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Abstract: This article presents the findings of a research endeavor focused on the diurnal and seasonal
dynamics of heat balance and its constituent elements within an oak forest situated in the expanse
of the Karadag Nature Reserve. Computed are the values corresponding to the elements of heat
balance, encompassing radiation balance, latent heat fluxes corresponding to heat consumption for
evaporation, turbulent heat exchange transpiring within the atmosphere, and heat flux coursing
through the soil. The features of changes in the heat balance in two key areas are considered: in the
zone of growth of the downy oak forest in an open area and in the forest itself. The study discloses
patterns characterizing the apportionment of radiation balance into heat and energetic fluxes within
the context of the downy oak landscapes native to the southeastern Crimea. Scrutiny of the data
established that a substantial proportion of radiation balance finds application in propelling turbulent
heat flux, while a minor share is channeled into processes of evaporation and soil heat flux. Evidenced
is that the magnitudes of heat balance components, encompassing radiation balance, latent heat fluxes
corresponding to heat consumption for evaporation, turbulent heat exchange transpiring within the
atmosphere, and heat flux through the soil within the sub-canopy realm, undergo modifications
contingent upon the seasons of the year and the vegetative phases of the downy oak forest. The
correlation between air temperature and the constituents of heat balance is subject to analysis both
within the confines of the territory in the zone of growth of the downy oak forest in an open area and
in the forest itself. Manifest is the constancy of the influence exerted by forest vegetation upon heat
balance; nevertheless, the degree of its impact is circumscribed by the cyclical dynamics of foliage
upon the trees: a well-developed canopy serves to amplify the influence exerted upon the distribution
of heat and energetic fluxes. This study of heat balance and its constituents assumes significance in
engendering comprehension regarding the operation of downy oak landscapes that are situated on
the periphery of their habitudinal range. Also, it helps to reveal deeper patterns of climate change in
forest ecosystems.
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1. Introduction

All major natural processes exhibit their highest intensity in close proximity to the
Earth’s surface. Thus, information about surface heat balance and the adjacent atmospheric
layers holds substantial significance when exploring causal relationships and patterns
across the spectrum of natural phenomena [1]. The conversion of incoming solar energy on
the Earth’s surface exerts a pronounced influence on the dynamics of all exogenous natural
processes. As a result, the investigation of heat balance data becomes crucial for studying
various geographical regularities. Heat exchange between the surface and the atmosphere
occurs via longwave radiation fluxes, as well as sensible and latent heat fluxes [2]. The
importance of studying heat balance, its components, and their interrelations is underscored
by the identification of principles governing the meteorological and hydrological regimes
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of ecosystems, enabling forecasts and computations of essential processes and phenomena
that characterize ecosystem structure and functioning.

The topic of heat balance investigation has garnered global attention [3–9], with recent
years emphasizing its growing relevance due to climate change. Earth’s atmospheric
heat balance is examined from an energy balance perspective [10], while heat distribution
within the Earth’s surface is characterized by soil heat flux models [9]. Research methods
encompass both remote sensing techniques and stationary gradient observations. Liang
et al. [11] note that satellite remote sensing has been employed since the 1960s to assess
heat balance components within the upper atmosphere and on land surfaces.

The theoretical underpinnings of studies on Earth’s surface and atmospheric heat
balance are rooted in the work of Budiko [1], Voyeykov [12], Berlyand [13], Alestalo [14],
Liang et al. [11], Killeen et al. [15], Mannstein [16], Zeman, and Tennekes [17]. The specifics
of atmospheric heat exchange with various underlying surfaces are a focal point in Pavlov’s
research [18]. In addition to general methodologies, specific directions emerge for calcu-
lating heat balance components on surfaces such as water bodies, soil covers, vegetation,
and glaciers [18–20]. Meanwhile, extensive research targets Earth’s heat balance as a
whole [21,22], as well as individual continents and oceans [23], and distinct geographical
regions [14,24–27].

Most researchers acknowledge that direct measurements of heat balance components
fall short of providing a comprehensive climatological depiction of forest ecosystem func-
tionality. This has led to the application of indirect calculation methods based on core
climatic parameters: air temperature, humidity, precipitation, wind speed, underlying
surface temperature, among others. Such an approach substantially expands the research
scope using available meteorological data. Nonetheless, in most cases, methods devel-
oped for extended periods are employed, as assessing heat balance components over short
intervals is not always feasible.

