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Abstract: Tree height is one of the key dendrometric parameters for indirectly estimating the timber
volume or aboveground biomass of a forest. Field measurement is time-consuming and labor-
intensive, while unmanned aerial vehicle (UAV)-borne LiDAR is a more efficient tool for acquiring
tree heights of large-area forests. Although individual tree heights extracted from point cloud data are
of high accuracy, they are still affected by some weather and environment factors. In this study, taking
a planted M. glyptostroboides (Metasequoia glyptostroboides Hu & W.C. Cheng) stand as the study object,
we preliminarily assessed the effects of various illumination conditions (solar altitude angle and
cloud cover) on tree height extraction using UAV LiDAR. The eight point clouds of the target stand
were scanned at four time points (sunrise, noon, sunset, and night) in two consecutive days (sunny
and overcast), respectively. The point clouds were first classified into ground points and aboveground
vegetation points, which accordingly produced digital elevation model (DEM) and digital surface
model (DSM). Then, the canopy height model (CHM) was obtained by subtracting DEM from
DSM. Subsequently, individual trees were segmented based on the seed points identified by local
maxima filtering. Finally, the individual tree heights of sample trees were separately extracted
and assessed against the in situ measured values. As results, the R2 and RMSEs of tree heights
obtained in the overcast daytime were commonly better than those in the sunny daytime; the R2

and RMSEs at night were superior among all time points, while those at noon were poorest. These
indicated that the accuracy of individual tree height extraction had an inverse correlation with the
intensity of illumination. To obtain more accurate tree heights for forestry applications, it is best to
acquire point cloud data using UAV LiDAR at night, or at least not at noon when the illumination is
generally strongest.

Keywords: individual tree height; UAV LiDAR; point cloud; illumination condition; point segmenta-
tion; solar altitude angle

1. Introduction

Tree height is one of the key dendrometric parameters for indirectly estimating the
timber volume or aboveground biomass of a forest [1]. Field measuring methods for
tree heights such as height measuring pole or total station are of relatively high accuracy,
but usually time-consuming and labor-intensive [2]. They are generally infeasible for
large forests with lush understory vegetation or/and a high density. Additionally, field
surveys are relatively difficult to carry out for those forests located in steep mountainous
regions [3]. Photogrammetry, which measures object dimensions without direct contact,
is a cost-effective method for extracting tree heights of large forests [4]. However, the
accuracy is relatively low, especially for dense forests with insufficient natural light [5].
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The emergence of light detection and ranging (LiDAR) systems provides a more promising
alternative for efficiently and accurately obtaining tree heights [6,7].

As an active remote sensing technology, LiDAR emits laser pulses and receives their
returns reflected by object surfaces [8]. The distance between the sensor and the target is
generally measured by the time of flight (TOF) method or phase-shift method [9]. With
the spatial position of the LiDAR as a reference, the three-dimensional (3D) coordinates of
a reflection point on the target object can be accurately derived. When there are enough
such points (also called point clouds), the 3D model of the target object can be established.
Therefore, the point clouds of dense forests can be obtained using a LiDAR, from which the
tree heights will be conveniently extracted [10]. LiDARs are mainly divided into satellite-
borne, aircraft-borne, and ground-based platforms [11]. Satellite-borne laser altimetry
can obtain the stand-scale tree heights of very large forests with a wide swath, but it is
usually difficult to extract individual-scale tree heights due to the sparse point density [12].
Manned aircraft-borne LiDAR can scan the point clouds of a forest and extract individual
tree heights with sound quality [13], but the prohibitive cost for small areas and relatively
higher personnel risk make it hard to be widely deployed and used periodically. Terrestrial
LiDAR can acquire the dense and high-precision point clouds of trees at ground level,
but its spatial coverage is extremely limited [14–16]. For these three types of LiDAR, their
ranging accuracy increases sequentially, but the spatial coverage decreases accordingly.

