
Citation: Sun, X.; Zhou, C.; Xie, J.;

Ouyang, Z.; Luo, Y. SRTM DEM

Correction Based on PSO-DBN

Model in Vegetated Mountain Areas.

Forests 2023, 14, 1985. https://

doi.org/10.3390/f14101985

Academic Editor: Giorgos Mallinis

Received: 26 August 2023

Revised: 27 September 2023

Accepted: 29 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

SRTM DEM Correction Based on PSO-DBN Model in Vegetated
Mountain Areas
Xinpeng Sun 1, Cui Zhou 1,*, Jian Xie 2, Zidu Ouyang 1 and Yongfeng Luo 1

1 College of Science, Central South University of Forestry and Technology, Changsha 410004, China;
xpsun@csuft.edu.cn (X.S.); 20200046@csuft.edu.cn (Z.O.); yfluo@csuft.edu.cn (Y.L.)

2 School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China; xiejian@hnust.edu.cn

* Correspondence: cuizhou@csuft.edu.cn

Abstract: The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is exten-
sively utilized in various fields, such as forestry, oceanography, geology, and hydrology. However,
due to limitations in radar side-view imaging, the SRTM DEM still contains gaps and anomalies,
particularly in areas with an intricate topography, like forests. To enhance the accuracy of the SRTM
DEM in forested regions, commonly employed approaches include regression analysis and artificial
neural networks (ANN). Nevertheless, existing regression methods struggle to accurately capture the
intricate nonlinear relationship between the error and influencing factors. Additionally, traditional
ANN models are susceptible to overfitting, resulting in subpar accuracy. Deep Belief Network (DBN)
is a highly precise algorithm in deep learning. However, the intricate combination of hyperparame-
ters often leads to limited generalization ability and model robustness when correcting DEM. The
present study proposes an error prediction model based on the DBN optimized by Particle Swarm
Optimization (PSO) for SRTM DEM correction. By utilizing the PSO algorithm, we aim to identify
the optimal combination of hyperparameters of DBN, including the number of neurons in the hidden
layer and the learning rates. The experiment focuses on two regions in Hunan Province, China, char-
acterized by abundant vegetation cover. The reference data utilized for comparison is ICESat/GLAS
data. The experimental results demonstrate that the mean error (ME) and root mean square error
(RMSE) of the SRTM DEM corrected by the proposed algorithm in these two regions are significantly
reduced by 93.5%–96.0% and 21.5%–23.5%, respectively. Moreover, there is an improvement of
over 26.1% in accuracy within complex terrain areas. Specifically, in broadleaf forest, the PSO-DBN
method exhibits a remarkable accuracy improvement of 26.2%, while the DBN-corrected SRTM DEM
shows an improvement of 15.3%. In coniferous forest, the PSO-DBN method achieves an accuracy
improvement of 14.8%, whereas the DBN-corrected SRTM DEM demonstrates a gain of 5.8%. The
approach provides a more effective and robust tool for correcting SRTM DEM or other similar DEMs
over vegetated mountain areas.

Keywords: digital elevation model; SRTM DEM; ICESat-2; forest; PSO-DBN

1. Introduction

The Digital Elevation Model (DEM) is a widely utilized mathematical model in the
fields of Geographic Information Systems (GIS) and Remote Sensing (RS), serving as a
crucial data source for various applications, such as topographic surveys [1], hydrological
simulation [2], forest resource management [3], and disaster assessment [4]. There are
three primary methods for acquiring DEM products, with the first method involving
the utilization of optical sensors that capture data from instruments like the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEM [5] and Advanced
Land Observing Satellite (ALOS) World 3D—30 m (AW3D30) DEM [6]. These DEMs
provide an accurate representation of steep slopes due to the nadir view of the sensor.
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However, they are susceptible to interference from factors such as cloud cover, mist, and lack
of texture [7]. The second method for acquiring DEM products is through Interferometric
Synthetic Aperture Radar (InSAR). InSAR DEMs have the advantage of being all-weather
capable, having high penetration capability, high accuracy, and fast speed. However, they
are still influenced by gaps and anomalies due to the limitations of the radar’s side view
imaging modes. Examples of InSAR DEMs include SRTM (Shuttle Radar Topography
Mission) DEM [8], TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X
DEM) [9], and Copernicus DEM [10]. The third method involves acquiring data through
airborne light detection and ranging (LiDAR), typically mounted on unmanned aerial
vehicles (UAVs) or planes. DEMs generated using LiDAR technology generally exhibit
higher vertical accuracy and spatial resolution compared to other sources, with a vertical
accuracy ranging from 0.05 m to 0.15 m and horizontal point spacing typically ranging from
1 m to 3 m [11]. Therefore, LiDAR-based DEMs can be used as reference data to correct
satellite-based DEMs [12,13]. However, LiDAR-based DEMs are associated with a high
cost [14], which limits their widespread use for large-scale terrain data.

The SRTM DEM is the first globally available high-spatial resolution DEM product,
and is widely recognized for its availability, accuracy, timeliness, and coverage [15–18].
However, it exhibits limitations in forested areas due to factors such as radar side-view
imaging and band penetration, leading to significant vertical errors and reduced preci-
sion [19]. The enhancement of vertical accuracy in SRTM DEM within vegetated areas is
crucial for applications such as forest tree height calculation, forest biomass estimation, and
forest carbon stock monitoring. In recent years, the fusion of multi-source elevation data
has emerged as a popular approach to rectify errors in SRTM DEM. These fusion methods
can be classified into two categories: surface–surface data fusion model and point–surface
data fusion model, depending on the type of elevation data integrated. The surface–surface
data fusion model involves the integration of SRTM DEM with multiple high-precision
DEMs. For instance, Wendi et al. utilized high-precision DEM data with a vertical resolu-
tion of 1 m and employed a Feedforward Neural Network (FNN) to establish a training
model for the purpose of rectifying the SRTM DEM [20]. The fusion technique involving
ASTER DEM and SRTM DEM data is employed as an approach to enhance the accuracy
of mountainous terrain in cases where reference data is unavailable [21]. However, this
surface–surface data fusion method necessitates expensive and limited high-precision DEM
control data as a reference, which restricts its applicability for large-scale error correction.
On the other hand, point–surface data fusion involves integrating precise elevation control
point data with SRTM DEM information, thereby enhancing the precision of the SRTM
DEM. One commonly employed approach involves establishing a regression model that
correlates influencing factors, such as vegetation and topography, with the errors in SRTM
DEM [12,22–24]. However, these models are limited to fitting specific functions and fail to
accurately capture the nonlinear relationship between the influencing factors and the errors.
Another strategy is to leverage machine learning algorithms for correcting SRTM DEM. For
instance, integrating multiple machine learning algorithms can enhance the accuracy of
SRTM DEMs [25]. In forested areas, one method for correcting the SRTM DEM involves
subtracting the simulated forest height obtained through Random Forest (RF) from the
original SRTM DEM [26].