During the process of delineating the constituent elements of the heat balance, a
keen focus is directed towards partitioning fluxes into sensible and latent heat compo-
nents [5,7]. Sensible heat entails the exchange of heat by a body or a thermodynamic system,
whereby the exchange modifies the temperature of the body or system alongside certain
macroscopic variables, while other such variables, for instance volume or pressure, remain
constant [28–31]. In contrast, latent heat is the energy liberated or absorbed by a thermo-
dynamic system during an isothermal process, commonly observed during first-order
phase transitions, without any associated alterations in temperature [32]. This phenomenon
manifests notably during phase changes like melting and vaporization [33,34]. Moreover, a
significant body of literature concentrates on scrutinizing specific components of the heat
balance, highlighting their distinct traits or natural phenomena that influence the variance
of the parameters under investigation. It is noteworthy that Haag, R.W., and Bliss, L.C. [35]
underscore the reduction in airflow beneath forest canopies, whereby a substantial propor-
tion of solar radiation is promptly absorbed by the canopy and subsequently dissipated as
either sensible or latent heat.

Inquiries into the heat balance of forest ecosystems have drawn the attention of
researchers such as Surova, N.A. [36] and Bityukov, N.A. [37]. Radiation balance, as
an integral heat aspect, has been examined by Akimova, D.P. [38], Alexeev, V.A. [39],
Vygodskaya, N.N. [40,41], Zukert, N.V. et al. [42], Bityukova, N.A. [37], and Ugarova,
I.S. [43]. Studies by Stewart J. and Thom A. [44], along with Thom et al. [45], delve into
the heat balance of pine forests; Nousu et al. [46] and Reimer et al. [47] explore boreal
forests; Constantin et al. [48] investigate the heat balance of spruce forests; Wu et al. [49]
scrutinize mixed forests; and Lindroth A. and Iritz Z. [50] contemplate the heat balance of
willow forests. The heat balance above forests is the subject of study through specialized
towers [49]. Simultaneously, several investigations analyze the heat balance and the
quantum of incident solar radiation on tree canopies [51–53]. Ohta et al. [54] emphasize the
retarding impact of tree canopies on snowmelt in forests and, consequently, on processes
transpiring beneath the canopy.
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Nevertheless, scant attention has been granted to the thorough exploration of local-
scale heat balance within forest ecosystems. The comprehensive study of heat balance and
its constituent elements within the forest ecosystems of the Crimean Peninsula, particu-
larly the downy oak forests situated at the periphery of their habitat, remains a notable
lacuna. Works authored by I.P. Vedy [55–57] serve as exemplars of heat balance compo-
nent computation and description in Crimean forests, undertaken at both regional and
local scales. In the context of holistic research endeavors within the southeastern sec-
tor of the Crimean Mountains, V.A. Bokov expounds on the interplay between forests
and heat and radiation fluxes [58]. Nevertheless, a comprehensive approach towards
investigating the influx of solar radiation, radiation balance, and heat balance, along with
their nuanced distribution at a local scale within distinct vegetative communities, remains
conspicuously underrepresented.

Despite distinctions between domestic and international methodologies, their over-
arching shared aim revolves around scrutinizing the causal regularities dictating the me-
teorological and hydrological dynamics of diverse geographical domains, thereby en-
abling forecasts of vital hydro-meteorological processes and phenomena from a pragmatic
standpoint [1].

Hence, the investigation of the heat balance within downy oak forests, situated at
the edge of their range, emerges as a task of utmost significance and relevance. Such
an endeavor offers a vantage point to discern specific internal organizational patterns
contingent upon the character of the particular vegetative community growing within a
given locale. Indeed, the vegetative canopy plays a pivotal role in redistributing light and
energy along the vertical framework of the ecosystem. Forested communities, wherein
canopy surfaces are positioned merely meters above ground, shaping an under-canopy
domain characterized by its distinctive operational characteristics, serve as particularly
illustrative examples [59].

The primary objective of this study, consequently, is to ascertain the influence of forest
vegetation on the constituent elements of heat balance. To achieve this goal, a series of tasks
were diligently pursued: the deployment of meteorological stations to measure pivotal
climatic indicators within both open expanses within the downy oak forest’s growth zone
and within the forest itself; the computation of constituent elements of heat balance within
the region of downy oak forest growth in both open and forested areas; and a spatial-
temporal analysis delineating the alterations within constituent elements of heat balance
within these designated locations.

2. Materials and Methods
2.1. Study Area

In order to elucidate the intricacies of the heat balance and the distribution of heat
fluxes within the forest landscapes of Southeastern Crimea [60], a key study site was
selected, namely the downy oak forest, which represents a typical community type in this
region. Situated within the territory of the Karadag Nature Reserve, this forest is located
on the eastern-facing slope of the Besh-Tash ridge (Figure 1).

