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Abstract: Clonal plantation involves the rooting of cuttings from superior genotypes selected for
their hybrid vigor and desired qualities. However, the cuttings of some Eucalyptus species and their
hybrid genotypes present difficulties in their rooting capacity. Applying PGPR to cutting growth
medium as a root stimulating agent has not been extensively studied for Eucalyptus tree species. We
aimed to assess the rooting capacity of cuttings taken from two poor-rooting Eucalyptus hybrid clones
of E. grandis× E. nitens through the application of PGPR in nursery trials. Seven rhizospheric bacterial
species that demonstrated the ability to produce indole-3-acetic acid and to solubilise phosphate were
used to prepare two rhizospheric consortium inoculums in which Pseudomonas-Bacillus strains and
non-Pseudomonas-Bacillus were grouped. Inoculums were tested for their rooting stimulating capacity
on cuttings of the hybrids GN 018B and GN 010 and compared to the nursery standard indole-
3-butyric acid. A total of 320 cuttings were treated. Both hybrid clones demonstrated significant
(p < 0.0001) genotype differences for all three growth responses, i.e., total, root, and shoot length.
Cuttings of both hybrids demonstrated high survival rates and rooting percentage. Although several
rooting architectural configurations were prevalent, the Pseudomonas-Bacillus consortium promoted
adventitious root development and fibrosity in GN 018B hybrids.

Keywords: Eucalyptus hybrids; plant growth promoting rhizobacteria; PGPR; root architecture;
Eucalyptus cuttings; tree nursery trials

1. Introduction

Worldwide demand for hardwood from commercial plantations is rising and projected
to increase further by 2030, in particular for Eucalyptus species [1]. Traditionally, breeding
with Eucalyptus species has involved the methods of intraspecific and interspecific hybridis-
ation and the selection of superior genotypes presenting tolerance to several environmental
factors [2,3]. Intraspecific and interspecific Eucalyptus hybrids are multiplied through vege-
tative propagation, a method widely used for the establishment of clonal plantations [4].
Young Eucalyptus hybrid clonal plants are commercially multiplied by the rooting of cut-
tings in a nursery [5]. A major drawback that is faced by the commercial forestry industry
is the manifestation of poor or variable rooting capacity of certain genotypes, especially
Eucalyptus nitens, resulting in considerable losses [6].

The improvement of rooting percentages of clonal cuttings that mitigate losses through
poor survival and low rooting percentages will contribute to more efficient and cost-effective
clonal forestry practices. Research is thus required to develop improved Eucalyptus root-
ing regimes that can be applied in commercial forestry nurseries. One of the strategies
to improve rooting capacity in tree species is that of using rhizospheric bacteria to stim-
ulate rooting [7,8]. Rhizospheric bacteria that supports plant growth are referred to as
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plant-growth-promoting rhizobacteria (PGPR). Rhizospheric bacteria can stimulate plant
growth and more recently have also shown to increase the rooting of cuttings [7,9–12].

PGPR are a varied group of rhizospheric bacteria that reside in rhizospheres, and
at root surfaces of plants. PGPR are in symbiotic association with their host plants and
feed on sloughed-off cells and root exudates while, in return, improving the quality of
plant growth either directly and or indirectly [13]. PGPR contribute directly to plant
growth either through providing plant-growth-promoting substances or by facilitating
the uptake of certain plant nutrients from the soil. PGPR may also promote plant growth
indirectly by mitigating or preventing the damaging effect of one or more phytopathogenic
microorganisms. A number of non-pathogenic PGPR belonging to the genera Agrobacterium,
Alcaligens, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Brassica, Burkholderia, Enterobacter,
Klebsiella, Pseudomonas, Serratia and Streptomyces have been reported to enhance plant
growth either directly or indirectly [10,14,15].

The exact mechanisms by which PGPR promote plant growth are not fully understood.
However, a number of PGPR traits are involved in the promotion of plant growth. One
of the more important traits is their ability to produce or change the concentrations of
plant growth regulators, such as for auxin, especially indole-3-acetic acid (IAA) [16,17].
PGPR in the rhizosphere synthesises IAA as exogenous auxin [10,18]. PGPR-produced
exogenous auxin can also enhance endogenous IAA production in the host plant itself [10].
A high endogenous IAA concentration is normally associated with a high rooting rate at
the beginning of the rooting process [19,20]. This complementary production of IAA can
result in a peak IAA concentration that initiates the rooting process in a cutting [21,22]. IAA
thus stimulates lateral and adventitious root development, thereby increasing the number
of nutrient-absorbing surfaces, which results in better assimilation of water and nutrients
from the soil [23].

Another important trait is the ability of PCPR to solubilise mineral phosphate and other
nutrients [24,25]. The ability of some PGPR to solubilise phosphate allows IAA to promote
plant growth. Phosphate-solubilising rhizospheric bacteria increase the available phosphorus
for a plant, especially in soils with large amounts of precipitated phosphate [14,25,26]. These
rhizospheric bacteria release bound phosphate by secreting a number of organic acids [14,25].