Currently, artificial neural networks, being the predominant algorithm in machine
learning, have been extensively applied to enhance SRTM DEMs within forested regions.
Li, et al. [27] in their study proposed a method for rectifying forest DEMs using the
back-propagation neural network (BPNN). This approach considers elevation spatial auto-
correlation and mitigates vegetation bias (VB) present in DEMs across different types of
forests. However, it is worth noting that the utilization of ANN algorithms may sometimes
face challenges, such as gradient vanishing or explosion, resulting in models with reduced
robustness and limited generalization capabilities. The Deep Belief Network (DBN) is
a deep neural network architecture that consists of multiple layers of Restricted Boltz-
mann Machines (RBM). It possesses the capability to initialize the weight parameters of
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the network using a unsupervised layer-wise pre-training approach. This initialization
method serves the purpose of addressing issues related to gradient vanishing or explosion,
which can occur due to random initialization [28]. For instance, Yue L. [29] proposed a
point–surface fusion model based on DBN that addressing terrain slope, ground cover, and
spatial location information to account for their effects on DEM elevation errors. Here, this
study proposes a DEM error correction model, which effectively enhances data accuracy
and addresses challenges such as data nulls, noise, and outliers. However, it is important
to acknowledge that the DBN model’s performance is significantly influenced by its param-
eters. Inappropriate network parameter settings may lead to learning convergence towards
a locally optimal solution. Additionally, the manual configuration of the number of layers
and nodes in a DBN often gives rise to issues like model overfitting. Therefore, this paper
presents a Particle Swarm Optimized Deep Confidence Network (PSO-DBN) for correcting
SRTM DEM. The proposed method utilizes ICEsat-2 ATL08 as the reference dataset and
optimizes the hyperparameter combination of the deep confidence network using parti-
cle swarm optimization algorithm. This approach not only avoids local optima but also
effectively addresses the complexity and variability inherent in SRTM DEM errors within
forested regions. The effectiveness of the algorithm is validated in two experimental areas
with diverse and complex terrain and vegetation conditions in Hunan Province, China.

This paper is structured as follows: Section 2 provides a comprehensive description of
the study area, data sources, and processing methods; Section 3 elucidates the principles
and steps involved in the PSO-DBN error correction model; Section 4 showcases the
experimental results and conducts thorough analyses; finally, Section 5 presents conclusive
remarks and future prospects.

2. Study Areas and Data
2.1. Study Areas

In this study, Chenzhou and Yongzhou, located in southern part of Hunan Province,
China, were selected as the study area (Figure 1). Yongzhou (Figure 1c,e and Table 1) is
situated at the confluence of the second and third terraces in southern Hunan Province.
It covers a land area of 22,259 km2 and exhibits diverse and intricate geomorphology.
Bounded by mountains on three sides, Yongzhou features mountainous basins and valleys,
with varying elevations across different regions. The elevation ranges from 45 m to 1992 m
above sea level, with higher elevations found in the southwest and lower elevations in
the northeast and central areas. The terrain predominantly consists of mountains, which
account for over 70% of the total area. On average, these mountains have an elevation of
434.3 m with a slope gradient averaging at 15.3◦. Forest cover measures approximately at
61.9%, while trees reach an average height of 7.5 m.

Table 1. Characteristics of the study area in Yongzhou and Chenzhou, including area, elevation,
slope, canopy height, and vegetation cover.

Region Area (km2)
Mean

Elevation (m)
Mean

Slope (◦)
Mean

Canopy Height (m)
Vegetation

Coverage (%)

Yongzhou 22259 434.3 15.3 7.5 61.9
Chenzhou 19387 493.3 15.7 8.1 67.7

Chenzhou (Figure 1d,f and Table 1) is located in the southeastern region of Hunan
Province, encompassing a land area of 19,387 km2. Its elevation ranges from 42 m and
2034 m, with an average elevation of 493.3 m and an average slope gradient of 15.7◦. The
topography descends from the southeast to the northwest, featuring prominent mountain
ranges in the eastern and southern directions, while the northern and western areas consist
of basin terrain with relatively low relief. The region showcases a rich array of vegetation,
encompassing forests, shrublands, meadows, and wetlands. Notably, it has a forest cover-
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age rate of 67.7%, with an average tree height of 8.1 m, establishing itself as one of Hunan
Province’s most abundant areas in terms of forest resources.

Figure 1. Location (a) and terrain data (b) of Hunan province, China. Terrains of Yongzhou and
Chenzhou regions are shown in (c,d). Landsat-8 satellite image of Yongzhou and Chenzhou are
shown in (e,f). Blue lines in (b) indicate the two selected regions. The black circles in (c,d) mark the
locations of used ICESat-2 points.