The investigated forest area occupies a gentle slope and is characterized by a single tree
layer predominantly composed of downy oak (Quercus pubescens) and oriental hornbeam
(Carpinus orientalis), with tree heights varying between 3.5 and 6 m. The area is also dotted
with young oak saplings, reaching heights of up to 30 cm. The surveyed area constitutes
a natural forest ecosystem characterized by an uneven distribution of herbaceous and
shrubby vegetation. The trees in this area exhibit twisted trunks and wide canopies, with
their leaves covered in fine, downy hairs. Employing rigorous phenological observations,
it has been determined that the onset of foliar expansion in this ecosystem typically aligns
with the latter stages of April. The downy oak forest is naturally renewable.
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Figure 1. Location of the key study site in the downy oak forest within the Karadag Nature Reserve.

The adjacent open expanse, strategically situated within the habitat range of the
Quercus pubescens (downy oak), showcases a contrasting botanical profile. The predominant
ground cover in this context predominantly comprises mesophytic herbaceous species,
with noteworthy representatives encompassing Teucrium chamaedrys, Aegonichon purpureo-
caeruleum, Geum urbanium, and several others.

2.2. Research Methodology

For the research investigation, specific locations were carefully chosen to measure
core meteorological parameters: an open area within the growth zone of the downy oak
forest, where readings are collected without the influence of vegetative cover, and a typical
forested site within the community, where parallel measurements are conducted to discern
the effects of vegetation on the distribution of matter and energy fluxes.

The measurement of key meteorological parameters was carried out using the Davis
Vantage Pro2 (Hayward, CA, USA) monitoring weather station installed in the open area,
with hourly data acquisition. Based on these measurements, the incident solar radiation
was quantified, and the fundamental components of the energy budget for the entire
community were computed. To capture conditions beneath the forest canopy, TR series
data loggers (Chelyabinsk, Russia) were strategically placed to record air temperature and
humidity at heights of 0.5 m and 2 m above the soil surface, as well as at depths of 10 cm
and 20 cm beneath the surface. Thus, to ensure the proper application of the methodology
for computing the constituents of the thermal balance and to facilitate the comparability
of results between an open area and a forested environment, measurement sensors were
positioned at identical elevations.

To portray the condition of tree crowns and their radiation attenuation characteristics,
measurements were conducted during various seasons, including the winter (leafless
phase), the onset of spring (vegetation emergence), late spring, and the early half of
summer (full crown development), under clear and calm weather conditions. These
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measurements were taken across a grid of points outlined in Figure 1. Utilizing this
measurement grid, the extent of canopy closure and the penetration of solar radiation
through tree canopies to the ground surface were determined. Subsequently, the obtained
values were averaged to facilitate computational analysis and provide an encompassing
description of the entire community.

The foundation of the heat balance equation lies in the principle of energy conservation,
applied to a vertical column that encompasses the entirety of the external geographic
envelope. The equation for the heat balance of the Earth’s surface is a summation of all
heat fluxes transpiring between the surface and the surrounding space. Consequently, the
equation assumes the following form:

R = LE + P + B, (1)

where R—radiation balance, LE—signifies the heat dissipated through evaporation (L—
representing latent heat of evaporation, E—the rate of evaporation or condensation), P—the
turbulent heat flux, and B—flux into the soil.

Notably, the value of R is considered positive when it signifies heat inflow to the
underlying surface, while all other variables are considered positive when they indicate
heat outflow.

The methodology for calculating the radiation balance (R) is formulated based on the
work of Budyko [1]:

R = (Q − q) − Ee, (2)

where Q—total solar radiation;
q—reflected solar radiation;
Ee—effective emission.
The calculation of reflected solar radiation is carried out through the equation:

q = A·Q, (3)

where A—albedo of the Earth’s surface.
The albedo, or the reflectivity, of the Earth’s surface is determined in accordance with

the methodology outlined in [61]. The absorbed shortwave radiation is a result of the
disparity between the total incoming radiation and the reflected radiation.

For the determination of the components within the longwave portion of the radiation
balance, computations are executed based on the formulation attributed to D. Brunt [3].

The effective emission from the Earth’s surface is ascertained using the equation:

Ee = Es − δEa, (4)

where Es—thermal radiation flux from the underlying surface directed towards the atmo-
sphere;

Ea—atmospheric counter-radiation;
δ—relative emissivity of the surface.
The thermal radiation flux originating from the underlying surface is calculated using

the equation:
Es = δσT4E, (5)

where σ—Stefan–Boltzmann constant;
T—air temperature.
The counter-radiation emitted by the atmosphere is determined using the equation:

Ea = δσT4 (1 − a + b
√

e), (6)

where a, b—empirical constants based on T. G. Beryland are utilized (a = 0.39, b = 0.058) [62];
e—partial pressure of water vapor.
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The subsequent component of the energy budget involves the heat expenditure during
evaporation, which is calculated as the product of latent heat of vaporization and the rate
of evaporation. In natural conditions, the latent heat of vaporization remains relatively
constant with respect to the temperature of the evaporating surface [1].