In South Africa, E. grandis and its hybrids are by far the most widely cultivated
Eucalyptus genotypes [27–30]. E. grandis is relatively fast growing and most commonly
used as a source of pulpwood, fuel, and timber. The cuttings of this species root relatively
well, making it suitable for cloning. However, the cuttings of some of the most sought-after
hybrids of E. grandis, particularly E. nitens, have demonstrated relatively poor rooting
(personal communication, CSIR, South Africa). The root-promoting effect of PGPR has
been demonstrated in a number of forest tree species [10] but has not been extensively
studied for Eucalyptus [7,10]. However, not all rhizospheric bacteria act as PGPR. To exploit
the root-growth-promoting attributes of rhizospheric bacteria, specific strains need to be
isolated and screened for their potential root-promoting abilities. Therefore, the aim of this
investigation was to improve the rooting capacity of cuttings of Eucalyptus hybrid clones
of E. grandis × E. nitens, which is known for its relatively low rooting ability, through the
application of isolated and characterised plant-growth-promoting rhizobacteria.

2. Materials and Methods
2.1. Isolation of Rhizospheric Bacteria

Rhizospheric bacteria were isolated from rhizospheric soil of ten (10) clones of Euca-
lyptus hybrid genotype, E. grandis × E. urophylla (GU), which is known for its relatively
high rooting capacity. Soil samples were collected in nursery tunnels at Sunshine Seedlings
near Pietermaritzburg, South Africa from a 2 mm radius around the roots using a sterile
teaspoon. Approximately 60 mL (4 scoops) of soil were collected from each plant, placed in
a sterile plastic bag, and kept on ice while in transport to the laboratory. Soil samples (3.5 g)
were mixed with 100 mL of sterile distilled water in a conical flask. Flasks were incubated
at 25 ◦C with shaking (120 rpm) for 20 min. Thereafter samples were diluted and plated
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on potato dextrose agar (PDA) and R2A agar using an easySpiral® Pro automatic plater
(interscience, Saint Nom, France). Plates were incubated at 25 ◦C for 48 h. After incubation,
representatives of bacterial colonies presenting different morphological variations (colour,
shape, and size) were isolated and purified by sequentially streaking single colonies onto
fresh agar plates [31,32]. Purified isolates were cryo-preserved at −80 ◦C in a Microbank™
(Pro-Lab Diagnostics, Bromborough, UK).

2.2. DNA Extraction, Amplification and Sequencing

Genomic DNA (gDNA) was extracted from bacterial cells using a harsh lysis man-
ual extraction method [33]. gDNA concentration and purity were determined using a
NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
integrity analysed by 0.8% agarose gel electrophoresis. Targeted amplification of the V1–V9
regions of the 16S rRNA gene was performed using primer set 63-F (5′-CAG GCC TAA
CAC ATG CAA GTC-3′) and 1387-R (5′-GGG CGG WGT GTA CAA GGC-3′) [34,35]. Am-
plification was performed in a C1000™Thermal Cycler (Bio-Rad, Hercules, CA, USA) in
25 µL reactions containing 1 µL of gDNA, 1× ThermoPol® Reaction buffer (20 mM Tris-HCl;
10 mM (NH4)2SO4; 10 mM KCl; 2 mM MgSO4; 0.1% Triton X-100, pH 8.8), 0.2 mM dNTPs,
0.5 µM of each primer, 0.1 µg mL−1 of BSA, and 1 U of Taq DNA Polymerase (New England
BioLabs, Ipswich, MA, USA). The following PCR conditions were applied: initial denatura-
tion at 94 ◦C for 3 min, followed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing
at 55 ◦C for 30 s, and elongation at 68 ◦C for 1 min and 30 s. A final elongation step was
incorporated at 68 ◦C for 5 min. Successful amplification was confirmed by electrophoresis
on 1% agarose gel. Bands of the appropriate lengths (≈1300 bp) were excised from the gel,
purified using an illustra™ GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare
Life Sciences, Chicago, IL, USA), and used as template for sequencing.

Sequencing was performed in single reactions using primers 63-F and 1387-R, as
well as internal primers 533-F (5′-GTG CCA GCM GCC GCG GTA A-3′) and 805-R
(5′-GAC TAC CAG GGT ATC TAA TC-3′) on an ABI Prism 3130 XL genetic analyser using
a BigDye® Terminator V3.1 Cycle Sequencing Kit (Life Technologies, Carlsbad, CA, USA).
DNA was prepared for sequencing by precipitation using EDTA and ethanol. Sequences
were assembled using DNA Baser Assembler v5 15.0 software, and the contig construct was
used to determine sequence homology. Sequence homology searches were undertaken by
comparing each of the contig constructs against nucleotide sequence databases (nucleotide
collection/16S ribosomal RNA sequences). The BLAST server of the National Centre for
Biotechnology Information (NCBI) was used for the respective sequence homology searches
using the BLAST algorithm (megablast). Only similarities with a BLAST index of 98% and
above were considered for identification (Table 1).

Table 1. BLAST homology results compared to 16S ribosomal RNA gene partial sequences.