2.2. SRTM DEM

The Shuttle Radar Topography Mission (SRTM) was conducted by the U.S. Space Shut-
tle Endeavour in 2000, utilizing radar mapping technology to acquire precise topographic
data. This comprehensive mission covered approximately 80% of the Earth’s land surface,
spanning from 60◦ N to 56◦ S latitudes. The SRTM effectively employed radar in both the
X and C-bands, employing synthetic aperture radar (SAR) interferometry techniques [30]
to generate a high-resolution DEM. The horizontal datum of the SRTM DEM is based on
the World Geodetic System 1984 (WGS-84), while the vertical datum is established using
the mean sea level as determined by the WGS-84 Earth Gravity Model geoid. The data has
been designed to achieve a planimetric accuracy within ±20 m and an elevation accuracy
within ±16 m [31,32]. The third version of the SRTM DEM (SRTM NASA Version 3) with
a horizontal resolution of 30 m was chosen for this study. To address any data gaps, ad-
ditional information from the ASTER GDEM and USGS GMTED2010 elevation datasets
were incorporated into the SRTM NASA Version 3. These datasets can be downloaded
from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/) (accessed on 26
October 2022).

https://earthexplorer.usgs.gov/
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2.3. ICESat-2

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) represents the latest ad-
vancement in global laser altimetry satellite technology, and was launched in September
2018. Equipped with the Advanced Terrain Laser Altimetry System (ATLAS), ICESat-2
is designed to measure surface reflections of laser beams and calculate the time taken
for reflection in order to determine Earth’s surface elevation [33]. The ICESat-2 mission
provides distinct product categories for different surfaces, including ATL06 (land ice),
ATL07 (sea ice), ATL08 (land/vegetation), ATL09 (atmosphere), ATL12 (oceans), and
ATL13 (inland water). For the purposes of this study, we utilized the 2019–2022 ICESat-2
ATL08 dataset as the reference data source, which can be accessed through the website
(https://search.earthdata.nasa.gov) (accessed on 29 October 2022). Any absolute assess-
ment of vertical accuracy necessitates precise and independent reference data [19,34], with
the accuracy of reference data being at least three times that of the evaluated DEM [35].
ATL08 demonstrates a vertical error of 0.2 m in plain terrains and 2 m in mountainous
regions [36]. To ensure consistency between the reference data and SRTM DEM in terms of
planimetric and elevation datums, a multi-step process was followed. Initially, elevation
points with an absolute error exceeding 50 m between the SRTM DEM and elevation control
points were excluded [37]. The laser point attribute information contained within the SRTM
DEM dataset was subsequently utilized to enhance the screening process, resulting in the
elimination of voids and outliers associated with topography, vegetation cover, and other
factors. Ultimately, this refinement process led to the selection of 48,319 and 45,583 ICESat-2
data points in the Chenzhou and Yongzhou regions, respectively.

2.4. Ancillary Data

This study was conducted utilizing the Google Earth Engine (GEE) platform, which
enables direct access to Landsat-8 source data. The dataset underwent a series of processing
steps, including cloud removal, computational analysis, and spatial cropping. As a result,
a Landsat-NDVI dataset with a horizontal resolution of 250 m was generated within the
designated study area. Subsequently, the NDVI data achieved a 30 m resolution through
the utilization of the nearest neighbor sampling method [38]. The data can be obtained
from (https://earthexplorer.usgs.gov/) (accessed on 12 November 2022).

Previous research has established that the accuracy of SRTM DEM data is intricately
linked to land use types, topographic factors, and vegetation cover types [39–41]. Therefore,
this study incorporated GlobeLand30, a 2019 global surface fine cover dataset with a
spatial resolution of 30 m obtained from (http://www.globallandcover.com) (accessed
on 1 November 2022). Additionally, the global 30 m ground cover fine classification
product (GLC_FCS30) was employed to further categorize distinct vegetation types within
forested areas, including differentiating dominant tree species, such as broadleaf forests
and needle-leaved forests. Considering previous experiments that have demonstrated the
significant impact of topographic factors on SRTM DEM elevation errors [42–44], this study
incorporates slope and slope direction as crucial model input parameters.

3. Methodology

This study introduces a PSO-DBN model specifically designed to rectify errors in
SRTM DEM data within forested regions, with a focus on its application and testing in
the forests of Hunan Province, China. The PSO algorithm, classified as a Smart Swarm
Optimization algorithm, is employed to search for global optimal solutions by simulating
particle movements within a population. Within the PSO-DBN algorithm, the PSO algo-
rithm plays a crucial role in identifying the optimal combination of hyperparameters for the
DBN model, including factors such as the number of neurons in the hidden layer and the
learning rate. The implementation process of this methodology primarily consists of four
key components: training the DBN network structure, optimizing DBN hyperparameters
using PSO, correcting forested SRTM DEM data through the PSO-DBN algorithm, and
subsequently evaluating accuracy of the corrected SRTM DEM.

https://search.earthdata.nasa.gov
https://earthexplorer.usgs.gov/
http://www.globallandcover.com
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Following preprocessing of experimental data, the training phase for the DBN network
structure commenced. The input data for this phase included six factors associated with
terrain and vegetation: longitude, latitude, slope, slope direction, Normalized Difference
Vegetation Index (NDVI), as well as land cover type. These factors also form part of
the input layer within DBN. The output layer comprises elevation error values obtained
from ICESat-2 ATL08 dataset along with SRTM DEM. The training process involved two
primary stages: greedy pre-training and comprehensive fine-tuning. Initially following
an approach described in Ref. [29], we established two Restricted Boltzmann Machine
(RBM) network structures, as illustrated in Figure 2. Each RBM consists of a visible layer
(first-layer) alongside a hidden one (second-layer), enabling unsupervised learning and
feature extraction. Multiple sets of RBMs were utilized to optimize node weights through a
layer-by-layer greedy pre-training BPNN technique. In this process, input data was fed
into the visible layer, generating a vector v. This vector then underwent weight calculations
w1, resulting in values for the hidden layer H1. Subsequently, using the hidden layer
H1 of the current layer as input, backpropagation is performed to update the weight w1
between the hidden layer H1 and the visible layer v, and then the hidden layer H1 of RBM1
is used as the visible layer of the next layer RBM2. This iterative process continued until all
layers underwent pre-training. A comprehensive fine-tuning phase followed in a forward
sequential manner, starting from the BP layer. Here, supervised learning was applied by
comparing training data labels with network outputs to compute errors. Leveraging this
error information, a gradient descent algorithm was employed to adjust the weights and
bias terms of the DBN. The purpose of this adjustment is to achieve optimal parameters
based on the current dataset and network model. Throughout the two stages of training,
namely greedy pre-training and comprehensive fine-tuning, the DBN has developed the
capability to learn high-level feature representations of data distributions while capturing
intricate relationships between errors and influencing factors. It should be emphasized
that hyperparameter settings, such as the number of neurons in the hidden layer and
the learning rate, have a significant impact on the accuracy of DBN model predictions.
Deviations from these hyperparameter settings during training can result in the model
converging to a local optimum.
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Hence, in this study, we utilized a PSO intelligent algorithm to determine the optimal
combination of hyperparameter. PSO draws inspiration from the collective behavior of
birds and leverages synergy between particles and a stochastic search to efficiently explore
global optimal solutions. Prior to training the DBN, we establish the search space and define
the parameters for PSO. Initially, PSO initializes a group of particles within the feasible
solution space, where each particle represents a potential solution point for extreme value
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optimization. Three key attributes characterize each particle: position, velocity, and fitness
value. The positions of particles correspond to optimized hyperparameter values that are
initially randomized. The fitness function chosen for evaluating model performance is
the root mean square error (RMSE), which is computed using Equation (1) to calculate
the fitness value associated with each particle’s position. This fitness value represents
the RMSE of the DBN model’s prediction result, which is based on current number of
hidden layer nodes and learning rate. The fitness value of each particle Ffitness is compared
with its individual extreme value Pbest. If the current fitness value of a particle Ffitness is
smaller than its individual extreme value Pbest, the latter is updated to match the former;
otherwise, it remains unchanged. Subsequently, all individual extreme values Pbest across
the particle swarm are compared to determine the population’s best extreme value Gbest. If
an individual extreme value Pbest is smaller than the population’s extreme value Gbest, it
replaces the latter; otherwise, no changes are made.