The latent heat of vaporization (L) is determined by the equation:

L = 597 − 0.6T, (7)

where L—latent heat of vaporization (cal/g), T—temperature (◦C).
The quantity of evaporation on the open site was measured using the sensor module

of the Davis Vantage Pro2 weather station (Hayward, CA, USA). To estimate evaporation
within the forested area, the following equation was employed [1]:

E =
R− B

L + Cp Q1−Q2
q1−q2

, (8)

where E—evaporation, R—radiation balance, B—heat flux into the soil, L—latent heat of
vaporization, Cp—specific heat capacity of air under constant pressure [63], Q1 − Q2—
indicates the temperature difference at two levels, q1 − q2—represents the difference in
specific humidity at those levels.

The computation of soil heat flux is based on the temperature variation in the soil with
respect to depth and time, considering known thermophysical characteristics.

B =
Cv
τ

S1, (9)

where CV—volumetric heat capacity; τ—time interval (in minutes) for which the average
flux q1 is determined; S1—parameter indicating the change in temperature in the upper 20
cm soil layer during the interval τ. Value S1 is calculated using the equation:

S1 = S0 + S5 + S10 + S15 + S20, (10)

where S0 = 20·0.082 ∆t0; S5 = 20·0.333 ∆t5; S10 = 20·0.175 ∆t10; S15 = 20·0.156 ∆t15; S20 =
20·0.004 ∆t20.

Here ∆t0, ∆t5, ∆t10, ∆t15 and ∆t20 are the differences between corresponding soil
temperature values in subsequent and previous observation periods. ∆t0 corresponds to
the temperature difference at the surface, and ∆t5 is the difference at a depth of 5 cm, and
so on.

The calculation of volumetric heat capacity is carried out using the method proposed
by Makarychev and Mazirov [64]:

CV0 =
CwUs(ρ0 − 0.76ρw)ρ0

0.76ρw
, (11)

where Cw = 4190/(kg·K) is the specific heat capacity of water, ρw = 1000 kg/m3 is water
density, ρ0 represents the density of completely dry soil, and U signifies the soil moisture
content.

U =
P
ρ

, (12)

where P—porosity, ρ—density of the soil, g/cm3.

P =
d− ρ

d
, (13)

where d—density of the solid phase of the soil, g/cm3.
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The volumetric heat capacity during the observation period is determined by the
equation:

CV = CV0 + CwρwU, (14)

where CV0—volumetric heat capacity of dry soil [65], CwρwU—heat capacity of the liquid
present in the soil, U—soil moisture content.

The computation of turbulent heat flux is intricate, and often in climatological calcula-
tions involving terrestrial conditions, its values are derived from solving the heat balance
equation. The simplest approach in this context involves determining heat exchange as the
residual term in the balance equation, expressed as:

P = R − LE − B. (15)

3. Results
3.1. Study Site: Open Area within the Downy Oak Forest Zone

The overall heat balance of a given territory hinges on its climatic parameters and
the attributes of its underlying surface. A pivotal metric in this context is the radiation
balance, which governs the distribution of heat fluxes and is a critical factor in shaping the
ecosystem’s condition.

3.1.1. Radiation Balance Analysis

The obtained results shed light on the primary trends within the radiation balance
and offer insights into its seasonal, monthly, and daily dynamics. Figure 2 depicts the daily
averages of radiation balance recorded within the open area encompassed by the downy
oak forest from 1 December 2022 to 31 July 2023.
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Figure 2. Daily average radiation balance values within the open area of the downy oak forest zone
during the study period.

As shown in Figure 2, a discernible pattern emerges from the progression of daily
average radiation balance values spanning the period from 1 December 2022 to 31 July 2023.
Analysis of the daily variations throughout the winter, spring, and summer seasons reveals
that positive balance values are prevalent during daylight hours, whereas negative values
dominate during nighttime (Figure 3). It is important to note that due to the reduced
daylight hours and the lower solar angle during winter, minor positive balance values are
confined to a short timeframe, occurring between 1 pm and 5 pm. With the lengthening of
daylight hours and the higher solar position during spring, there is a noticeable upswing
in both the magnitude of positive radiation balance values and their duration. In summer,
the values exhibit further escalation, and their alterations manifest a smoother progression.

