CO2 in atmosphere and
oceanic acidification

The pH level of the oceans is gradually
increasing, thereby making them more
acidic. Consequently, CO2 level by the
end of the century, may be double or
triple that of today’s level.

• Decreased availability of plant nutrients
• Change in respiration and primary

production
• Increased water uptake competence
• Change in flowering period leading to

desynchronisation of pollinators with
plants

• Changes in faunal diversity and
distribution

[243,244]

Changes in precipitation/storm
patterns

The frequencies of storms and rainfall
are projected to increase approximately
25% until 2050, and the intensity of
storms andprecipitation will also be
increased.

• Changes in composition and growth of
mangrove species owing to variations in
salinity and soil moisture content

• Increased precipitation/evaporation ratio
will increase primary production

• Changes in faunal diversity

[250]

4.2.2. Eutrophication

Eutrophication is the enrichment of nutrients, mainly from anthropogenic activities,
causing excessive growth of aquatic plants and algae [251]. The augmentation of nutrient-
rich organic pollutants into mangroves discharged from nearby aquaculture, agriculture,
and other industrial practices results in eutrophication [252], leading to the growth of
harmful algal bloom (HAB) species such as Phaeocystis globosa and the toxic diatom Pseudo-
nitzschia pseudodelicatissima. Algal blooms drastically affect mangrove ecosystems and also
deteriorate coastal water quality [253]. Algal mats covering the pneumatophores (breathing
roots) and leaves of mangroves hamper respiration and photosynthetic processes in the
mangroves [254]. Moreover, algae settle and form a thick coat over sedentary organisms,
including corals, sponges, and anemones, restricting the penetration of sunlight, which
may affect the primary productivity of their symbionts [255]. Furthermore, the presence
of algal blooms near coastlines leads to fish and other aquatic species avoiding the bloom
areas, which then has a negative impact on the livelihoods of local communities that are
dependent upon traditional fisheries in the region [256]. In addition, the proliferation of
both toxic and non-toxic phytoplankton changes the density of species due to inter-specific
competition between phytoplankton and zooplankton species. Other than that, a rise
in relative sea level due to climate change, which is responsible for coastal erosion, also
contributes to increasing the rate of nutrient input and results in increased secondary
productivity. In addition to eutrophication, a high concentration of nitrogen in soils
contributes to the acidification process, which leads to the leaching of base cations [257].
Moreover, imbalances in the dissolved nutrient proportions in the water result in changes
in nutrient stoichiometric ratios (Si:N, N:P, and Si:P) [258]. These changes seriously alter
the mangrove ecosystem and impact the food web dynamics significantly [259].

4.2.3. Altered Hydrological Flow

Anthropogenic alterations in hydrological flow near mangrove forests through various
structures such as roads, sea defences, and drainage canals have devastating impacts on
the natural hydrological flow [260]. For example, roads that are built across tidal flats
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block the natural flow of water and make the mangrove soil dry and hypersalinised [261].
Fluctuations in freshwater currents coming down from inland dams and irrigation also
affect mangroves by altering their salinity and resulting in mangrove loss [262]. For instance,
in Pakistan, the Indus Delta freshwater incurrent has been reduced by up to 90% due to
diversion [263]. This affected the bed load composition and reduced the uniform sediment
deposition in those mangrove areas [264]. Moreover, altered hydrological flow in mangrove
areas is responsible for suppressing fluvial processes such as transportation and sediment
deposition and is one of the crucial factors inhibiting the natural restoration process of
mangroves through secondary succession [265].