Ffitness =

√
1
n

n

∑
i=1

(p− q)2 (1)

where n represents the total number of samples, p and q represent the elevation error
prediction values of the DBN model under the current hyperparameters and true elevation
error values, respectively.

In each iteration, the particles are meticulously tracked by maintaining records of both
individual extremes Pbest and population extremes Gbest. These records play a crucial role
in updating the individual velocity and position, subsequently leading to the continuous
refinement of the hyperparameters of the DBN model. With each position update, the
particle computes its fitness value and compares it to the fitness values associated with
Pbest (individual extreme value), the Gbest (population extreme value), and the positions of
population extremes. This process yields the global optimal solution for the problem [45].
The equations governing the update of particle velocity and position are presented in
Equations (2) and (3):

Vt+1
im = ωVt

im + c1r1
(
Pt

im − Xt
im
)
+ c2r2

(
Gt

m − Xt
im
)

(2)

Xt+1
im = Xt

im + Vt+1
im (3)

Among these variables, ω represents the inertial weight of particles, which is utilized
to regulate the search range in the solution space. c1 and c2 are learning factors employed
for adjusting the learning rate. r1 and r2 are random numbers with values ranging from
0 to 1. i denotes the ith particle, m signifies the dimensionality of the variables, and t stands
for the iteration count. Vt

im denotes the velocity of particle i in the mth dimension during
the tth iteration. Pt

im represents the coordinate of particle i’s individual best value found in
the mth dimension during the tth iteration. Gt

m signifies the position of the global optimum
solution discovered by all particles within their swarm in the mth dimension during the
tth iteration.

The iteration process concludes upon reaching the predefined maximum number of
iterations. At this point, the population’s extreme value, denoted as Gbest, is identified
to represent the optimal combination of learning rate and the number of neurons. Sub-
sequently, the DBN model undergoes training using these optimized hyperparameters.
Throughout the training phase, an evaluation of the model’s performance is conducted
through a 10-fold cross-validation methodology. Particularly, the training dataset is ran-
domly divided into ten equally sized subsets. Among these subsets, one serves as the
validation set while the remaining nine collectively form the training set. Importantly,
each subset assumes both roles of training and test data across all tenfold cross-validation
iterations. The training set in each instance of the 10-fold cross-validation is utilized for
model training while the test set assesses its outcomes.
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In this study, we selected the SRTM DEM of the Chenzhou and Yongzhou forest
regions as our representative dataset for error prediction and analysis. The training set
data for each experimental areas was used separately. To predict errors, we employed
the methodology illustrated in Figure 3 to determine optimal parameters for the PSO-
DBN model. Specifically, we set a search range of [20, 120] neurons within two hidden
layers while exploring learning rates between [0.001, 0.1]. Our particle swarm consisted
of 20 particles with a maximum iteration cap at 50. We then derived the corrected SRTM
DEM elevation data by subtracting predicted error values from the original SRTM DEM
elevation data using the PSO-DBN model; this corrected dataset represents an improved
version of the SRTM DEM elevation data.
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After the completion of error correction for the SRTM DEM, an assessment was
conducted to determine its accuracy using mean error (ME) and root mean square error
(RMSE) [45], Equations (4) and (5) represent the formulas for ME and RMSE, respectively:

ME =
1
n

n

∑
i=1

hi,SRTM − hi,icesat (4)

RMSE =

√
1
n

n

∑
i=1

(hi,SRTM − hi,icesat)
2 (5)
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Equations (4) and (5) involve the elevation values of the corrected SRTM DEM product,
represented by hi,SRTM, the corresponding elevation control data denoted by hi,icesat, and n
indicating the total count of elevation control points.