Isolate # Description NCBI Number Base Pairs % Identity IAA 1 PS 2

CSN-R12 Brevibacterium frigoritolerans strain DSM 8801 117474.1 1062 99 + +
CSN-R13 Brevibacterium frigoritolerans strain DSM 8801 117474.1 1068 100 + +
CSN-R15 Aeromicrobium ginsengisoli strain Gsoil 098 041384.1 1033 99 − −
CSN-R1 Arthrobacter oryzae strain KV-651 041545.1 1045 98 + −
CSN-R2 Arthrobacter oryzae strain KV-651 041545.1 1035 98 + −
CSN-R47 Arthrobacter oryzae strain KV-651 041545.1 1157 98 + −
CSN-R25 Bacillus acidiceler strain CBD 119 043774.1 1245 99 + −
CSN-R65 Bacillus aryabhattai strain B8W22 115953.1 1301 100 + +
CSN-P10 Burkholderia phytofirmans strain PsJN 042931.1 1261 99 + +
CSN-P11 Burkholderia phytofirmans strain PsJN 042931.1 1117 99 + +
CSN-P12 Burkholderia phytofirmans strain PsJN 042931.1 1259 99 + +
CSN-P16 Burkholderia phytofirmans strain PsJN 042931.1 911 99 + +
CSN-R9 Chryseobacterium rhizosphaerae strain RSB3-1 125812.1 1147 99 + +
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Table 1. Cont.

Isolate # Description NCBI Number Base Pairs % Identity IAA 1 PS 2

CSN-R17 Chryseobacterium rhizosphaerae strain RSB3-1 125812.1 1258 99 + +
CSN-R44 Chryseobacterium rhizosphaerae strain RSB3-1 125812.1 1122 99 + +
CSN-R42 Chryseobacterium rhizosphaerae strain RSB3-1 125812.1 1107 99 + +

CSN-P13 Curtobacterium oceanosedimentum strain
ATCC 31317 104839.1 1107 99 − −

CSN-R34 Pseudomonas fluorescens Pf0-1 strain Pf0-1 102835.1 1172 99 + +
CSN-R32 Pseudomonas koreensis strain Ps 9-14 025228.1 1076 99 + +
CSN-R35 Pseudomonas koreensis strain Ps 9-14 025228.1 1137 99 + +
CSN-R62 Pseudomonas koreensis strain Ps 9-14 025228.1 1125 99 + +
CSN-R63 Pseudomonas koreensis strain Ps 9-14 025228.1 1101 99 + +
CSN-R64 Pseudomonas koreensis strain Ps 9-14 025228.1 1181 100 + +
CSN-R39 Pseudomonas graminis strain DSM 11,363 026395.1 1007 98 + −
CSN-R5 Pseudomonas putida F1 strain F1 074739.1 1121 99 + +
CSN-R6 Pseudomonas putida F1 strain F1 074739.1 1049 99 + +
CSN-R45 Pseudomonas putida F1 strain F1 074739.1 971 99 + +
CSN-R14 Pseudomonas putida KT2440 strain KT2440 074596.1 1076 99 + +
CSN-R46 Pseudomonas putida KT2440 strain KT2440 074596.1 1200 100 + +
CSN-R48 Pseudomonas putida KT2440 strain KT2440 074596.1 1234 100 + +
CSN-R67 Pseudomonas putida F1 strain F1 074739.1 1180 99 + +

1 indole-3-acetic acid production, 2 phosphate solubility; isolate # bold = selected for field trials.

2.3. Screening Bacterial Isolates for IAA Production and Phosphate Solubilisation

A qualitative approach was applied to determine if a bacterial isolate possessed the
ability to produce indole-3-acetic acid (IAA) and solubilise phosphate. The bacterial strains
were revived from the cryo-preservation by plating on potato dextrose agar (PDA) and
incubated for 24 h at 25 ◦C. Thereafter, single colonies were spot plated onto fresh agar
plates and incubated for 48 h at 25 ◦C. After incubation, 50 mL of Salkowaski reagent was
prepared containing 0.5 M FeCl3 in 35% HClO4 in a ratio of 1:5 (v v−1). One millilitre
of the Salkowaski reagent was poured in a thin layer over the bacterial growth on the
agar plates. Bacterial strains with the ability to produce IAA showed a characteristic pink
colouration [17,36]. Phosphate solubilisation was determined by growing isolates on PDA
supplemented with 0.5% tribasic phosphate (Ca5HO13P3), 0.05% (NH4)2SO4, 0.02% KCl2,
0.01% MgSO4·7H2O and 0.05% yeast extract. A clear halo was visible around colonies able
to solubilise phosphates after incubation at 25 ◦C for 7 days [37].

2.4. Preparation of Bacterial Inoculum for Field Trials

Growth parameters of the 7 bacterial species selected for field application were deter-
mined in suspension culture by monitoring optical density (OD620nm) and colony prolifer-
ation (CFU mL−1). OD was measured using a SpectraMax® M3 Multi-Mode Microplate
Reader (Molecular Devices, San Jose, CA, USA) and spread plating and enumeration with
an easySpiral®Pro and high-resolution Scan® 1200 automatic colony counter, respectively.
Growth was followed for a period of 10 h with incubation performed in nutrient broth at
25 ◦C with shaking (150 rpm).