4.3. Low Level Threats
4.3.1. Diseases

Relatively few scientific articles report on diseases of Mangrove species. The first study
related to diseases of mangroves was carried out on the Caribbean Island of Puerto Rico
by Stevens (1920) and reported leaf spot disease of the mangrove species Rhizobea mangle
caused by the fungal pathogen Anthostomella [266]. Another disease known as “top dying”
that affects the mangrove species Heritiera fomes, a tree locally known as “sundri”, has been
reported to affect around 20% of the total mangroves in Bangladesh [267]. However, very
little is known about the underlying cause of the disease. In this disease, the upper part
of the plant is the first to show symptoms with the loss of leaves, followed by branches,
due to the invasion of insects and wood-rotting fungi [268]. Several studies have shown an
association between an increase in heavy metals and the emergence of “top dying” disease
in mangroves [269]. Similarly, in Africa, a high degree of infestation by an unknown gall-
inducing fungus was reported that causes mortality in Rhizophora species [270]. Another
case of microorganism involvement in mangrove decay was reported on the Queensland
coast of Australia, where Halophytophthora sp. was considered to be associated with the
mortality of Avicennia marina trees [271].

4.3.2. Tourism

Although the mass tourism industry contributes to the economic development of
countries, it can highly influence the environmental integrity of mangrove ecosystems [272].
One of the significant impacts of mass tourism occurs when there are frequent tours
on cruise boats, which produce hydrological waves that cause erosion of the banks of
waterbodies [273]. The heavy scouring of sediment causes degradation of the soil structure
and eventually results in the uprooting and loss of mangrove trees, thereby rendering the
water channels wider and shallower. This alters the hydrology and morphology of the
affected rivers and estuaries [274]. The other major environmental issue associated with
tourism is increased local waste and litter, which pollute the estuarial waters and harm the
health of marine life [275].

4.3.3. Pollution

Marine litter refers to any stable, manufactured, or processed solid materials discarded
or disposed of near/in marine or coastal environments [276]. Marine litter has been found
throughout the marine shelves, such as beaches, the sea surface, the water column, and
the seafloor, and ingested by marine or coastal biota [277]. Notably, plastics are the most
abundantly found litter [278]. Marine litter has been classified into macro-litter, meso-litter,
and micro-litter. Macro-litter, including macroplastics, is marine litter that is larger than
5.0 mm in size. These include a wide variety of plastics, from small plastic fragments
to large objects such as shipwrecks and trawl bags. Meso-litter, including mesoplastics,
is marine debris in the range of 5–25 mm and usually originates from the breakdown of
macro-litter. Shoreline recreational activities are the main source of meso-litter. On the
other hand, micro-litter as well as microplastics are particles <5 mm in size and are usually
categorised as fragments, fibres, pellets, foam, or film [279,280]. The increasing quantity of
litter has now been recognised as a growing global problem. Inadequate management of
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particularly non-degradable litter in coastal areas can lead to its augmentation in mangrove
forests, affecting mangrove ecosystem services [281].

Other than local waste and litter, chemical pollution such as oil/petroleum, inorganic
chemicals, natural gas, and other polluting materials also causes significant degradation of
the mangrove forests [282]. Sewage, wastewater, and rubbish periodically released by ships,
the mismanagement of waste generated, and accidental spillages occurring on deep-sea
ports located near mangroves can significantly contribute to the damage of mangrove
ecosystems and result in the loss or degradation of natural habitats that can also harm
marine life in mangroves [283]. Leaked oil that settles with the tide and smothers aerial
and prop roots impairs the physiological processes of mangrove plants [284]. The presence
of trace metals, polycyclic aromatic hydrocarbons (PAHs), polyvinyl pyrrolidone (PVP)
(microplastics) [285], and persistent organic pollutants (POPs) [286] has been observed in
different mangrove compartments (water, sediments, and biota) [287]. These chemicals
have toxic effects on mangrove ecosystems, with potential knock-on adverse impacts on
populations and biodiversity [288]. For instance, oil pollution is reported as one of the
threats to mangrove forests on the East African coast, as they are adjacent to the route
that is frequently used for the transportation of oil from the Persian Gulf to the Atlantic
Ocean [283].

5. Challenges for Mangrove Management

Despite current awareness of the significance and implications of threats to mangrove
ecosystems, the management of mangrove areas has always been difficult because of
several challenges. The main challenges to the effective management of mangrove areas
are discussed below.