4. Results and Discussion
4.1. Overall Accuracy

The error histograms in Figure 4 illustrate the disparities between the Original SRTM
DEM and the PSO-DBN Corrected SRTM DEM when compared to the ICEsat-2 reference
elevation data. Particularly, Figure 4a provides insight into the performance metrics for
Chenzhou, where we observe ME of 4.01 m and RMSE of 11.20 m for the Original SRTM
DEM. The metrics for Yongzhou, as shown in Figure 4b, reveal that the Original SRTM
DEM has ME of 2.31 m and RMSE of 10.29 m. It is worth noting that both Chenzhou and
Yongzhou exhibit positive ME values, indicating a consistent overestimation of elevation
values by the SRTM DEMs when compared to the ICEsat-2 reference elevation data. This
phenomenon, which is widespread in the eastern Tibetan Plateau of China [46], Jiangxi
Province, China [39], and the Pearl River Delta region [47], is primarily attributed to the
limited penetration capabilities of the SRTM radar center. The obstructing vegetation
canopies prevent it from reaching the ground level, resulting in incomplete data acquisi-
tion [48,49]. Furthermore, it is observed that the ME and RMSE values for Chenzhou exhibit
a significant increase of 42.4% and 8.1%, respectively, compared to those for Yongzhou.
The observed discrepancy can be attributed to the increased topographical complexity and
a broader elevation range within Chenzhou, which is characterized by a mean slope of
15.3◦, in comparison to Yongzhou with a mean slope of 15.7◦. Additionally, Chenzhou
exhibits a higher vegetation density (67.7% vegetation cover) compared to Yongzhou (61.9%
vegetation cover), which consequently leads to a lower accuracy of the raw SRTM DEM
dataset of Chenzhou in comparison to that of Yongzhou.
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The PSO-DBN algorithm, introduced in this study, has demonstrates a significant
capacity to enhance the accuracy of the initial SRTM DEMs within the Chenzhou and
Yongzhou regions. Specifically, the application of PSO-DBN has resulted in a remarkable re-
duction in ME from 4.01 m to−0.16 m in Chenzhou and from 2.31 m to 0.15 m in Yongzhou.
ME in both areas has been eliminated by more than 93.5%. Additionally, the RMSE for
Chenzhou has been reduced from 11.20 m to 8.57 m, indicating a significant decrease of
23.5%. Similarly, Yongzhou has witnessed a reduction in its RMSE from 10.29 m to 8.08 m,
representing a notable decline of 21.5%. It is worth noting that the slight underestimation
observed in the corrected SRTM DEM elevation values across all regions is indeed justifi-
able and reasonable. In fact, this phenomenon aligns with the inherent characteristics of
signals obtained from ICESat-2’s sensors, which are susceptible to attenuation caused by
reflections from scatterers within the vegetation canopy. Consequently, it is not unexpected
for some degree of overestimation to be observed in the acquired elevation values [50].

Figure 5a,d depict the original SRTM DEMs of Yongzhou and Chenzhou, respectively,
and Figure 5b,e display the corrected SRTM DEMs by using the PSO-DBN algorithm
in Yongzhou and Chenzhou regions, respectively. While Figure 5c,f show the elevation
differences between the corrected SRTM DEMs and the original SRTM DEMs. The results
indicate that the corrected SRTM DEMs using PSO-DBN algorithm are generally lower than
the original SRTM DEMs, with differences primarily concentrated in the range of −10 to
50 m. From Figure 5c,f, it is evident that the PSO-DBN algorithm significantly enhances the
accuracy of SRTM DEM in rugged terrain and dense vegetation. However, grid differences
before and after correction in the study areas span a range of −261 to 257 m, with certain
pixels exhibiting differences exceeding 200 m. This is attributed to data voids in the original
SRTM DEMs in these locations, which were filled by the PSO-DBN algorithm, leading to
the occurrence of outliers [51].

Figure 5. Original SRTM DEMs (a,d) of Yongzhou and Chenzhou. Corrected SRTM DEMs (b,e) by
using PSO-DBN algorithm in Yongzhou and Chenzhou regions. The difference (c,f) between the
original SRTM DEMs and the corrected SRTM DEMs.
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4.2. The Influence of Different Terrain Factors on Error Prediction of SRTM3 DEM

The accuracy of the original SRTM DEM compared to the DBN and PSO-DBN corrected
SRTM DEM is depicted in Figure 6, with a specific focus on varying elevations and slopes
within the forested area. In Figure 6a and Table 2, it becomes apparent that the ME of the
original SRTM DEM exhibit an escalation from 0.26 m to 6.76 m, while the RMSE increases
from 4.48 m to 19.80 m as slope steepness rises. This phenomenon occurs as a result of
the presence of steeper slopes, which can cause foreshortening. Foreshortening refers to a
situation where the difference in slant distance covered by the radar beam from the top to
the bottom of a sloped surface is smaller compared to that of an equivalent ground surface.
Consequently, the slant distance depicted in the image appears shorter than the actual
ground surface length. This, in turn, results in a distortion of the length of the slope within
the image [52]. Figure 6b and Table 2 further reveal that without correction, there is an
increase in the ME from 1.59 m to 5.18 m for the SRTM DEM data, and the RMSE escalates
from 5.25 m to 14.05 m as elevation rises. This can be attributed to regions with elevated
terrain often exhibiting complex topography and substantial slopes, which subsequently
contribute to an increase in error magnitude as elevation increases [39]. Remarkably, as
illustrated in Figure 6b, the error within the forested area between 450 m to 600 m above
sea level closely mirrors that observed in regions surpassing an elevation of 600 m. This
implies that the impact of elevation on the error tends to stabilize at elevations exceeding
450 m above sea level, contrasting with regions below this threshold. Such behavior
is likely attributed to the intricate interplay of terrain characteristics, land use patterns,
and forest canopy factors, all of which collectively influence the accuracy of the SRTM
DEM [39,41,53,54].

Forests 2023, 14, 1985 12 of 19 
 

 

600 m. This implies that the impact of elevation on the error tends to stabilize at elevations 
exceeding 450 m above sea level, contrasting with regions below this threshold. Such be-
havior is likely attributed to the intricate interplay of terrain characteristics, land use pat-
terns, and forest canopy factors, all of which collectively influence the accuracy of the 
SRTM DEM [39,41,53,54]. 

 
Figure 6. Distribution of errors in the original SRTM DEM and corrected SRTM DEM using DBN, 
and PSO-DBN methods for different (a) slopes and (b) elevations in the study area. 