Separate suspensions were prepared for each bacterial species, which were then
mixed prior to the application of the treatments in the field trials (Table 2). Four 300 mL
cultures were prepared for each species with cell densities of ≈107 CFU mL−1. Cell
suspensions of each species were harvested in mid exponential growth phase at selected
time intervals based on growth data. The content of each flask was aseptically transferred
to a 500 mL sterile Schott bottle, which contained 45 g glycerol (15% final concentration),
then mixed gently and stored at −80 ◦C. Viability, indole-3-acetic acid production, and
phosphate solubilisation of the bacterial colonies were determined before freezing and after
thawing (before use in field trials). Schott bottles containing the bacterial inoculums were
transported to the field in a mobile freezer at −25 ◦C and allowed to thaw overnight before
application. Two mixtures containing different species were prepared in sterile 2 L Schott
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bottles immediately prior to application and dispensed using sterile VITLAB® genius2 5
mL bottle-top dispensers (VITLAB, Grossostheim, Germany).

Table 2. Treatment description and composition used for field trail application.

Treatment Number Treatment Description Composition

T1 Nursery standard (NS 1) indole-3-butyric acid (IBA)
T2 Commercial rooting agent (Eco-T) + NS Trichoderma hertzian (fungus)

T3 Bacterial inoculum mix in
1:1:1:1 ratio + NS

Bacillus aryabhattai
Pseudomonas fluorescens
Pseudomonas koreensis

Pseudomonas putida

T4 Bacterial inoculum mix in
1:1:1 ratio + NS

Brevibacterium frigoritolerans Burkholderia
phytofirmans

Chryseobacterium rhizosphaerae
1 NS = nursery standard = treatment with Seradix 2.

2.5. Preparation of Treatments

Four rooting treatments were prepared and tested in the nursery setting. The nursery
standard (T1) was applied as the control treatment. The nursery standard consisted of the
application of commercially available Seradix 2 to cuttings prior to their setting in media.
Seradix 2 contains one active ingredient, indole-3-butyric acid (IBA) and is applied by
dipping a cutting’s cut edge into Seradix 2 powder before the cutting is set. A commercial
biological rooting agent, Eco-T, was also included as a treatment (T2). This biological
rooting agent contains live fungus (Trichoderma harzianum) as active ingredient. Two treat-
ments were prepared from bacterial species that were isolated and screened. Treatment 3
(T3) mainly comprised species that were known for their rooting enhancement abilities,
including Bacillus aryabhattai, Pseudomonas fluorescens, P. koreensis, and P. putida. Treatment 4
(T4) consisted of the remaining three species Brevibacterium frigoritolerans, Burkholderia
phytofirmans, and Chryseobacterium rhizosphaerae. Table 2 shows the compositions of the
different treatments that were applied in this study. Apart from the control treatment (T1)
that was applied at the setting of the cuttings, the other treatments were applied two days
after the cuttings were set in media.

2.6. Field Trials: Set up and Procedure

Cuttings of E. grandis × E. nitens (GN) hybrid genotypes GN 018B and GN 010 were
collected from mini-hedge ramets grown in nursery tunnels at Sunshine Seedlings near
Pietermaritzburg, South Africa. These hybrids are well suited for cold regions and poor
nutrient soil environments. They are relatively fast growing and most commonly used as a
source of pulpwood, fuel, and timber in South Africa. Shoots with a length of approximately
7 cm were carefully removed from the mini-hedges with sharp secateurs and placed in a
20 L bucket half filled with water. Each cutting consisted of two nodes, an internode and
two pairs of leaves. The buckets containing the cuttings were taken to the cutting room
which was constantly exposed to misting irrigation for 30 s every 5 min. The cuttings were
prepared by trimming the shoots and leaves with a sharp scissor. The leaves were cut to
a size of approximately one third of the original leaf surface area to reduce transpiration
and to conserve energy. Finally, cuttings were stored in a water bath until setting in
rooting medium.

Prior to the setting of the cuttings, the cuttings were washed in dilute Vapour Gard
with Di-1-p-Menthene to reduce moisture stress in the cuttings. The cutting bases were
then dipped into the Seradix 2 according to the manufacturer’s specifications. Thereafter,
the cuttings were placed in the centre of Unigrow cells filled with rooting media at a
depth of approximately 2 cm prior to the application of treatments. The four treatments
(T1, T2, T3, and T4) were applied to the respective Eucalyptus hybrid clone cuttings in
a Unigrow tray that comprised 128 cells arranged in 16 columns and 8 rows. Each of
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the four treatments was applied along two rows of 16 cells (32 cuttings) delineated with
plastic markers (Figure 1). The procedure was repeated in 10 different trays, with the row
allocations for each treatment per tray determined by a random number generator. After all
the treatments were applied, the trays were arranged across the nursery floor to be exposed
to similar climatic variation in the nursery. The treated cuttings were left in the nursery for
eight weeks, at which time the growth measurements were recorded.
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Figure 1. Trays with Unigrow cells filled with rooting media and cuttings (a). Tray consisting of
128 cells arranged in 16 columns and 8 rows. Each of the four treatments (T1, T2, T3, and T4) was
applied along two rows of 16 cells (32 cuttings in total) delineated with plastic markers. The four
treatments were applied to GN 018B and GN 010 Eucalyptus hybrid clone cuttings in 10 separate trays
as independent repeats (b).