In recent years, with the development of unmanned aerial vehicles (UAVs) and
lightweight sensors, UAV-borne LiDAR has gradually matured [17]. It has bigger spa-
tial coverage than terrestrial LiDAR, higher accuracy than satellite-borne LiDAR, and lower
cost and personnel risk than airborne LiDAR. During operations, UAV-borne LiDARs
emit laser pulses from the top to measure the forest, while the penetrating nature of the
laser pulses and their multiple returns allow for obtaining more detailed information on
the vertical structure of the canopies and the ground surface [18]. Therefore, it has been
increasingly used in forest surveys and forest ecology studies. For instance, Chen et al. [19]
utilized DJI M600-borne LiDAR (DJ-Innovations, Shenzhen, China) to scan the point cloud
of a powerline corridor located in a mountainous forest region, and predicted tree encroach-
ment early by combining the extracted individual tree heights and Richards growth model;
Wang et al. [17] precisely mapped the aboveground biomass of mangrove forests on Hainan
Island using UAV LiDAR sampling; Almeida et al. [20] monitored restored tropical forest
diversity and structure through a UAV-borne hyperspectral and LiDAR fusion. Among
these studies, individual tree heights extracted from the point clouds scanned by UAV
LiDAR were one of the most basic structural parameters.

Although individual tree heights acquired by UAV LiDAR are of high accuracy [21,22],
they are still affected by some weather and environmental factors, including illumination
conditions, air humidity, rugged topography, complexity of forest structure, and so on.
Under natural conditions, the intensity of illumination during a day is mainly determined
by the solar altitude angle. In addition, cloud cover is also an important factor affecting
the intensity of illumination throughout the day [23]. As the wavelength of the surveying
LiDAR (near-infrared) is within the spectral range of sunlight, the reflected and backscat-
tered sunlight will restrict the signal-to-noise ratio (SNR) of the detector of the LiDAR [24].
Accordingly, the ranging accuracies of UAV LiDAR will be affected to various extents.
Therefore, it is necessary to assess the effects of different illumination conditions on the
accuracy of individual tree height extraction. Thus, to obtain more accurate tree heights, we
can choose a more suitable time point to carry out scanning operations with UAV LiDAR.
However, there are currently few relevant studies reported in the literature.

In this paper, we conduct a pilot study on the effects of UAV-borne LiDAR for individ-
ual tree height extraction under various illumination conditions, including solar altitude
angle and cloud cover. Eight point clouds of the target stand were scanned at four time
points (sunrise, noon, sunset, and night) over two consecutive days (sunny and overcast).
Our specific objectives were as follows: (1) to accurately extract individual tree heights from
the eight point clouds acquired by UAV LiDAR under different illumination conditions;
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(2) to assess the accuracies of extracted individual tree heights against in situ measured
values; and (3) to reveal the qualitative correlation between illumination intensity and
the resulting accuracy of individual tree heights, and find out the optimal time point for
scanning operations using UAV LiDAR.

2. Study Site and Data
2.1. Study Site

The study site is located at the lower reach of the Ma’anxi Creek in the northwestern
part of Beibei District (Figure 1a), Chongqing Municipality, China. The creek begins at the
Longtanzi Reservoir and ends at the Jialing River, with a length of approximately 4 km.
This region possesses a subtropical monsoon climate, which is characterized by low wind,
high humidity, and abundant rainfall in the hot season. Many tree species such as Camphora
officinarum, Neosinocalamus affinis, and M. glyptostroboides (Metasequoia glyptostroboides Hu
& W.C. Cheng) grow along the Ma’anxi creek. The total area of the study site (Figure 1c)
was approximately 0.26 ha with an average northwest slope of 16.47◦. M. glyptostroboides is
the predominant species of the planted stand with a relatively uniform spacing and tree
age, but there is almost no regular management. The trunk of M. glyptostroboides is tall and
straight, with a steeple-shaped crown when viewed from the side and a rounded crown
when viewed from the top [25]. Thus, it is a tree species whose height can be relatively
easily measured in situ. Therefore, the study site is very appropriate for studying the effects
of different illumination conditions on tree height extraction using a UAV-borne LiDAR.
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Figure 1. (a) The location of the study site; (b) the cross-flight trajectory of UAV-borne LiDAR; (c) the
point cloud rendered in elevation (top view).

2.2. Data
2.2.1. Point Clouds Scanned under Different Illumination Conditions

As shown in Figure 2a, the UAV-borne LiDAR system used in the point scanning was
a Feima D2000 (FEIMA Robotics, Shenzhen, China) equipped with a Feima D-LiDAR2000
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(FEIMA Robotics, Shenzhen, China). The Feima D2000 is a four-rotor drone with a payload
of up to 700 g, and is positioned using an onboard RTK (real-time kinematic) GNSS (Global
Navigation Satellite System). The D-LiDAR2000 is a triple-echo laser scanner capable of
detecting three returns from a single laser pulse, including those from the ground, tree
trunks, and vegetation canopies. The detailed technical parameters of this LiDAR are listed
in Table 1.
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Figure 2. (a) Feima D2000 equipped with D-LiDAR2000; (b) DJI Phantom 4 Pro with FC6310;
(c) RTS-882 total station; (d) Huace RTK GNSS; (e) locations of sample trees for in situ measurement.