5.1. Land-Use Conflicts

Mangroves are often located in areas that are also valuable for aquaculture, agriculture,
and coastal development. This leads to conflict between different stakeholders over land
use, resource access, and management property. This is especially challenging in mangrove
areas, where the land is currently inhabited by local populations. For example, in Kerala,
India, there was a decision to zone an area under the Coastal Zone Regulation-1 (CRZ-1),
by the Union Ministry of Environment, Forest, and Climate Change, Kerala, India, with the
intention of protecting the mangrove biodiversity. Under the proposed CRZ-1, people who
lived in these zones would be displaced from their traditional lands to new places. This
led to conflicts between local people who owned property within the mangrove zone, with
local village councils opposing the initiative of the government authorities. The lack of con-
sensus prevented this program from reaching its goal, thereby making it ineffective [289].
A lack of consensus in such cases mainly arises due to a lack of awareness of the ecological
and socio-ecological significance of mangroves [164] among the local communities. Only
when ecosystem services offered by mangroves are considered communal goods with open
access can they be beneficial to local communities. If there are poorly defined property
rights, there is a possibility of uncontrolled exploitation [290]. The unrestrained exploita-
tion of mangroves can damage the ecosystem and decrease the provision of mangrove
services [291], which also increases the risk of poverty prevalence in the region [292]. There-
fore, it is necessary to educate people, especially those who are residing near coastal areas
and are directly dependent on mangrove goods and services [293], to put in place measures
to prevent opportunists from elsewhere from unsustainably exploiting the ecosystem.

5.2. Low Stringency in Regulatory Action

The lack of stringent regulation is a challenge to the protection and conservation of
mangroves in many regions. For instance, in Cancún City, Mexico, the mangrove-fringed la-
goon area has been replaced by hotels and luxurious buildings in the past few decades [294].
The roads built along the coasts to approach these buildings have significantly compro-
mised the natural hydrological links between habitats. The legal protection act that had
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been implemented to safeguard mangroves was withdrawn due to mounting pressure
from coastal developers. The governments, from local through regional to national levels,
have not successfully and effectively regulated the escalating coastal tourism industry in
the region [295]. The lack of regulations to control the expansion of tourist infrastructure
on this island has affected the natural balance of the coastal ecosystem. Consequently,
chronic erosion near the coast has increased the vulnerability of mangroves over the last
few decades [296].

5.3. Inadequate Policy and Government Frameworks

In many countries, policies and government frameworks related to mangrove man-
agement are weak in legal binding or non-existent, leading to poor management and
unclear liability for the associated stakeholders [297]. Inadequate policy and government
frameworks act as barriers to sustainable coastal management and marine restoration [298].
For example, in the Philippines, the government has given support in the form of loans
for aquaculture development, declared a policy of fisheries development, and extended
aquaculture permits from 10 to 25 years [299]. However, the government failed to ade-
quately administer the aquaculture industry at both the local and national levels to ensure
mangrove protection [299,300]. Similarly, in Australia, jurisdictive intricacy and a lack of
operational policy within coastal management policies have made management ineffective
and limited coastal and marine restoration as compared to terrestrial ecosystem restora-
tion [298]. Mangrove restoration in Australia is mostly regulated through a framework
mapped to curtail environmental harm (e.g., from coastal development) rather than devel-
oping a framework to achieve net environmental benefit [301]. This lack of a legislative
framework that facilitates restoration and the lack of clear jurisdiction in marine and coastal
environments hamper the initiation of large-scale restoration projects that could facilitate
mangrove ecosystem rehabilitation [302].

6. Strategies for Mitigating Mangrove Loss by Augmenting Resistance and Resilience
to Threats

Having recognised the threats and challenges, the planning and implementation
of sustainable management strategies for mangrove ecosystems is necessary to prevent
further mangrove loss and accelerate restoration and conservation. Such strategies should
primarily focus on smart land use planning, the establishment of sustainable catchment
activities, the development of integrated regional monitoring networks, and community
education and outreach.