The accuracy of the original SRTM DEM, the DBN-Corrected SRTM DEM, and the 
PSO-DBN Corrected SRTM DEM across various elevation and slope intervals is compre-
hensively presented in Table 2. Importantly, Table 2 highlights the significant improve-
ments achieved by the DBN and PSO-DBN methods in enhancing the vertical accuracy of 
the original SRTM DEM within different elevation intervals. After applying PSO-DBN 
correction, the RMSE values for the original SRTM DEM, which initially ranged from 5.25 
m to 14.05 m, exhibited a significant reduction in the range of 4.47 m to 10.41 m. This 
notable enhancement in RMSE surpasses the corrective impact achieved by DBN (ranging 
from 4.64 m to 11.38 m). The PSO-DBN correction method specifically leads to a remark-
able improvement in accuracy, with an enhancement of 14.8%, 15.0%, 18.2%, 24.9%, and 
25.9% observed across five elevation interval ranges spanning from low to high elevations. 
Additionally, significant reductions in RMSE are observed within all elevation ranges. In 
regions characterized by elevations below 150 m, typically indicating flat terrains, the 
DBN-corrected RMSE experiences a decrease of 11.6%, while PSO-DBN achieves a more 
substantial reduction of 14.8%. The PSO-DBN corrected SRTM DEM demonstrates an av-
erage RMSE of 8.46 m within the low hilly terrain, ranging from elevations of 150 m to 600 
m, surpassing DBN’s RMSE of 9.06 m. In the plateau areas with elevations exceeding 600 
m, the accuracy improvement achieved by PSO-DBN exceeds that of DBN by 6.9%. 

The correction outcomes for various slope classes exhibit characteristics similar to 
those observed in different elevation ranges. Initially, the RMSE values for the experi-
mental area ranged from 4.48 m to 19.80 m. However, after applying the PSO-DBN cor-
rection method, the RMSE values were significantly reduced to a range of 3.88 m to 13.67 
m, surpassing the performance of the DBN correction (which ranged from 4.51 m to 15.59 
m). Specifically, PSO-DBN correction achieved a significant improvement in accuracy by 
13.4%, 14.5%, 24.0%, 27.5%, and 31.0% across five slope intervals ranging from minor to 
steep slopes. In areas with gentle slopes, defined as slopes less than 15°, the PSO-DBN 
correction method exhibits a 14.2% increase in accuracy improvement (RMSE of 3.88 m) 
compared to DBN correction (RMSE of 4.51 m). For sloping terrain ranging from 15° to 
35°, the average RMSE values for the PSO-DBN and DBN-corrected SRTM DEMs are 
measured at 8.62 m and 9.16 m, respectively. When dealing with steep slopes exceeding 

Figure 6. Distribution of errors in the original SRTM DEM and corrected SRTM DEM using DBN,
and PSO-DBN methods for different (a) slopes and (b) elevations in the study area.

The accuracy of the original SRTM DEM, the DBN-Corrected SRTM DEM, and the
PSO-DBN Corrected SRTM DEM across various elevation and slope intervals is comprehen-
sively presented in Table 2. Importantly, Table 2 highlights the significant improvements
achieved by the DBN and PSO-DBN methods in enhancing the vertical accuracy of the
original SRTM DEM within different elevation intervals. After applying PSO-DBN correc-
tion, the RMSE values for the original SRTM DEM, which initially ranged from 5.25 m to
14.05 m, exhibited a significant reduction in the range of 4.47 m to 10.41 m. This notable
enhancement in RMSE surpasses the corrective impact achieved by DBN (ranging from
4.64 m to 11.38 m). The PSO-DBN correction method specifically leads to a remarkable
improvement in accuracy, with an enhancement of 14.8%, 15.0%, 18.2%, 24.9%, and 25.9%
observed across five elevation interval ranges spanning from low to high elevations. Ad-
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ditionally, significant reductions in RMSE are observed within all elevation ranges. In
regions characterized by elevations below 150 m, typically indicating flat terrains, the
DBN-corrected RMSE experiences a decrease of 11.6%, while PSO-DBN achieves a more
substantial reduction of 14.8%. The PSO-DBN corrected SRTM DEM demonstrates an
average RMSE of 8.46 m within the low hilly terrain, ranging from elevations of 150 m to
600 m, surpassing DBN’s RMSE of 9.06 m. In the plateau areas with elevations exceeding
600 m, the accuracy improvement achieved by PSO-DBN exceeds that of DBN by 6.9%.

Table 2. Error distribution of the original SRTM DEM and the DBN- and PSO-DBN-corrected SRTM
DEM for different elevation and slope intervals.

Terrain Actors Classes
Original DBN Corrected PSO-DBN Corrected

ME (m) RMSE (m) ME (m) RMSE (m) ME (m) RMSE (m)

Height (m)

<150 1.59 5.25 0.51 4.64 0.04 4.47
150–300 1.67 7.43 0.22 6.66 0.15 6.32
300–450 2.68 10.55 −0.36 9.17 −0.33 8.63
450–600 4.64 13.88 0.03 11.35 −0.23 10.42

>600 5.18 14.05 −0.38 11.38 −0.62 10.41

Slope (◦)

<15 0.26 4.48 −0.35 4.51 −0.22 3.88
15–25 2.65 8.17 0.27 7.28 −0.09 6.99
25–35 5.23 13.49 0.09 11.04 −0.27 10.25
35–45 6.05 17.82 −0.56 14.12 −0.37 12.91
>45 6.76 19.80 −0.41 15.59 −0.31 13.67

The correction outcomes for various slope classes exhibit characteristics similar to
those observed in different elevation ranges. Initially, the RMSE values for the experimental
area ranged from 4.48 m to 19.80 m. However, after applying the PSO-DBN correction
method, the RMSE values were significantly reduced to a range of 3.88 m to 13.67 m,
surpassing the performance of the DBN correction (which ranged from 4.51 m to 15.59 m).
Specifically, PSO-DBN correction achieved a significant improvement in accuracy by 13.4%,
14.5%, 24.0%, 27.5%, and 31.0% across five slope intervals ranging from minor to steep
slopes. In areas with gentle slopes, defined as slopes less than 15◦, the PSO-DBN correction
method exhibits a 14.2% increase in accuracy improvement (RMSE of 3.88 m) compared
to DBN correction (RMSE of 4.51 m). For sloping terrain ranging from 15◦ to 35◦, the
average RMSE values for the PSO-DBN and DBN-corrected SRTM DEMs are measured at
8.62 m and 9.16 m, respectively. When dealing with steep slopes exceeding angles greater
than 35◦, the PSO-DBN correction method outperforms DBN by achieving a minimum
accuracy improvement of 27.5%, in contrast to the lesser improvement realized by DBN at
only 20.8%.