The heat balance encompasses the distribution of radiation balance values that govern
the transfer of heat and energy within the ecosystem of the downy oak forest. Three primary
energy transformation directions are distinguished: heat expenditure for evaporation,
vertical turbulent heat exchange, and heat flux within the soil layer.
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3.1.2. Evaporation Heat Expenditure

Explicit heat is allocated to the turbulent heat flux in the atmosphere and heat flux
within the soil. The fraction of latent heat contributes to evaporation, equating to the
product of latent heat of evaporation and the rate of evaporation. This latent heat is
contingent upon the temperature of the evaporating surface [1]. The open area exhibits
temporal variations in heat expenditure for evaporation (Figure 4).
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Figure 4. Daily heat expenditure for evaporation within the open area during the study period.

Similar to radiation balance values, the distribution of heat expenditure for evapora-
tion is nonuniform, gradually increasing during the spring period. In terms of percentage
relation to radiation balance, heat expenditure for evaporation displays a highly heteroge-
neous nature, encompassing negative values signifying the reverse heat flux direction. In
this context, heat expenditure for evaporation occurs during periods of negative radiation
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balance values at any time of day. Additionally, rare instances exhibit values ranging from
10% to 60% of the radiation balance value. Apart from these exceptions, the fraction of heat
spent on evaporation rarely exceeds 1–5%.

3.1.3. Turbulent Heat Flux

Turbulent heat exchange between the underlying surface and the atmosphere is fa-
cilitated by the differential warming of the surface and its adjacent atmospheric layer. Its
variations mirror those of the radiation balance and heat expenditure for evaporation,
displaying nonuniform values with a prevailing upward trend (Figure 5).
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Figure 5. Turbulent heat flux within the open area during the study period.

In relation to radiation balance values, three distinct scenarios emerge. The first sce-
nario witnesses negative turbulent flux values during positive radiation values, indicating
cooling. This situation is prominent from late April to early May in the early morning. The
second scenario involves significant turbulence exceeding radiation values by 120–300%,
mainly observed during the first half of the day for negative fluxes directed towards cool-
ing. Seasonal and diurnal patterns are not observed. These two situations are exceedingly
rare, with the third scenario prevailing, where turbulent flux values account for around
90–100% of the radiation balance, signifying the primary energy expenditure direction
within the landscape.

3.1.4. Soil Heat Flux

The soil heat flux characterizes changes in soil temperature with depth. In contrast
to other components of the heat balance, it lacks an overall upward trend, displaying
alternating heating and cooling of the soil layer (see Figure 6).
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Figure 6. Daily soil heat flux within the pen area during the study period.

Contrary to the radiation balance, the soil heat flux assumes opposing values in the
nighttime and early morning hours until noon during the winter period. In March, this
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time shifts to the early morning, accompanied by negative radiation values and positive
soil heat flux, and vice versa during the daytime. A similar pattern is observed during
the spring-summer period, although it remains more temporally stable. Soil heat flux
values rarely exceed 40% of the radiation balance value, with their proportion typically not
surpassing 10% in the majority of cases.

3.2. Study Site: Downy Oak Forest Zone

The aforementioned significances of heat balance components pertain to an open
horizontal segment devoid of vegetative influence. The arboreal assemblage of downy
oak forest within the focal site engenders a distinct canopy profile [66], which intercepts
a quantum of incident solar radiation on its surface, allowing partial penetration into
the sub-canopy domain. The extent of solar radiation permeation through the canopy is
contingent on the cohesion and density of foliage, along with the presence of interstices
amid the canopy. Deciduous arboreal species evince seasonal fluctuations in canopy
foliation, extending to its abeyance throughout the winter interval. Consequently, three
stages of canopy progression emerge over the observed period to expound on their states
and nuances in radiation interception: the absence of foliage during winter, the onset of
vernal growth, and the zenith of canopy expansion from late spring to the summer.

Of parallel note is the heterogeneous influx of solar radiation beneath the arboreal
canopy, attributed to unconcealed canopy-lacking sectors and the spatiotemporal configu-
ration of shading patterns. The quantum of incident solar radiation received by a specific
point on the substrate is contingent on its azimuth relative to the solar rays’ orientation,
i.e., predicated upon the gradient and aspect of the canopy contour. Nevertheless, in the
comprehensive examination of the sylvan collective for radiation budget computation,
averaged diurnal transmission values are enlisted.