6.1. Smart Land Use Planning

Smart land use planning for mangroves starts with the essential steps of identifying
and mapping the extent of mangroves in the area to ensure their preservation and sustain-
able use [303]. Geographical information systems (GIS) can be used for smart land use
planning of mangrove areas by integrating spatial and non-spatial data to identify areas
suitable for sustainable conservation [304]. In addition, tools such as SWOT (strengths,
weaknesses, opportunities, and threats) analysis, OKR (objectives and key results), and
PEST (political, economic, socio-cultural, and technological) analyses [305,306] can be used
to identify impacts on a mangrove ecosystem. The information obtained by employing
these tools is critical as it can support appropriate zoning regulations and management
strategies with considerations of economic feasibility, social acceptability, and environmen-
tal fidelity for that area [307]. Based on the ecological significance and critical condition
of the habitat, protected areas should be established where development and human ac-
tivity are restricted. Guidelines and regulations that control the extent and intensity of
development activities in and around a mangrove-protected area could include limits on
land use changes, buffer zones, and a minimum setback distance from mangroves [308].
Implementing regular monitoring and evaluation of the effectiveness of the land use
planning strategies is essential to determining whether the measures are achieving their
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intended outcomes. Engaging stakeholders, especially local communities, can ensure that
all needs and perspectives are taken into account. Overall, smart land use planning for
mangroves requires a comprehensive approach that balances conservation, sustainable use,
and community needs [309].

6.2. Managed Catchment Based Activities

A catchment area, also known as a watershed or drainage basin, is a geographical area
that contributes water to a particular stream, river, or sea [310]. All the precipitation falling
within a catchment area flows into a common outlet, such as a river mouth [311]. Catchment
areas are important because they can affect the quality and quantity of water that flows
into the mangrove ecosystem [312], which can affect mangrove species diversity. A large
catchment area that receives a lot of rainfall can result in a dilution of the salinity levels,
which is less suitable for mangroves, which require brackish water to survive. On the other
hand, if a catchment area is small and receives little rainfall, there may be insufficient fresh
water flowing into an ecosystem to support the mangrove species that are more sensitive to
high salinity [313].

In addition to the effect of salinity on species diversity, water catchment area qualities
can also impact sediment and nutrient input to mangrove ecosystems. If a catchment
area is heavily disturbed, such as through deforestation or agricultural/aquacultural
activities, there may be increased sediment and nutrient runoff that can harm mangroves
by smothering roots or causing algal blooms that deplete oxygen levels in the water [314].

Catchment-based activities such as coastal development, clearance of areas for agri-
culture, construction of aquaculture ponds, and harbour points can also result in land
subsidence. This in turn can lead to flooding and land loss, with consequences for proper-
ties, agricultural production, and food security, especially in agriculture-dependent coastal
areas [315]. Therefore, managing catchment areas is crucial for the conservation and restora-
tion of mangrove ecosystems. Minimising human impact on catchment areas, such as by
reducing deforestation, improving sustainable agricultural practices [314], and setting clear
guidelines for other human activities responsible for the release of pollutants, can help
ensure that the water quality in the mangrove ecosystem remains suitable for mangrove
growth and survival [316]. By organising cleaning programs involving the local commu-
nity, ecological disturbances to mangrove forests can be minimised. The removal of solid
waste and trapped debris on a regular basis is needed to complement coastal pollution
management [317].