Table 1. Technical parameters of Feima D-LiDAR2000.

Parameter Value/Description

Platform Feima D-2000
Laser class class 1

Ranging mode TOF (Time of Flight)
Wavelength 905 nm

Return number 3 returns
Return intensity 8 bit

Ranging accuracy ±2 cm (50 m)
Point frequency 240 kpts/s

Horizontal FOV (Field of View) 70.4◦

Vertical FOV 4.5◦/77.2◦

Under natural conditions, the variation in light intensity during a day is generally
caused by the different altitude angles of the sun at different times. Additionally, at the
same solar altitude angle, different cloud covers have different blocking effects on sunlight,
which can also cause changes in illumination intensity. In this study, to assess the effects
of different illumination conditions (solar altitude angle and cloud cover) on tree height
extraction, there were eight UAV-based scanning operations for the study site carried out
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at four time points (sunrise, noon, sunset, and night) over two consecutive days (sunny
and overcast). During the two days, the other weather conditions in our experiments were
relatively consistent, including no rainfall, low wind speed (no tree shaking), insensible
change in humidity, and so forth. The specific information of the eight UAV-borne LiDAR
scanning measurements is listed in Table 2.

Table 2. Specific information of the eight UAV LiDAR scanning measurements.

Description

Date 10 September 2023 11 September 2023

Atmospheric condition Sunny Overcast

Time points Sunrise (6:00); noon (12:00); sunset (18:00); night (21:00)

As indicated in Figure 1b, a cross-flight route was adopted in the eight UAV LiDAR
scanning operations. To ensure consistent and uniform laser scanning across the entire
study site, the side overlap was set as 60% and the flight speed was 5 m/s. Furthermore,
the relative flight altitude was set as 90 m, guaranteeing a point density of approximately
2000 points/m2. After flight operations, eight raw point clouds scanned under different
illuminations were obtained.

Subsequently, the raw point cloud data underwent pipeline processing, including
utilizing Inertial Explorer 8.70 (https://novatel.com/products/, accessed on 2 January
2024) for waypoint post-processing and the Data Processing Toolbox of Feima UAVmanager
for point cloud resolving (https://www.feimarobotics.com/en/productDetailManager,
accessed on 2 January 2024). The resulting point cloud data were stored in the LAS format,
with a coordinate system of WGS84/UTM Zone 48N.

2.2.2. In Situ Measured Tree Heights

In order to facilitate the identification and localization of the sample trees, a DJI
Phantom 4 pro (DJ-Innovations, Shenzhen, China) (Figure 2b) equipped with a Sony Exmor
R CMOS sensor (Sony Group, Beijing, China) was used to capture RGB images of the study
site on 10 September 2023. The flight altitude for the drone was set as 90 m, guaranteeing a
ground sampling distance (GSD) of approximately 0.05 m. The heading overlap and lateral
overlap were set to 90% and 70%, respectively. Based on the overlapping RGB images, the
orthoimage (Figure 2e) of the study site was produced using the Pix4Dmapper Version
4.5.6 (https://www.pix4d.com.cn/pix4dmapper, accessed on 2 January 2024). It shared
the same coordinate system as that of the LiDAR data acquired in Section 2.2.1.

To improve the accuracy of in situ measured tree heights, only those trees with fewer
occlusions and easy measurement in the study site were selected as samples. As a result,
there were 32 M. glyptostroboides purposely selected as sample trees. As indicated in
Figure 2e, the spatial locations and number identifiers of those sample trees were separately
labeled. The height of each sample tree was measured using a RTS-882 total station
(Figure 2c) from multiple directions or angles [26], whose mean value was used as ground
truth for later accuracy assessment. A RTK GNSS system (Figure 2d) was used to precisely
obtain the coordinates of the sample trees, matching the positions on the orthoimage. The
in situ measured heights of sample trees are listed in Table 3.

Table 3. The in situ measured heights of sample trees.