2.7. Field Trials: Growth Measurements

Firstly, it was noted whether the cutting had survived. If a cutting had survived,
growth measurements were made, and the rooting architecture configuration described.
Three growth measurements were made for each surviving cutting, namely, total length
of cutting, root length, and shoot length. The rooting architecture of each rooted cutting
was described by using six different descriptive configurations. The six different rooting
configurations comprised of the number of primary adventitious roots with secondary and
tertiary roots (R+), or without secondary and tertiary roots (R−). Separate categories were
allocated to the number of primary adventitious roots up to five roots (R1–R5). Cuttings
with more than five adventitious roots were placed into a category called “roots-many
(RM)”. Rooting architecture data were further categorised into three levels of fibrosity [7].
Level 1, which referred to the lowest level of fibrosity, included the rooting architectural
types R1 and R2, including both plus and minus types. Level 2, referred to a medium level
of fibrosity, and included the rooting architectural types R3 and R4, also inclusive of both
plus and minus types. Level 3, referred to the highest level of fibrosity, and included the
rooting architectural types R5 and RM, also inclusive of both R+ and R− types.

2.8. Statistical Analyses of Treatment Outcomes

Summary statistics were calculated for the survival of the cuttings, growth properties
of the cuttings, as well as for the rooting architectural configurations of the cuttings. Several
analyses of variance (ANOVA) tests and Turkey HSD were performed on the data to
ascertain if significant differences existed between the treatments for growth responses.
Chi-square tests of independence were performed to test if the different rooting architectural
configurations were independent of treatment.
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3. Results
3.1. Isolation, Identification and Characterisation of Potential PGPR

A total of 31 bacterial isolates were purified and identified. Eight different bacterial
genera were identified with Pseudomonas being the most prevalent, containing four different
species. Pseudomonas was followed by Bacillus with two different species. The remaining
six genera, Aeromicrobium, Arthrobacter, Brevibacterium, Burkholderia, Chryseobacterium, and
Curtobacterium, were each represented by a single species. These 12 unique species were
screened for their ability to produce indole-3-acetic acid (IAA) and solubilise phosphate.
All the bacteria isolates, except for Aeromicrobium ginsengisoli and Curtobacterium oceanosed-
imentum, were able to produce IAA. Only seven species also demonstrated an ability to
solubilize phosphate (Table 1). The isolates with caption isolate identity numbers indicated
in bold were selected for use in field trials.

3.2. Preparation and Monitoring of Bacterial Inoculums for Field Trials

The 7 isolates in Table 2 were propagated in suspension cultures in nutrient broth and
cryo-preserved for application in field trials. Harvest times were determined by the target
cell density value of ≈107 CFU mL−1. Viability was confirmed after the cultures were
thawed for use in field trials (Table 3). IAA production and phosphate solubilisation were
also confirmed after thawing; no loss of either capability was noticed in any of the isolates.

Table 3. Harvesting time intervals, OD values, and viability before and after freezing of inoculums
for field trial.

Species Time (h)
Mean

OD 1 ± SD 2

Mean Population Density in
CFU 3 mL−1 × 10 7 ± SD

Before Freezing Before Field Trial

Bacillus aryabhattai 9 0.66 ± 0.06 8.50 ± 0.38 8.02 ± 0.42
Brevibacterium frigoritolerans 10 0.76 ± 0.004 1.93 ± 0.16 1.87 ± 0.13

Burkholderia phytofirmans 8 0.22 ± 0.01 2.27 ± 0.16 2.33 ± 0.23
Chryseobacterium rhizosphaerae 7 0.62 ± 0.03 1.72 ± 0.19 1.68 ± 0.24

Pseudomonas fluorescens 7 0.64 ±0.06 3.00 ± 0.07 3.40 ± 0.60
Pseudomonas koreensis 7 0.59 ± 0.007 2.92 ± 0.11 2.40 ± 0.27

Pseudomonas putida 8 0.71 ± 0.02 3.91 ± 0.30 3.73 ± 0.46
1 Standard deviation; 2 optical density; 3 colony forming units per mL, indicating bacterial population density.

3.3. Survival and Rooting of Cuttings

The four treatments were applied to cuttings in the 10 Unigrow trays of each ex-
perimental trial. The trays were arranged across the nursery floor from one side to the
other. The treated cuttings were left in the nursery for eight weeks, at which time growth
measurements were taken. Figure 1 shows the arrangement of the two rows of 10 trays
each GN 018B and GN 010 hybrids across the nursery floor.

The number of cuttings that survived after eight weeks of growth was counted. Some
of the survived cuttings did not produce roots, and the number of rooted cuttings was also
calculated. For GN 018B treatments, more than 90% of the cuttings survived, although
treatments 1 and 2 performed better than treatments 3 and 4. The total mean percentage of
survived rooted cuttings was greater than 75%. Similarly, more than 90% of the GN 010
cuttings survived. The total mean percentage of survived rooted cuttings was greater than
80% (Supplementary Tables S1 and S2). The control treatment 1 outperformed the other
treatments on both survival and rooting for both hybrids (Figure 2).
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3.4. Growth Response of Cuttings

Three growth measurements were made on each rooted cutting. Mean total growth,
which included the shoot and root length, showed that the control treatment 1 outperformed
all the other treatments by producing the longest rooted cuttings. A similar pattern could be
discerned for both mean root length and means shoot length, where the control treatment 1
also produced the longest roots and longest shoots in both GN 018B and GN 010 hybrids
(Figure 2).