6.3. An Integrated Regional Monitoring Network to Access Impact of Climate Change

Shared international and interstate marine and land borders in many mangrove re-
gions, especially in Southeast Asia, make the establishment of an integrated regional
monitoring network important to facilitate the preservation and sustainable use of man-
groves. This involves setting up a system to collect, analyse, and report data on the health
and status of mangrove ecosystems from local through regional to national levels [318].
This requires the collaboration of different stakeholders, including scientists, environmental
consultants, metrologists, and government agencies [319]. The impacts of climate change
vary in time and space, making it hard to predict the actual responses of mangroves to
climate change [320]. Therefore, there is a need to keep climatic changes under systematic
surveillance [321]. Data from the monitoring of climate change can be used to develop
machine-learning models to efficiently predict any future adverse effects on mangrove
forests [322]. This will enable the assessor to better understand the mangrove’s responses to
climate change and to determine the mitigative alternatives to the corresponding adverse
effects [298].

6.4. Mangroves Restoration/Reforestation

Restoration is the process of supporting the recovery of an ecosystem that has been
degraded, overexploited, or destroyed [323]. Mangrove restoration acts as a strategy to
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safeguard the functions and economic benefits of the ecosystem, such as coastal protection,
environmental mitigation, the establishment of silviculture, sustainable utilisation of man-
grove goods, habitat, coastal food sources, and the provision of community living [324].
Restoration can be categorised into (i) ecological restoration and (ii) hydrological restora-
tion [325]. Ecological restoration refers to the process of repairing the damage caused by hu-
mans to the diversity and dynamics of native ecosystems via replanting/reforestation [326].
Replanting/reforestation can comprise single or multiple species. In the process, trees are
planted in areas that were formerly forested and where the site conditions have not been
degraded since the removal of mangrove cover [327,328]. Ecological restoration of areas
previously inhabited by mangroves could reduce losses due to climate change, but it has a
low success rate because of the high mortality of the transplanted seedlings [329–331].

On the other hand, hydrological restoration refers to the modification of water flow
and drainage by using breakwaters and coir logs [332]. It has been reported that mangroves
could recover naturally if environmental conditions such as hydrology, soil and water pH,
soil structure, nutrient concentration, etc., are suitable [333]. The calm area protected by the
breakwater and the correct hydrologic pattern could provide suitable environmental condi-
tions that facilitate the natural re-establishment of mangroves [334]. However, hydrological
restoration can be compromised due to sediment burial and poorly anchored coir logs [335].
Therefore, to increase restoration success, an integrated engineering strategy that includes
multi-species restoration and hydrology-based approaches can be promoted [336–338]. A
sustainable mangrove restoration also requires capacity building in the communities and
institutions and the development of various tools to identify restoration strategies appro-
priate to the affected area that are also in accordance with the prospective stakeholders and
investors. In addition, monitoring and reporting procedures will provide a more robust
approach for future mangrove restoration projects [339].

6.5. Community Education and Outreach

Community education and outreach for mangrove conservation are critical for pro-
moting the sustainable management of mangrove ecosystems [300]. This starts with the
identification of key stakeholders, such as local communities, governmental agencies, non-
governmental organisations (NGOs), universities, and schools, and the development of
educational materials that explain the significance of mangroves, their role in protecting
the environment, and the benefits that mangroves provide for economic activities such as
aquaculture as well as for wildlife [207]. The long-term benefits of maintaining sustainable,
functioning mangroves are often compromised by a need for short-term economic gains
in terms of developmental activities that adversely affect the mangroves, especially in
economically less-developed countries with high development stress to accommodate
population growth [340]. Conducting training workshops for community members and
stakeholders to enhance their knowledge about mangroves and their ecological signifi-
cance can improve mangrove sustainability [341]. Training should also include planting,
restoration, and conservation techniques. Moreover, the use of social media platforms to
share success stories and tips for conservation can raise awareness of mangroves and their
importance [342]. Through community education and outreach initiatives, it is possible to
raise awareness of the importance of mangrove conservation, promote sustainable practices,
and ensure that this vital ecosystem continues to thrive for generations to come [343].