Tree ID Height (m) Tree ID Height (m) Tree ID Height (m)

1 14.869 12 18.240 23 17.004
2 14.647 13 17.766 24 17.540
3 14.654 14 13.750 25 12.164
4 16.556 15 16.463 26 16.305
5 18.961 16 15.753 27 17.035

https://novatel.com/products/
https://www.feimarobotics.com/en/productDetailManager
https://www.pix4d.com.cn/pix4dmapper
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Table 3. Cont.

Tree ID Height (m) Tree ID Height (m) Tree ID Height (m)

6 11.563 17 14.839 28 12.728
7 14.295 18 15.701 29 11.981
8 10.627 19 16.753 30 12.108
9 14.619 20 19.739 31 8.652
10 8.793 21 18.522 32 14.503
11 17.476 22 15.267

3. Methods

To assess the illumination effects, the individual heights of sample trees were sepa-
rately extracted from the eight point clouds scanned by UAV-borne LiDAR. The specific
procedures are as follows. Firstly, the ground and aboveground tree points were separated
via classifying the raw point clouds. Secondly, the digital elevation model (DEM) and digi-
tal surface model (DSM) were produced by rasterizing the ground points and non-ground
points, respectively. Thirdly, the canopy height model (CHM) was acquired by subtracting
the DEM from the corresponding DSM. Fourthly, the seed points representing the highest
points of individual trees were generated by using Gaussian filtering. Based on the seed
points, the CHM was segmented into individual trees. Fifthly, the crown boundaries of
individual trees were extracted, and the tree heights were determined as the highest points
falling into the boundaries. Finally, the accuracies of the extracted individual heights of
sample trees under different illumination conditions were assessed against the measured
values in terms of various metrics. The detailed workflow of this study is illustrated in
Figure 3.
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3.1. Point Cloud Classification

Accurate classification of ground points and aboveground forest points from the raw
points clouds is the prerequisite for extracting individual heights of M. glyptostroboides.
Before classification, the point denoising should be first performed. The points outside
the target scanning area have significant errors and need to be removed in advance. Sub-
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sequently, the noise points that are caused by the device or external factors are filtered
out from the remaining points. In this study, the improved progressive TIN densification
algorithm [27] was used to separate ground points. The point cloud was first rasterized
for morphological operations and local minimums were found as potential ground seed
points. Then, a TIN-based model was constructed using the obtained accurate ground seed
points, and iteratively densified according to some criteria on iterative angles and distance.
As a result, the points that make up the final TIN were considered as ground points, while
the remaining points were vegetation points.

3.2. CHM Creation

The CHM is the surface model which reflects the distance between the vegetation
surface and the ground [28]. It can be utilized to infer tree parameters such as crown width
and height. In this study, the CHM was created using Equation (1) below.

CHM = DSM − DEM (1)

The DSM generally includes the elevation information of buildings, trees, and other
objects above the ground, and is produced from the classified vegetation points. The DEM
reflects the true undulations of the ground, and is produced from the classified ground
points. Since both the DSM and DEM are in raster format, their productions involve the
step of rasterization. As the cell size impacts the extraction of the crown boundaries and
seed points for individual tree segmentation, the rasterized DSM and DEM should have
the same spatial resolution, which were determined by repeated experiments [29].

3.3. Individual Tree Segmentation and Height Extraction

The k-means clustering algorithm is used to segment individual trees from the point
cloud [30]. The first step of the segmentation process was the seed point extraction from
the CHM. Gaussian filtering was employed to smooth the CHM to remove noise while
preserving essential details. The local maxima filter [31] was utilized to search for the points
with the local maximum heights as starting positions (seed points). The second step of the
cluster analysis starts off these locations in an iteration process. Each iteration consists of
reassigning points to their nearest cluster centroid all at once, which is followed by a recal-
culation of the cluster centroids. Then, points are individually reassigned if that reduces
the sum of distances and the cluster centroids are recomputed after each assignment.

The tree height commonly refers to the distance from the top of the tree crown to the
ground. The crown boundaries of segmented individual trees are the convex hull polygons
generated by projecting the belonging points onto the ground. Then, the individual tree
heights are determined as the highest points falling into the boundaries.

The paired samples t-test was employed to assess the statistical significance of differ-
ences between every two groups of field-measured and eight LiDAR-derived tree heights.
This test is particularly suitable for datasets involving measurements taken under different
conditions [32], as seen with the tree heights extracted under various illumination condi-
tions in this study. It compares the means of two groups of field-measured and -extracted
tree heights to determine if a statistically significant difference exists between them. A
p-value less than 0.05 indicates a statistically significant difference between two datasets.