Two factor ANOVA tests were performed on the respective growth responses to
ascertain if significant difference existed between treatments as well as between trays. All
growth responses showed significant differences between the different treatments as well
as between trays. The tray versus treatment interaction also proved to be significantly
different with p values < 0.0001 (Supplementary Tables S3 and S4). Two-factor ANOVA tests
were also performed on the three growth responses (total, root, and shoot length) of the
two hybrids GN 018B and GN 010. The performances of the two hybrids were significantly
different (p < 0.0001 and 0.0147), as was the outcomes of the different treatments (p < 0.0001).
However, the relation between hybrid genotypes and treatment was not significant (Table 4).
Tukey HSD tests indicated that most combinations of treatments differed significantly. In
the case of GN 018B, treatment 4, however, did not differ significantly from T1 and T2 for
total length or shoot length nor from T3 for root length. For GN 010, treatment 4 showed
no significant differences from T2 for total length, from T1 and T2 for root length, and from
T2 and T3 for shoot length (Figure 3).
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Table 4. Two-way ANOVA test performed to compare growth responses on the hybrids GN 018B
and GN 010.

Parameter Source Sum of
Squares

Degrees of
Freedom Mean Square F p-Value

Total length

Hybrids 8574.28 1 8574.28 67.85 <0.0001
Treatments 9851.25 3 3283.75 25.98 <0.0001

Hybrids/Treatments 290.03 3 96.68 0.76 0.4612
Within 322,510.30 2252 126.38

Root length

Hybrids 5849.45 1 5849.44 114.74 <0.0001
Treatments 2976.84 3 992.28 19.47 <0.0001

Hybrids/Treatments 222.78 3 74.26 1.46 0.1972
Within 130,102 2552 50.98

Shoot length

Hybrids 261.76 1 261.76 8.52 <0.0147
Treatments 2105.28 3 701.76 22.85 <0.0001

Hybrids/Treatments 136.69 3 45.56 1.48 0.1588
Within 78,389.73 2552 30.72

Forests 2023, 14, x FOR PEER REVIEW 9 of 15 
 

 

significantly. In the case of GN 018B, treatment 4, however, did not differ significantly 
from T1 and T2 for total length or shoot length nor from T3 for root length. For GN 010, 
treatment 4 showed no significant differences from T2 for total length, from T1 and T2 for 
root length, and from T2 and T3 for shoot length (Figure 3). 

Table 4. Two-way ANOVA test performed to compare growth responses on the hybrids GN 018B 
and GN 010. 

Parameter Source Sum of 
Squares 

Degrees of 
Freedom 

Mean Square F p-Value 

Total length 

Hybrids 8574.28 1 8574.28 67.85 <0.0001 
Treatments 9851.25 3 3283.75 25.98 <0.0001 

Hybrids/Treatments 290.03 3 96.68 0.76 0.4612 
Within 322,510.30 2252 126.38   

Root length 

Hybrids 5849.45 1 5849.44 114.74 <0.0001 
Treatments 2976.84 3 992.28 19.47 <0.0001 

Hybrids/Treatments 222.78 3 74.26 1.46 0.1972 
Within 130,102 2552 50.98   

Shoot length 

Hybrids 261.76 1 261.76 8.52 <0.0147 
Treatments 2105.28 3 701.76 22.85 <0.0001 

Hybrids/Treatments 136.69 3 45.56 1.48 0.1588 
Within 78,389.73 2552 30.72   

 
Figure 3. Tukey HSD tests for hybrids (a) GN 018B and (b) GN 010 comparing treatments 1–4 for 
growth parameters; total, root, and shoot length. 

3.5. Rooting Architecture of Cuttings 
In response to the different treatments, the rooting architecture of the cuttings 

showed different presentations of the number of primary adventitious roots (R) with (R+) 
or without (R−) secondary and tertiary roots (Supplementary Tables S5 and S6). Similar 
results were obtained for both hybrids. When the R+ and R− were grouped together, the 
rooting architectural category with a single primary adventitious root demonstrated the 
highest percentage of cuttings. The percentage of cuttings showed a descending pattern 
with an increase in the number of primary adventitious roots up to a total of five roots. 
The category of many primary adventitious roots demonstrated a higher percentage of 
cuttings than the two categories with four and five primary adventitious roots (Figure 4). 

A chi-square test of independence was performed to test if the different rooting ar-
chitectural types were independent of the treatment. The test showed that treatment did 
not affect rooting architecture significantly of GN1018B cuttings (χ2 = 23.672, df = 15, p = 
0.0709) or that of GN 010 cuttings (χ2 = 22.996, df = 15, p = 0.0842). The percentages of 
cuttings that demonstrated different levels of fibrosity were calculated (Table 5). When 
considering Level 3 (the highest level of fibrosity), T3 and T4 showed increased fibrosity 

Figure 3. Tukey HSD tests for hybrids (a) GN 018B and (b) GN 010 comparing treatments 1–4 for
growth parameters; total, root, and shoot length.