With increasing elevation and slope values, both the PSO-DBN and DBN algorithms
exhibit a consistent trend of enhancing their performance across all intervals. Notably, the
PSO-DBN algorithm consistently outperforms DBN in all slope and elevation intervals
due to its inherent capability to facilitate adaptive feature extraction and generalize its
applications more effectively across diverse datasets.

4.3. The Influence of Different Land Cover Types on SRTM DEM Error Correction

The original error metrics, including ME and RMSE, for various land cover types in
the two study regions are presented in Table 3. In addition, the table showcases the error
reductions achieved through the implementation of DBN and PSO-DBN algorithms. Table 3
highlights significant variations in the accuracy of raw SRTM DEMs across five distinct land
cover types: cropland, forest, grassland, water bodies, and built-up land. Notably, vegetated
areas such as forests and grasslands, exhibit considerably higher ME and RMSE values
for raw SRTM DEM (ME: 4.03 m, RMSE: 11.32 m) compared to non-vegetated areas (ME:
0.72 m, RMSE: 6.53 m). The observed disparity arises due to the limited penetration ability
of the SRTM C-band radar in forest canopies, resulting in irregular backward scattering of
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radar signals that amplify geometric distortions [53,54]. Additionally, temporal variations
in data acquisition between SRTM and ICESat, which correspond to different surface
conditions, including vegetation, contribute to these discrepancies [53]. Table 3 presents
compelling evidence that both the DBN and PSO-DBN methodologies effectively mitigate
the ME across vegetated and non-vegetated areas, resulting in a significant reduction of
22.0%. However, there is a noticeable disparity in their efficacy in reducing the RMSE.
For areas with vegetated cover, DBN and PSO-DBN achieved a reduction of 17.5% (from
11.32 m to 9.34 m) and 20.6% (to 8.99 m), respectively, for the SRTM DEM dataset. In
forests, the reductions were 17.6% and 22.2%, while in grasslands, they were 17.6% and
18.3%. This discrepancy arises due to the initial higher RMSE value in forests (13.13 m)
compared to grasslands (9.50 m), allowing for better error characteristic learning through a
more extensive training sample dataset. In non-vegetated areas, both DBN and PSO-DBN
demonstrated a reduction the RMSE from the original value of 6.53 m to 6.32 m (a decrease
of 3.2%) and 5.66 m (a decrease of 13.3%), respectively. This pattern of improvement
extends to specific land cover types as well: for water bodies, the RMSE decreased from
8.59 m to 7.68 m (a reduction of 10.6%) with DBN and further decreased to 7.25 m (a
reduction of 15.5%) with PSO-DBN; for cropland, the RMSE decreased from 5.21 m to
4.72 m (a decrease of 9.4%) using DBN and further reduce to 4.48 m (a decrease of 14.0%),
respectively; similarly, for man-made surfaces, the RMSE decreased from its original value
of 5.79 m to 5.65 m (a reduction of 2.4%) with DBN and further decrease to 5.25 m (a
reduction of 9.3%) with PSO-DBN.

Table 3. ME and RMSE before and after SRTM DEM correction for different surface cover types.

Land Cover Type Number of
Test Observations

Original DBN Corrected PSO-DBN Corrected

ME (m) RMSE (m) ME (m) RMSE (m) ME (m) RMSE (m)

cultivated land 8464 0.75 5.21 −0.39 4.72 −0.26 4.48
forestland 15873 4.58 13.13 0.22 10.85 −0.13 10.21
grassland 2802 3.47 9.50 0.09 7.83 −0.55 7.76
water area 488 0.45 8.59 −1.80 7.68 −0.80 7.25

built-up land 541 0.95 5.79 −0.74 5.65 0.79 5.25

The results confirm that PSO-DBN significantly enhances the accuracy of SRTM DEMs
across various land cover types, thereby demonstrating the robustness of the model. Impor-
tantly, PSO-DBN achieves a 3.1% and 10.1% greater improvement in accuracy compared to
DBN in vegetated and non-vegetated areas, respectively.

4.4. The Influence of Different Vegetation Types on SRTM DEM Error Correction

The study area predominantly falls within the subtropical monsoon humid climate
category, characterized by significant vertical variations due to its mountainous terrain.
A distinct pattern of vertical vegetation differentiation exists, with prevalent vegetation
types including Evergreen Needle-leaved Forests, Deciduous Broadleaved Forests, and
Evergreen Broadleaved Forests. The results of SRTM DEM correction for Evergreen Needle-
leaved Forests, Deciduous Broadleaved Forests, and Evergreen Broadleaved Forests using
the DBN and PSO-DBN algorithms are illustrated in Figure 6. The ME and RMSE of the
SRTM DEM exhibit a strong correlation with forest type, as illustrated in Figure 6. Notably,
Evergreen Broadleaved Forests demonstrate the highest ME and RMSE measurements of
5.77 m and 14.31 m correspondingly. In contrast, Deciduous Broadleaved Forests closely
follow with ME and RMSE values of 5.20 m and 14.07 m. In contrast, Evergreen Coniferous
Forests exhibits the lowest error rates, with a ME of 1.18 m and a RMSE of 11.94 m. It
is precisely because, Evergreen Broadleaved Forests typically boast the highest average
tree height and present challenges for radar signal penetration due to their canopy and
foliage characteristics [27]. In the case of Deciduous Broadleaved Forests, lower ME and
RMSE values can be responsible for the timing of SRTM DEM acquisition during the
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deciduous stage, reduced canopy coverage [31], as well as decreased air moisture content
and relatively cooler air temperatures during this period. Radar signals tend to penetrate
deeper under dry or freezing conditions compared to warm or humid conditions due to
the lower liquid water content and dielectric constant within the forest canopy [50,53].
Interestingly, Evergreen Broadleaved Forests demonstrate minimal errors, indicating their
superior SAR microwave penetration capabilities within this vegetation cover. Several
factors, such as vegetation density, polarization, tree structure, effective baseline, angle of
incidence, and weather conditions, may influence the depth of SAR microwave penetration
into vegetation [35,55].