3.4. Metrics for Accuracy Assessment

The individual tree heights of sample trees extracted from point clouds acquired
under varying illumination conditions were subjected to comparison with in situ measured
values. The metrics, including R2 (coefficient of determination), Bias, root mean square
error (RMSE), and relative RMSE (rRMSE) [33], were calculated using Equations (2)–(5),
respectively. According to the resulting metric values, the impacts of various illuminations
on individual tree height extraction using UAV-borne LiDAR were evaluated.
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R2 =

 ∑ (x − x)(y − y)√
∑(x − x)2∑(y − y)2

2

(2)

Bias = ∑
x − y

n
(3)

RMSE =

√
∑

(x − y)2

n
(4)

rRMSE =
RMSE

x
× 100% (5)

where y represents extracted individual tree heights; y is the average extracted tree height;
x denotes in situ measured tree heights; x is the average measured tree height; and n is the
number of sample trees.

4. Results
4.1. Classified Point Clouds

The eight point clouds scanned by UAV LiDAR were separately classified into the ground
and aboveground vegetation points using the software LiDAR360 V6.0 (https://www.lidar3
60.com/, accessed on 2 January 2024). Taking the point cloud acquired during the sunny
night as an example, we analyzed the characteristics of the separated point cloud. As
the scanning operations occurred in summer, the understory weeds were lush, partially
obstructing the laser pulses directed towards the ground. Nevertheless, as shown in
Figure 4a, the distribution of the resulting ground points was relatively uniform without
large gaps. Hence, it provided a reliable representation of the terrain surface and sufficient
for subsequent DEM generation. Simultaneously, the crown morphological characteristics
of M. glyptostroboides can be clearly observed in Figure 4b, and were beneficial for the
subsequent production of high-precision DSM of the study area.
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4.2. Created CHM

Using the classified point clouds in the sunny night as an example, the process of
generating the CHM of the study site is illustrated in Figure 5. Several candidate spatial
resolutions (0.1 m, 0.3 m, and 0.5 m) were sequentially tested, and 0.3 m was determined as
the optimum one. Then, the ground points were interpolated and rasterized into an DEM
image with the optimum spatial resolution (Figure 5a). Meanwhile, the DSM in Figure 5b
was generated by interpolating and rasterizing aboveground vegetation points. It shared
the same spatial resolution with the DEM. Based on the DEM and DSM, the resulting CHM
is indicated in Figure 5c. Notably, the maximum height recorded for an individual tree in
the study site was 21.871 m. With greater growth space and more abundant sunlight, the
trees located on the edges grew much lusher and had higher heights.

https://www.lidar360.com/
https://www.lidar360.com/
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4.3. Extracted Individual Trees and Heights

Through empiric experiments, the optimal parameters of Gaussian filtering to those
CHMs were determined to be a sigma value of 11 and a convolution kernel of 9. As shown
in Figure 6, more than 200 seed points were initially generated from the CHM acquired
during the sunny night. Subsequently, through on-site verification and manual editing,
the number of retained seed points in the CHM was reduced to 195. This process was
crucial for eliminating seed points incorrectly extracted due to factors such as shading or
fluctuating terrain. Thus, each retained seed point corresponded to the top of an individual
tree that truly existed.
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Based on the retained seed points, the individual trees in the sunny night were seg-
mented. As observed in Figure 7a, the points belonging to the individual trees were
rendered in various colors for the purpose of easy distinguishment. Then, as indicated in
Figure 7b, the corresponding crown boundaries of individual trees were obtained.

The crown boundaries were subsequently superimposed on the CHM to extract indi-
vidual tree heights. In the same way, the heights of 195 trees under different illumination
conditions were extracted and are shown in Figure 8, exhibiting similar height range and
spatial distribution on the whole. The statistics, including average tree height and standard
deviation of tree heights under different illumination conditions, are listed in Table 4. The
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average tree heights were all around 13 m, with internal trees typically below 13.5 m in
height and edge trees above 13.5 m. Several trees as high as 17 m were also located in the
edge area. The standard deviations of tree heights were all around 2.50 m.
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sunset; (h) overcast night.