3.5. Rooting Architecture of Cuttings

In response to the different treatments, the rooting architecture of the cuttings showed
different presentations of the number of primary adventitious roots (R) with (R+) or without
(R−) secondary and tertiary roots (Supplementary Tables S5 and S6). Similar results were
obtained for both hybrids. When the R+ and R− were grouped together, the rooting
architectural category with a single primary adventitious root demonstrated the highest
percentage of cuttings. The percentage of cuttings showed a descending pattern with an
increase in the number of primary adventitious roots up to a total of five roots. The category
of many primary adventitious roots demonstrated a higher percentage of cuttings than the
two categories with four and five primary adventitious roots (Figure 4).

A chi-square test of independence was performed to test if the different rooting
architectural types were independent of the treatment. The test showed that treatment
did not affect rooting architecture significantly of GN1018B cuttings (χ2 = 23.672, df = 15,
p = 0.0709) or that of GN 010 cuttings (χ2 = 22.996, df = 15, p = 0.0842). The percentages
of cuttings that demonstrated different levels of fibrosity were calculated (Table 5). When
considering Level 3 (the highest level of fibrosity), T3 and T4 showed increased fibrosity
when applied to hybrid GN 018B cuttings, while for GN 010 cuttings, all treatments
promoted fibrosity when compared to the control (T1). Goodness of fit chi-square tests
were conducted to test to what extent treatments T2, T3, and T4 promoted fibrosity in
comparison to the control (T1). Most tests were not significant at α = 0.05. However, the chi-
square test for T3 of GN 018B, proved to be highly significant (χ2 = 12.14, df = 2, p = 0.0023).
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Table 5. Percentages of cuttings demonstrating different levels of fibrosity for both hybrids.

Hybrid Clone Treatment Level 1 Level 2 Level 3

GN 018B

1 63.9 23.2 12.9
2 71.1 19.0 9.9
3 60.4 19.1 20.4
4 64.4 20.7 14.9

GN 010

1 67.9 25.0 7.1
2 65.0 26.0 9.1
3 69.4 20.6 9.9
4 67.2 23.1 9.7

4. Discussion

The many benefits that Eucalyptus clonal forestry offers have brought about commer-
cial nurseries to take advantage of this avenue of forest tree production. The cloning of trees
allows for the preservation of superior genotypes [4]. At the heart of cloning operations lies
vegetative reproduction, which allows the commercial forestry industry to mass-produce
such superior genotypes of species and hybrids [38]. The vegetative reproduction of
Eucalyptus involves the rooting of cuttings. In South African forestry nurseries, cuttings
are taken from indoor mini-hedges. For cuttings to develop successfully, adventitious
root formation must occur. Adventitious roots increase the number of nutrient-absorbing
surfaces and results in a better assimilation of water and nutrients from the soil [23]. Most
commercial nursery enterprises apply plant growth promoting regulators, such as aux-
ins, to cuttings to stimulate the formation of adventitious root primordia [39]. However,
some valued Eucalyptus genotypes, especially of the subtropical species, and those de-
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ployed in low productivity areas consistently demonstrate relatively poor adventitious
rooting abilities [6,40].

The exploitation of rhizospheric microbes for their properties in biotechnological ap-
plications in clonal forestry, such as for the enhancement of the rooting of cuttings; requires
some understanding of the diversity of rhizospheric microorganism communities, condi-
tions of the rhizosphere, and change over time [41,42]. The diversity is often very specific
to certain environmental conditions and tree species. Understanding diversity is only the
first step, and utilising this information requires the subsequent culturing, purification,
identification, and characterisation of microbes for further study or application. We took
a targeted approach to isolate, identify, and partially characterise rhizospheric microbes
present in the rhizospheres of a Eucalyptus hybrid genotype, E. grandis × E. urophylla (GU),
known for its relatively high rooting capacity. Of the 31 bacterial strains that were isolated,
12 were unique species belonging to eight different genera. Seven demonstrated the abil-
ity to produce indole-3-acetic acid (IAA) and to solubilise phosphates and were deemed
suitable for further study in nursery trials. Three of these species were from the genus
Pseudomonas, and one was from the genus Bacillus. The abundance of both genera in the
plant rhizosphere is well known, as is their ability to stimulate plant growth and adven-
titious root development in Eucalyptus [7,10,43]. Therefore, the Pseudomonas and Bacillus
isolates were combined as a consortium in T3. Besides the ability to produce IAA and to
solubilise phosphate, species of the genus Burkholderia are also able to solubilise zinc into a
form so that plants can absorb this mineral [13,44–46]. Chryseobacterium spp. are credited
for the production of siderophores, which can supply iron to plant roots [47,48]. It is worth
mentioning that the specific species investigated in our study have not been applied as a
consortium of rooting-enhancing agents of Eucalyptus cuttings and were therefore included
in T4.