3.2.1. Radiation Balance

During the winter span, the mean transmittance of solar radiation through the canopy
averages 43.2%. This value is applicable across the entire winter epoch, extending until
early May. Deliberating a level expanse within the winter forest on clear sunlit days yields
transmittance levels reaching 90%. Nevertheless, these figures are a hypothetical construct,
neglecting site-specific attributes. The survey locale is characterized by recurrent fog occur-
rences and wintry cloud cover. The terrain’s orography fosters shadow formation due to
slopes, and select branches retain their foliage in discrete regions. These factors collectively
influence the magnitude of solar radiation ingress beneath the canopy (Figures 7 and 8).
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Figure 7. Distribution of total solar radiation during the leafless period.
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Figure 8. Distribution of reflected solar radiation during the leafless period.

The period of vegetative onset spans from March to April, with a canopy solar radia-
tion transmittance value of 45.6% (Figures 9 and 10). This value exceeds 50% for a broader
time span; however, during the evening, due to elongated shadows caused by the slope, it
significantly diminishes.
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Figure 10. Distribution of reflected solar radiation during the vegetative onset period.

From May onward and throughout the summer season, the canopy maintains its full
development state, permitting an average of only 19.1% solar radiation to pass through
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(Figures 11 and 12). Elevated values are noted around midday, whereas at other times,
transmittance values are below the mean.
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This distribution of solar radiation between the sub-canopy space and the canopy
surface determines the resultant sub-canopy balance values, wherein, with the process of
tree canopy development nearing its zenith by late spring, radiation balance values sharply
decline (Figure 13).
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Figure 13. Average daily radiation balance values under the canopy during the study period.
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In the open area, all cumulative solar radiation is engaged in heat flux distribution,
while within the forest community, it bifurcates into two zones: above the canopy and
beneath the canopy, each independently shaping its own fluxes.

3.2.2. Evaporation Heat Expenditure

When considering heat expenditure values on evaporation beneath the canopy, negative
values are observed, signifying condensation’s predominance over evaporation (Figure 14).
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Figure 14. Heat Expenditure on evaporation under the canopy.

This is elucidated by the typical overcast weather and fog formation during the winter
period. In the spring season, the considered indicator notably escalates.

3.2.3. Turbulent Heat Flux

Analogous to the open area, a comparable scenario is observed when examining the
turbulent heat flux beneath the forest canopy. Negative turbulent flux values gradually
increase through winter, peaking in April (Figure 15).
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Figure 15. Turbulent heat flux under the canopy.

3.2.4. Turbulent Heat Flux

Similar to the open area, the soil heat flux is characterized by a uniform alternation of
heating and cooling of the soil layer, encompassing the same range of values (Figure 16).
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Figure 16. Soil heat flux under the canopy.

Despite the partial dataset, based on previously identified patterns, projections re-
garding the trajectory of heat balance element variations can be conjectured. Analogous
to the open area, soil heat flux will maintain oscillations around zero, albeit with reduced
amplitude during the summer. Simultaneously, heat expenditure on evaporation and
turbulent heat flux exhibit similar patterns of change as the radiation balance, allowing
for the anticipation of their gradual rise until May, followed by a rapid decline upon the
canopy’s full development.

3.3. Air Temperature Relationship with Primary Heat Balance Elements

Furthermore, it is worth noting the alteration in the temperature profile, a funda-
mental heat characteristic, in both the open area and beneath the canopy. As depicted
in Figures 17 and 18, the average daily air temperature within the forest consistently sur-
passes that of the open area. The disparity is inconsequential during winter, but with the
gradual expansion of the canopy, its influence on retaining heat in the sub-canopy space
becomes more apparent. Similarly, during the summer, the situation is analogous due to
the retention of daytime accumulated heat during the night and early morning, in contrast
to the open area.
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Figure 17. Air temperature in the open area and under the canopy of the downy oak forest.
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Figure 18. Temperature difference between the open area and under the canopy of the downy
oak forest.

With a more detailed scrutiny of temperature changes encompassing diurnal values,
during winter, the temperature surplus within the forest amounts to approximately 0.1 ◦C.
During midday, this surplus could range from 0.7 ◦C to 6 ◦C in isolated hours. In March, the
nocturnal difference ranges from 0.1 ◦C to 0.5 ◦C, and between 8 and 15 h, the difference can
reach 3 ◦C, while at midday, the maximum difference extends to 10 ◦C. During the spring
and summer period, hourly differences could also attain 4–10 ◦C. The air temperature
exceeding that of the open area is documented throughout the observed period, with
differences typically not exceeding 1 ◦C during the nighttime and early morning.

The average daily soil temperature values demonstrate the persistence of heat retention
beneath the forest canopy during the winter period. By March, these values reach a state of
equilibrium, and as the vegetative phase commences, a discernible reduction in temperature
within the forested domain becomes apparent (Figures 19 and 20).
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Figure 19. Soil temperature in the open area and under the canopy of the downy oak forest.