7. Conclusions and Future Prospects

Mangroves are an important coastal wetland ecosystem that is both indicative of
and essential for planetary health. They are unique and valuable ecologically, as they
offer a wide range of ecosystem services, including habitat provision for local fauna and
flora, support for coral and seagrass ecosystems, carbon sinks, natural water filters, and
barriers to natural disasters. In addition, mangroves facilitate aquaculture and agriculture
and are a source of fuel, timber, and traditional medicines. However, mangroves face a
range of threats, including extensive coastal development, overexploitation for fisheries
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and agriculture, deforestation, eutrophication, altered hydrological flow diseases, mass
tourism, and pollution. These threats have resulted in significant declines in mangrove
areas worldwide, making mangroves one of the most threatened ecosystems on the planet.
In order to protect and restore mangrove ecosystems, sustainable management of mangrove
areas is required. However, this is challenging due to land use conflicts, a lack of stringent
regulatory action, inadequate policy and government frameworks, and a lack of awareness
and education. Figure 7 presents a summary of mangrove ecosystem services, functions,
and threats in the context of ecosystem management. The balance between mangrove
ecosystem services, functions, threats, and mitigation strategies is crucial to avoiding
ecosystem collapse. Different mitigation strategies, such as smart land use planning for
mangrove areas, management of catchment-based activities, development of integrated
regional monitoring networks, and community education and outreach, can be adopted
to minimise mangrove loss and maximise the restoration of mangroves. Brought together,
these strategies can not only augment mangrove resistance and resilience to threats but
can also help overcome the challenges that currently obstruct effective and sustainable
mangrove management.

It is evident that despite being of great value in many ways, mangrove forests have
often been overlooked in terms of their value, ecological implications, and associated
economic impacts of their depletion. Considerable mangrove losses can be directly linked
to loopholes in policies, legislation, regulation, and management. To reverse the trends
of mangrove loss and decrease the vulnerability of coastal communities, it requires a
serious commitment by local and national governments to design, develop, and implement
robust and broad-ranging policies. Some recommendations that could be a way forward
for improved, cohesive, integrated, and effective management to protect and conserve
mangroves from further damage are suggested in Table 6.

Table 6. Recommendations for mangrove protection, restorationss, and conservation at the
global level.

Process/Activity Impact Contributors

Accentuate the importance of mangroves
in carbon sequestration at national and
international platforms that address
climate change, as mangroves are less
discussed in the international dialogues
on carbon emission settlement eligibility
of ecosystems in the United Nations
Framework Convention on Climate
Change (UNFCCC) [344].

This would support the implementation
of mangrove projects for the reduction of
carbon emissions. This can have direct
bearing on the implications of SDG 13,
i.e., Climate Action.

United Nations, voluntary carbon
markets traders from regional through
national to global level.

Develop the schemes for “Blue Carbon”
(mangrove) under UNFCCC. The
UNFCCC refers insignificantly to blue
carbon ecosystems, which makes them
unworthy to the carbon markets [345].
On the contrary, when it comes down to
green carbon (terrestrial forests), there are
well established market mechanisms
focusing on greenhouse gas (GHG)
emissions reduction owing to
deforestation. Such tools need to be
applied to mangrove ecosystems.

This would accelerate the investigations,
designing, and development of more
internationally coordinated procedures
for mangroves carbon credits under blue
carbon scheme and can directly
contribute to SDG 13, i.e., Climate Action.

United Nations, voluntary carbon
markets, traders from regional through
national to global levels.
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Table 6. Cont.

Process/Activity Impact Contributors

Integrate mangrove management policies
with legal systems that could provide
accredited scenarios for effective
mangrove management by ensuring
proper legislation, regulation, and
enforcement, and compliance by
stakeholders from local through regional
to national levels.

This would help to define entitlement to
ownership, access, and the rights of use
of mangrove forests. Moreover, this can
enhance legal, financial, and technical
capacity for effective mangrove
management. Moreover, it can be in line
with SDG 8, which is about Decent Work
and Economic Growth.

National and international policymakers
and law enforcement bodies, and other
stakeholders and beneficiaries.