The preparation of bacterial inoculums for field application required the up-scaling of
suspension cultures. Several authors suggest 108 CFU mL−1 as the preferred concentration
at which a bacterial inoculum should be applied to the rooting medium of Eucalyptus
cuttings [7,8,10]. Not all seven bacterial species in the current study were able to reach a
growth concentration of ≈108 CFU mL−1, and to ensure consistency, ≈107 CFU mL−1 was
used for field applications, which was still considered suitable [49,50]. Although growth
medium optimisation was not an objective of our study, it would be worthwhile to consider
other nutrient media to increase inoculum concentration. Nevertheless, all seven bacterial
isolates retained viability, IAA production, and phosphate solubilisation functionality after
cryo-preservation at −80 ◦C.

The species of the Bacillus and Pseudomonas were combined into one rooting treatment
(T3), while the other isolated bacterial species were combined into a separate rooting treat-
ment (T4). Bacterial consortia can provide different physiological activities simultaneously,
which makes it more effective in promoting plant growth compared to the use of single
bacterial strains [32]. Rhizospheric rooting treatments T3 and T4 were compared to the stan-
dard of general practice in the nursery, which was the application of indole-3-butyric acid
(control), and to a commercial product (Eco-T), which contains live Trichoderma harzianum.

All four treatments demonstrated high survival rates and high rooting percentages.
The nursery standard outperformed all treatments, although mostly marginally so. The
rhizospheric rooting treatment comprising the non-Pseudomonas-Bacillus bacteria (T4), as
well as fungus treatment (T2), were closest in performance to the nursery standard, while
the Pseudomonas-Bacillus treatment (T3) often showed lower values when compared to the
other treatments. The poorer performance of treatment 3 was unexpected since countless
studies have demonstrated that species belonging to these genera are proficient PGPR.
However, the specific species used in our study have not been used as a consortium before,
and it might have been necessary to test compatibility before using them in combination,
as is suggested by Zul et al. [32], who prudently verified strain compatibility mainly before
using unidentified strains in combination.
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A noteworthy outcome of this study was that PGPR treatments influenced the growth
parameters of the two Eucalyptus grandis× Eucalyptus nitens hybrid clones differently. These
genotypic differences were noted particularly for growth responses of the cuttings and
adventitious root development. Both hybrid clones demonstrated significant genotypic
differences for all three growth responses, namely, total, root, and shoot length. These
outcomes support the findings of [39], who identified genotypic differences in adventitious
root development in tree clones of Eucalyptus benthamii × Eucalyptus dunnii. Although
genotype-linked growth parameter variation was not an unexpected outcome [39,51], it
was peculiar that two clones would exhibit significant differences considering that they
were derived through hybridisation between the same two species. GN 010 treated with
the non-Pseudomonas-Bacillus consortium (T4) yielded growth responses resembling that of
treatment with the commercial product Eco-T, which contains fungus. The Pseudomonas-
Bacillus bacterial treatment improved fibrosity of the rooting architecture of cuttings of the
GN 018B hybrid. This outcome could be of value when rooted cuttings are planted out in
plantations and require further investigation to ascertain any other rooting enhancement
traits these bacterial species possess [23,39].

5. Conclusions

Improving the rooting capacity of Eucalyptus hybrid clone cuttings, which is known
for its low rooting ability, remains an interesting prospect. The plant-growth-promoting rhi-
zobacteria (PGPR) that were successfully isolated, identified, and characterised in this study
were only comparable to a nursery standard and a commercially available fungal rooting
enhancer. It is important to note that the consortium of three non-Pseudomonas-Bacillus
species able to elicit the same growth response as the commercial products have not been
previously applied to Eucalyptus cuttings in a commercial nursery setting. Furthermore,
the consortium of four Pseudomonas-Bacillus isolates were able to increase the root fibrosity
of GN 018B cuttings. Unexpected growth responses and rooting architecture differences
were observed between clones from hybridisations between the same two tree species
and should be taken into account for future experimental designs. Further investigations
based on the same approach used in this study should expand the plant-growth-promoting
selection criteria used for potential rhizosphere bacterial isolates to include siderophore
production capabilities and species compatibility testing for consortium applications. Ex-
tending the treatment time for nursery trials could also be necessary to ensure the proper
establishment of the PGPR consortia in the rhizosphere. The continued attempt to improve
rooting percentages of Eucalyptus cuttings will not only mitigate financial losses, which
Eucalyptus commercial nursery growers are currently experiencing, but will also allow for
the maximum use of the limited space in nursery environments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f14091848/s1, Table S1: Survival and rooted number (%) of cuttings per tray
per treatment for GN 018B, Table S2: Survival and rooted number (%) of cuttings per tray per treatment
for GN 010, Table S3: ANOVA tests for the growth responses, total length, root length, and shoot length
of GN 018B cuttings, Table S4: ANOVA tests for the growth responses, total length, root length, and
shoot length of GN 010 cuttings, Table S5: Rooting architecture, showing number (%) of cuttings with
primary adventitious roots with (+) or without (−) secondary and tertiary roots per treatment of hybrid
GN 018B, Table S6: Rooting architecture, showing number of cuttings (%) with primary adventitious
roots with (+) or without (−) secondary and tertiary roots per treatment of hybrid GN 010.
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