The differential analysis of soil temperature between the open area and the forested
environment manifests a relatively uniform pattern in contrast to air temperature values,
exhibiting a less pronounced abruptness. Through the winter and spring intervals, the
average disparity approximates 1 ◦C, occasionally peaking at 2.7 ◦C. In select instances,
during the nocturnal hours, the open area’s temperature might modestly exceed the forest’s
by approximately 0.2 ◦C.

Throughout the summer phase, within the canopy’s shaded precincts, soil temperature
recedes and reveals nocturnal deviations of 2–3 ◦C relative to the open area. By day, this
discrepancy can further extend to 7–8 ◦C.
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When scrutinizing the intricate relationship between air temperature and primary heat
balance parameters, a consistent trend emerges wherein heightened temperature aligns
with augmented radiation balance, heat consumption due to evaporation, and turbulent
exchange (Figure 21). However, this trend is not mirrored in the context of soil heat flux.
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Figure 20. Soil temperature differential between the downy oak forest canopy and the open area.
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Figure 21. Relationship between air temperature and: radiation balance in the open area (a) and under
the canopy (b), Heat Expenditure on Evaporation in the Open Area (c) and under the canopy (d),
Turbulent Heat Flux in the Open Area (e) and under the canopy (f).
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Despite the overarching regularity in value distribution observed across the open area
and the expanse of the downy oak forest, a distinctive phenomenon emerges within the
forested environment. Within this ecological context, the interplay between air temperature
and the fundamental constituents of heat balance undergoes a pronounced attenuation in
comparison to the conditions evident in the open area. This specific observation accentu-
ates a conspicuously less robust relationship between air temperature and the essential
components of heat balance within the forested milieu. Consequently, this accentuation
further underscores the manifestation of a more intricate organizational structure inherent
to the examined ecosystem, accompanied by the intricate pattern of heat and energy flux
distribution within its enclosed boundaries.

4. Discussion

Thus, the analysis of the research findings unequivocally underscores the pivotal
role of vegetative cover in modulating the dispersion dynamics of incident solar radiation
within the precincts of a forest ecosystem. This impact is most pronounced in deciduous
arboreal domains, where the cyclic alternation of crown states during the course of the
seasons assumes a preeminent function in configuring the microclimatic conditions.

Delving into the radiation balance metrics of exposed terrain and the sylvan canopy
region brings into sharp relief the conspicuous imprint of the vegetal mantle. In this context,
three discernible epochs, characterized by varying degrees of influence, are manifestly
demarcated (Figure 22).
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Figure 22. Difference in radiation balance values between an open area and under the forest canopy.

These demarcated epochs conspicuously align with the arboreal foliage cycle: the
apogee of radiation impact and balance transpires during the season of denuded winter
tide, a more appreciable influence takes root during the nascent phases of vernal vegetation,
and the period with the most significant influence occurs with the maximum development
of the crown from late spring to mid-autumn. Analogously, a gradual attenuation of this
influence in the autumnal interval, concomitant with foliar abscission, is rendered plausible.

In accordance with the change of seasons and changes in the vegetation stage, the
radiation balance, in turn, forms the main heat fluxes in the ecosystem. Consistent with
the ascertained regularity governing the temporal change of heat dissipation due to evapo-
transpiration and turbulent heat flux, these transmutations mirror the radiation balance
and undergo an incremental augmentation until the onset of full canopy development in
spring. After that, these parameters decrease, in contrast to the values of the open area,
where there is a constant increase.

A pertinent consideration pertains to the subsurface heat flux. While alternating
increments and decrements in magnitudes characterize both underpinning domains, the
arboreal foliage serves to ameliorate fluctuations and curtail the amplitude of perturbations
in this parametric continuum.

Hence, the present study pioneers the calculation of heat balance parameters at a local
stratum predicated upon hourly surveillance, thereby affording a finer-grained exposition
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of the temporal modulations inherent to individual parameters. This deviates from prevail-
ing works, which predominantly engage in an examination of heat balance across monthly
and seasonal intervals, thereby underscoring the precision underpinning the endeavor.

The notable ramifications of canopy configurations on the realignment of key meteo-
rological attributes are readily manifest. Noteworthy parallels are evident in kindred inves-
tigations, such as those conducted by Ohta et al. [54], which scrutinize the ramifications
of arboreal canopies on snowmelt kinetics across open terrain and sylvan expanses. Evi-
dently, concurrence can be reached with the observations of Haag, R.W. and Bliss, L.C. [35],
who highlight the accentuation of soil heat flux and soil temperature consequent to the
attenuation of vegetative coverage.