The results presented in Figure 7 demonstrate the effective reduction in ME achieved
by both the DBN and PSO-DBN algorithms in various forested regions, with a substantial
decrease of over 91.2%. However, it is noteworthy that PSO-DBN outperforms DBN
significantly in terms of reducing the RMSE. Specifically, in Deciduous Broadleaved Forests,
PSO-DBN and DBN reduce the RMSE from 14.07 m to 10.39 m (26.2% reduction) and
12.26 m (12.9% reduction), respectively. For Evergreen Broadleaved Forests, PSO-DBN
and DBN decrease the RMSE from 14.31 m to 10.56 m (26.2% reduction) and 11.79 m
(17.6% reduction), respectively. In the Evergreen Needle-leaved Forest zone, PSO-DBN
and DBN achieve a reduction in RMSE from 11.94 m to 10.17 m (14.8% reduction) and
11.25 m (5.8% reduction), respectively. The variation in accuracy improvement among the
three vegetation zones may be attributed to the initial accuracy levels of the respective
vegetation cover types and the availability of training sample points. In areas with nearly
identical vegetation cover within the same study region, PSO-DBN corrected SRTM DEM
consistently exhibits smaller errors than DBN-corrected SRTM DEM. On average, PSO-DBN
achieves approximately 10% higher corrected accuracy compared to DBN.
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4.5. Model Performance Comparison

In order to evaluate the efficacy of the Deep Belief Network (DBN) and Particle Swarm
Optimization-Deep Belief Network (PSO-DBN) algorithms, we employed traditional Multi-
variate Linear Regression (MLR), Multivariate Nonlinear Regression (MNLR), and Artificial
Neural Network (ANN) models for comparative analysis. The error correction effects of
the five algorithms on SRTM DEM are presented in Table 4.

Table 4. Accuracy comparison of SRTM DEMs corrected by PSO-DBN, DBN, MLR, MNLR and
ANN algorithms.

Models
ME (m) RMSE (m)

Original Corrected Original Corrected

MLR 4.01 3.72 10.46 10.43
MNLR 4.01 0.10 10.46 10.19
ANN 3.13 0.18 11.12 8.87
DBN 3.98 −0.06 11.07 9.20

PSO-DBN 3.16 −0.16 10.75 8.33

As can be seen from Table 4, the accuracies of SRTM DEMs corrected by PSO-DBN,
DBN, MLR, MNLR and ANN algorithms are improved. The accuracies of MLR and MNLR
are only increased by 0.3% and 2.6%, respectively, while the results corrected by ANN, DBN
and PSO-DBN show better performance, and the accuracies are increased by 20.2%, 16.9%,
and 22.5%, respectively. In comparison to the other four algorithms, the PSO-DBN algo-
rithm proposed in this paper has obvious advantages in SRTM DEM correction. Specifically,
compared with MLR, MNLR, ANN, and DBN, the accuracies of SRTM DEM corrected by
the PSO-DBN algorithm are improved by 22.2%, 19.9%, 2.3%, and 5.6%, respectively. This is
attributed to the PSO-DBN algorithm can better capture the complex relationship between
errors and influencing factors compared to regression methods. Additionally, particle
swarm optimization is used to optimize the hyperparameters of DBN, which effectively
avoids the overfitting problem common in classical machine learning methods.

5. Conclusions

The present study proposes a method for correcting SRTM DEM errors by employing
deep confidence networks optimized through the PSO algorithm. This approach takes
into consideration various factors that influence terrain and vegetation parameters. To
validate our methodology, we selected two study areas, Chenzhou and Yongzhou in
Hunan Province, China, which are characterized by complex terrain and high vegetation
coverage. Our experimental findings reveal the following key observations: (1) Among
terrain-related factors, both slope and elevation exhibit a positive correlation with errors
in the SRTM DEM. It is important that, both PSO-DBN and DBN demonstrate superior
performance in correcting the SRTM DEM in regions with complex terrain. Specifically,
when the slope exceeds 35◦, the accuracy of SRTM DEMs corrected by PSO-DBN exhibits
an improvement of 34.5% (Chenzhou) and 25.3% (Yongzhou), while DBN correction results
in an enhancement of 20.3% and 18.0%, respectively. Furthermore, at elevations exceeding
600 m, the accuracy of SRTM DEMs corrected by PSO-DBN shows an increase of 26.4%
(Chenzhou) and 25.2% (Yongzhou), with DBN correction resulting in improvements of
19.1% and 18.9%, respectively. (2) Additionally, the application of PSO-DBN correction in
vegetated regions leads to a reduction in RMSE of over 20%. Across different forest types,
PSO-DBN’s error correction performance clearly surpasses that of DBN. In broadleaf forest
areas, the accuracy of SRTM DEMs corrected by PSO-DBN increases by 26.9% (Chenzhou)
and 25.3% (Yongzhou), while DBN achieves improvements of 20.1% and 19.2%, respectively.
In coniferous forest areas, PSO-DBN results in enhancements of 15.8% (Chenzhou) and
13.1% (Yongzhou), while DBN exhibits improvements of 11.7% and 7.1%, respectively.
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Overall, the ME of SRTM DEM corrected by both DBN and PSO-DBN experiences a
reduction of over 90% in the experimental areas, with average RMSE decreasing by 16.4%
and 22.5%, respectively. Notably, regardless of varying topographical conditions, land
cover types, and vegetation characteristics encountered, PSO-DBN consistently outper-
forms DBN.

Additionally, our study has identified instances of missing ICESat-2 data in certain
areas, which may potentially impact the overall calibration of the SRTM DEM. Furthermore,
regions characterized by high vegetation cover, dense canopy, and complex vertical forest
structures can introduce errors in the ICESat-2 elevation control data itself. Consequently,
future research endeavors will obtain reference data with more uniformly distributed or
higher accuracy to correct SRTM DEM, such as airborne LiDAR DEM data.
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