Emphasise the intense socio-economic
impacts of mangrove degradation on
prevailing indigence in many rural
coastal communities. This can be
achieved by raising public awareness
through extended outreach regarding the
socio-economic importance of the
mangroves and the implications of their
loss. Global initiatives such as The
Economics of Ecosystems and
Biodiversity (TEEB) will be helpful in this
regard.

Healthy mangrove forests contribute to
the food security of millions of people
around the world. Information and
exchange of existing knowledge on
ecosystem services and functions, their
economic valuation, and alternative
mangrove management approaches
would help build a stronger case for
interventions. It would also help to refine
existing management
approaches/practices if the Sustainable
Development Goals to eliminate extreme
poverty (SDG 1) and end hunger (SDG 2)
set by the United Nations (UN) are to be
achieved.

Socio-economists and regional forestry
departments, FAO, NGOs, and academia.

Include the role of mangroves as a key
factor in climate change adaptation in the
national disaster risk reduction plans and
action framework. The environmental
impact assessment can be carried out
during planning and installation of the
artificial coastal defence systems in/or
near mangrove forests. Evaluation of the
risks posed to the mangroves and all
associated ecosystem services and
functions can be taken into account.
Consideration should also be given to
using mangroves alongside the built
substructure as “hybrid engineering”,
where mangroves alone may not be
sufficient.

Such initiatives would encourage
stakeholders to protect and restore
mangroves as a part of natural coastal
infrastructure. This would also signify
mangroves for their roles in minimising
vulnerability and increasing the resilience
to climate change impacts. This can be
related to SDG 11 Sustainable Cities and
Communities and SDG 15 Life on Land.

Disaster risk reduction authorities and
other voluntary groups, organisations
such as the WHO, UN, etc.

Introduce some economic incentives in
terms of pollution taxes, subsidies,
merchandise permits, and performance
bonds.

This would instigate environmentally
responsible behaviour among people and
improve local livelihoods, which is in
connection with SDG 8 regarding
Economic Growth. If properly applied
with a command and control strategy, this
would lead to desirable outcomes such as
mangrove restoration and enhancement.

Socio-economists, banking sector,
ministry of finance, and public
development.

Promote the clean development
mechanism (CDM) practices in provision
of mangrove restoration and
conservation.

This would encourage accounting for
ongoing carbon sequestration and stock,
which is one of the agenda of SDG 13, i.e.,
Climate Action.

United Nations, national and local
governments, and NGOs.
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Table 6. Cont.

Process/Activity Impact Contributors

Encourage and finance the developing
countries to reduce the loss of mangrove
forests, restore areas, and/or establish
new mangrove areas. The structure and
protocol of REDD+ (reducing emissions
from deforestation and forest
degradation, plus the sustainable
management of forests, and the
conservation and enhancement of forest
carbon stocks) supported by FAO could
serve as a tool for the development of
national and international financing
mechanisms.

Since REDD agenda is to offset GHG
emissions, counter deforestation, and
forest degradation while generating
revenue, which can also be used to
incentivise the relevant stakeholders and
also contribute to SDG 8, i.e., Decent
Work and Economic Growth.

FAO, international and national
governments, and environmental
legislators.

Organise community-based poverty
reduction programmes in areas where
mangrove restoration and management
are practiced. Where suitable,
alternatives to mangrove dependency for
consumables in the local community
must be introduced.

If applied appropriately, these attempts
can be successful in enhancing the
ecological settings of mangroves as well
as the living status of local communities.
Moreover, this would help to meet MDG
1 (Millennium Development Goal) to
eradicate extreme poverty and hunger.

Government, NGOs, and local bodies.

Highlight the severity of mangrove
biodiversity loss and degraded
ecosystems through experts in the fields
of economics, science, and technology.

Mangrove degradation has significant
socio-economic impacts. This would
inform policymakers to ramp up
enterprises in mangrove management,
restoration, and comprehensive
cost-effective analysis prior to making
policy decisions.

Environmental consultants, ministry of
education and information technology,
NGOs, and academia.
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