Conversely, the datasets cataloged within reanalysis repositories and antecedent
scholarly undertakings [67–69] evince a coarse-grained spatial resolution, precluding their
application in the discernment of localized spatiotemporal patterns. For instance, the
resolutions afforded by ERA5 [67] amount to 11,132 m/pixel, whereas GLDAS-2.1 [68]
presents a resolution of 27,830 m/pixel. Therefore, a continuous amelioration of existing
datasets remains imperative. It is self-evident that the dataset procured, being intrinsically
most veracious for the purviewed locale, may be prospectively harnessed across diverse
investigatory paradigms.

Evidently, the complexities intrinsic to the study of heat balance within sylvan ecosys-
tems at a localized scale are principally tethered to the requisites of highly precise and
relatively extravagant instrumentation that automatically captures cardinal meteorolog-
ical attributes. Absent this, substantial manual exertions and temporal investments are
necessitated for data collection and subsequent manual analyses conducted at 1-min or
hourly cadences. The imperative of automated acquisition of meteorological attributes
concomitant with the operational dynamics of forest ecosystems scarcely warrants dispute.
Nonetheless, the utilization of autonomous weather stations introduces certain exigencies,
primarily on account of the periodicity entailed in data compilation and the operational
resilience of receivers subjected to temperature fluctuations. Furthermore, the constrained
energy reservoir of battery arrays represents a salient limitation. In the event of battery
failure underpinning console-receiver functionality, the prospect of data loss during ob-
servation is ineluctable. Simultaneously, environmental imperatives demand circumspect
battery disposal practices.

A salient avenue for future exploration resides in the juxtaposition of the procured solar
radiation transmittance metrics, heat balance elements, and the projected canopy’s influence
with the computation of the Leaf Area Index. Moreover, prospective lines of inquiry
affiliated with the exploration of radiation and heat balance within forested realms could
encompass the scrutiny of the carbon cycle, prognostications germane to climate alterations,
sylvicultural stewardship, and the expansion of monitoring gridworks. Additionally, the
extrapolation of the acquired data, coupled with the explication of patterns and linkages
with remote sensing and spaceborne acquisitions in the context of modeling heat and
energetic fluxes, assumes an auspicious investigative trajectory.

5. Conclusions

As a result of the studies carried out, general information on the seasonal and daily
dynamics of the components of the heat balance in the downy oak forest on the territory
of the landscape-ecological station was obtained. The various constituents of the heat bal-
ance, encompassing the radiation balance, heat dissipation due to evaporation, turbulent
heat exchange prevailing within the atmosphere, and the subterranean heat flux, have
been meticulously computed for the timeframe spanning 1 December 2022 to 31 July 2023.
Primary data have been amassed, elucidating the discernible patterns governing the distri-
bution of radiation balance into discernable heat and energy fluxes across the expanse of
feather-grass oak landscapes located in Southeastern Crimea.

Evidently, the preponderance of the radiation balances are allocated towards the
perturbations engendered by turbulent heat flux, with a comparably minor allotment
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attributed to processes involving evaporation and the subsurface heat flux. Intriguingly, a
temporal delineation of the total solar radiation permeating the sub-canopy region during
the diurnal phase has been discerned, contingent upon the seasonal progression and the
state of the crown foliage.

The main elements of the heat balance have been calculated for two key areas: the open
area and the downy oak forest itself. Notably, the modulations exhibited by turbulent heat
flux and heat dissipation due to evaporation mirror the oscillations inherent to radiation
balance values, characterized by a gradual ascension from the winter period culminating in
the summer season. Conversely, the heat flux penetrating the substratum demonstrates a
recurrent alternation of escalation and abatement within a defined spectrum, accompanied
by a dampening of amplitude during the zenith of the summer phase.

The features of air and soil temperature changes in the open area and under the
forest canopy by season are considered. It has been identified that the average daily
air temperature within the forest during the studied period consistently surpasses the
temperature in the open area. This is attributable to the presence of the canopy, and its
influence becomes more pronounced as it develops. Regarding soil temperature values,
it is noteworthy that heat retention beneath the canopy persists during the winter period,
with values stabilizing in March. As the vegetation period commences in the forested area,
a decline in temperature becomes evident.

The correlation between temperature parameters and constituents of the heat balance
has been ascertained. It has been conclusively posited that the arboreal verdure invariably
exercises an indelible influence upon the ecosystem’s heat balance. However, the extent of
its influence is inexorably contingent upon the cyclical transition of foliage among the arbo-
real populace. As an overarching principle, the profundity of the canopy’s developmental
status directly engenders a commensurate impact upon the distributional patterning of
heat and energetic fluxes.
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