The results of the paired-samples t-test between every two groups of field-measured
and eight LiDAR-derived tree heights are shown in Figure 9. The number 1 indicates the
rejection of the null hypothesis, meaning that there was a significant difference (p < 0.05) ex-
isting between the two group of tree heights, while 0 was the opposite (p > 0.05). In Figure 9,
it can be seen that there were significant differences in most pairs of tree height groups
excluding self-comparisons, including field measurement–sunny night, field measurement–
overcast night, sunny sunrise–overcast sunrise, sunny sunset–overcast sunset, and so forth.
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For the sunny day condition, there were more significant differences in pair groups that
included time points of noon or night than those that included sunrise or sunset. For the
overcast day, more non-significant differences were achieved due to slight differences in illu-
mination intensity at different time points except overcast night. For the comparison of the
two days, more significant differences in pair groups were attained. Also, there were some
pair groups that did not show significant differences, such as field measurement–sunny sun-
set, field measurement–sunny sunset, sunny sunrise–sunny sunset, sunny noon–overcast
noon, and sunny night–overcast night. The reason was possibly that the illumination
intensities at the two time points were very close. For instance, due to the lack of solar
illumination on both sunny and overcast nights, the impacts of illuminations on tree height
extraction were minimized, and the accuracies were very close.

Table 4. The statistics of extracted tree heights under various illumination conditions.

Atmospheric
Condition Time Point Average Tree Height

(m)
Standard Deviation
of Tree Height (m)

Sunny

sunrise 12.97 2.49
noon 12.80 2.56

sunset 12.93 2.44
night 13.09 2.56

Overcast

sunrise 12.99 2.47
noon 12.83 2.58

sunset 13.04 2.49
night 13.10 2.53
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4.4. Accuracy Assessment

By matching the tree positions in Figures 2e and 7b, it was confirmed that all 32 sample
trees were correctly segmented from the point cloud acquired during the sunny night.
Similarly, in the point clouds obtained at the other seven time points, all sample trees were
properly segmented as well. Thus, the accuracies of the extracted tree heights of those
sample trees (Figure 8) under varying illumination conditions were separately assessed
against the corresponding in situ measured values listed in Table 3. As shown in Figure 10,
the R2s of the extracted tree heights at eight time points ranged from 0.9537 to 0.9830, which
were a good fit with the measured tree height; the Biases had absolute values ranging
from 0.05 to 0.3 m; the RMSEs were all less than 0.6 m; and the rRMSEs were all below 4%.
These indicated that individual tree heights extracted from point cloud data were all of
high accuracy.
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The slight differences in these accuracy metrics under different illumination conditions
can be more clearly observed in Figure 11. As shown in Figure 11a, the R2 values of noon
and night had the minimum and maximum values among the four time points in both
sunny and overcast days, respectively. Moreover, the R2 values of sunrise, noon, and sunset
in the overcast day were commonly larger than those in the sunny day, while the R2 of night
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in the two days were very close. As for the curves of RMSE and rRMSE in Figure 11c,d,
they shared a similar pattern with the minimum and maximum values at night and noon,
respectively. Except for the RMSE and rRMSE of night in the two days having nearly the
same value, their values of the other three time points in the overcast day were generally
smaller than those in the sunny day. These indicated that the accuracy of individual tree
height extraction had an inverse correlation with the intensity of illumination. As for Bias,
although there was a slight abnormality at sunset, it did not affect this conclusion. This
abnormality might be caused by human factors during the in situ tree height measurement
or equipment error while scanning point clouds.
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Although individual tree heights extracted from point cloud data were of high ac-
curacy, they were still affected by illumination conditions. To obtain more accurate tree
heights for forestry applications, it is best to acquire point clouds using UAV-borne LiDAR
at night. If such a task has to be carried out during the day, it is better not to do so at noon
when the illumination is generally strongest.

5. Discussion
5.1. How Does Solar Radiation Impact on the Ranging Accuracy of UAV LiDAR?

Solar radiation has negative impacts on the accuracies of individual tree height ex-
traction by forming solar background noise (SBN) which restricts the signal-to-noise ratio
(SNR) of the detector of LiDAR. Commonly, the manufacturers of LiDARs install a narrow
band-pass filter [34] to isolate SBN at wavelengths close to that of the LiDAR receiving
channel. This filter significantly reduces the impacts of the total SBN on LiDAR. However,
the SBN with the same wavelength as that of the LiDAR still exists. Generally, the remain-
ing SBN is much weaker than the returns of a laser pulse, so the LiDAR can still achieve
high-precision measurement of tree heights. This part of SBN has a positive correlation
with the intensity of solar radiation. As the interference caused by SBN intensifies, the
accuracy of tree height measurement will accordingly decrease to a slight degree.

Although the laser pulse/returns and the sunlight are two independent light sources,
direct interference between them does exist during propagation [35], especially the spec-
trum range of solar radiation covers the wavelength of the laser pulse/returns. However,
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the sunlight coherence is very low. Its coherence length is up to 2 µm (micrometers) and
the coherence time is on the order of a few fs (femtoseconds) only. Therefore, the impact of
sunlight on the propagation of the laser pulse/returns is relatively trivial.

In addition, solar radiation might indirectly affect the intensity of laser pulse/returns
by influencing environmental factors such as air humidity. Generally, the moisture in
the air has a certain absorption effect on laser pulses in the near-infrared band [36]. The
absorption effect increases with the increment of air humidity. This is the reason why laser
scanning is not suitable to carry out on days with rain or thick fog (there is also strong
scattering). Typically, there exists a slight negative correlation between air humidity and
solar radiation. During the two consecutive days of point cloud collection, the air humidity
during the cloudy day was relatively higher than that during the sunny day; the diurnal
air humidity was relatively highest at sunrise, and lowest at noon [37]. Nevertheless, the
air humidity did not fluctuate much over the two days, and the intensity variations of laser
pulse/returns caused by it were relatively small.

In a word, the SBN caused by solar radiation was the dominant factor affecting the
height measurement of individual trees using UAV LiDAR in our experiments. The direct
interference with laser pulse/returns made by sunlight during transmission was negligible.
The impact of air humidity depends on the base value and the magnitude of the variation
induced by solar radiation. In our experiments, the air humidity was relatively low and
consistent and not the major factor causing the differences in tree height measurement.

5.2. Other Factors Affecting the Ranging Accuracy of UAV LiDAR

Besides illumination conditions, there are still other factors affecting the ranging
accuracy of a LiDAR mounted on the UAV, including the technical parameters of the sensor,
settings in flight operation, characteristics of forest stand, and so forth.

As one of the most important technical parameters of a LiDAR, the laser return number
determines how many returns a laser scanner can detect from a single laser pulse. Each
laser return is reflected by different object surfaces in a stand, including the top of the tree
crown, branches in the middle layer, understory vegetation, and the ground. Therefore,
the number of laser returns is theoretically proportional to the complexity of detectable
forest structures [18]. Also, the multiple returns greatly improve the chances of obtaining
ground returns, and will increase the effective point density over vegetated areas [38]. More
effective ground points will improve the accuracy of the resulting DEM [39], which will in
turn improve the accuracy of tree height extraction according to Equation (1). Nevertheless,
with the increment of laser return number, the structural complexity, weight, and cost
of a LiDAR also sharply increase. For multi-rotor UAV/drone with limited payload, it
has to balance the laser return number and aforementioned costs. At present, using three
laser returns is the most cost-effective configuration for UAV LiDAR, including Feima
D-LiDAR2000 used in this study and DJI Zenmuse L1 (DJ-Innovations, Shenzhen, China)
(https://www.dji.com/, accessed on 2 January 2024). The impacts of different illumination
conditions on the accuracy of individual tree height extraction using UAV-borne LiDARs
with various laser return numbers (5, 7, or more) require further research.

Flight altitude is one of the most important settings for UAV flight operation. With
the increment of flight altitude, the lengths of propagation paths of a laser pulse and their
returns accordingly increase, implying an aggravated attenuation by the atmosphere. At
the same time, it also adds the negative impact of solar radiation on laser pulses and their
returns, ultimately affecting the ranging accuracy. As listed in Table 1, the ranging accuracy
of ±2 cm is only ensured at the flight altitude of 50 m. In our study, to avoid colliding
with a nearby building that was 80 m high, the flight altitude of the UAV was set to 90 m.
This also reduced the ranging accuracy to a certain extent. For a large forest distributed
in a mountainous area, it is beneficial to maintain relative flight altitude via adopting a
terrain-following mode, thereby ensuring consistency in ranging accuracy [40]. In addition,
the density of the resulting point cloud will be enhanced by adding the overlap of flight
routes, which is also beneficial to improve the accuracy of individual tree height extraction.

https://www.dji.com/
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The characteristics of the target forest stand also have a significant impact on the
accuracy of individual tree height extraction [41]. In terms of tree species, evergreen and
deciduous trees exhibit different accuracy in tree height extraction during leaf-off and
leaf-on seasons; accuracy differences in extracting individual heights are also observed
for coniferous and broad-leaved trees; and adult trees with higher heights are superior to
those with shorter heights in tree height extraction. In terms of stand structure, a stand
with a single tree species, similar tree ages, and relatively uniform tree spacing is conducive
to accurate extraction of individual tree heights [42]. As stated in Section 2.1, the study
object of our research was a planted stand with the dominant species of M. glyptostroboides,
relatively uniform age and spacing. With a single, tall, and straight trunk, M. glyptostroboides
is very beneficial for precisely extracting individual tree heights. In contrast, natural forests,
especially those in tropical and subtropical regions, are often composed of multiple tree
species with varying ages, high tree density, and complex vertical spatial structures, which
pose great challenges to extracting the heights of individual trees [43].

In fact, the factors affecting the range accuracy of UAV LiDAR are more than those
studied and discussed in this paper. In a natural environment, it is exceedingly challenging
to achieve complete consistency in experimental conditions. While the effects of a certain
factor on individual tree height extraction are studied, the relative consistency of other
factors should be maintained.

5.3. Limitations and Potential Improvements

Although we preliminarily evaluated the effects of various illumination conditions
(solar altitude angle and cloud cover) on tree height extraction using UAV LiDAR, there
were still some limitations in our study. For instance, without measuring illumination
intensities at those time points, only the qualitative relationship between light intensity and
accuracy of tree height extraction was obtained. For the sake of safety, the flight altitude
of the UAV exceeded the optimal ranging accuracy scope of the LiDAR. The insufficient
number and distribution of field-measured sample trees might result in a lack of statistical
independence. The magnitudes of the negative effects of the SBN on ranging accuracy were
not determined.

Nevertheless, some measures could be taken to further improve the reliability of the
studies on this topic in the future, such as choosing a larger area of planted forest as the
study object, and ensuring no high mountains or buildings are present in the surrounding
area. In this way, enough sample trees can be selected to measure heights in situ for
verification and statistical analysis, and the UAV can conduct point scanning at the altitude
within the optimal ranging scope of the LiDAR. The photometer is used to measure the
illumination intensity while LiDAR scanning so that the quantitative relationship between
illumination intensity and the accuracy of extracted tree heights can be established.

6. Conclusions

Although tree heights extracted from point cloud data are of high accuracy, they
are still affected by weather and environmental factors. In this study, taking a planted
coniferous stand of M. glyptostroboides as an example, we preliminarily assessed the effects
of various illumination conditions (solar altitude angle and cloud cover) on individual
tree height extraction using UAV-borne LiDAR. The major conclusions we drew were
as follows:

• Individual tree heights extracted from the eight point clouds scanned by UAV LiDAR
under various illumination conditions were of high accuracy. There were statistically
significant differences in most pairs of tree height groups. The R2s were all above 0.95;
the Biases had absolute values ranging from 0.05 to 0.3 m; the RMSEs were all less
than 0.6 m; and the rRMSEs were all below 4%.

• The accuracy of individual tree height extraction had an inverse correlation with the
intensity of illumination. The R2 and RMSEs of tree heights obtained in the overcast
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day were commonly better than those in the sunny day; the R2 and RMSEs at night
were superior among all time points, while those at noon were poorest.

• To obtain more accurate tree heights for forestry applications, it is best to acquire point
cloud using UAV LiDAR at night. If such a task has to be carried out during the day, it
is better not to do so at noon.

Nevertheless, our study was just a first attempt in this topic, and the above conclusions
were achieved under the conditions of our simple experiments, including tree species, site
conditions, LiDAR sensor, point processing procedure, and so forth. There are still other
factors affecting the accuracy of individual tree height extraction, such as the interferences
of understory vegetation, the different growth patterns of various tree species, and the
differences in the anti-interfering functionality in various laser devices. Moreover, only
qualitative divisions were made for lighting conditions in terms of solar altitude angles
and cloud cover in this study, and the quantitative relationship between lighting intensity
and the accuracy of tree height extraction is required for further study. In practical applica-
tions, one could choose the appropriate illumination conditions for LiDAR data collection
depending on the purpose and accuracy requirements. In future studies, more rigorous
and diverse experiments for tree height extraction using UAV-borne LiDAR need to be
carried out. The further reduction in the potential errors of field-measured tree heights
will be beneficial for the statistical significance tests. The effects of other factors such as
different laser return numbers, various flight altitudes, and different tree species and stand
structures on the accuracy of individual tree height extraction should be further evaluated.
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