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Abstract: Timely and accurate information on tree species is of great importance for the sustainable
management of natural resources, forest inventory, biodiversity detection, and carbon stock calcu-
lation. The advancement of remote sensing technology and artificial intelligence has facilitated the
acquisition and analysis of remote sensing data, resulting in more precise and effective classification
of tree species. A review of the remote sensing data and deep learning tree species classification
methods is lacking in its analysis of unimodal and multimodal remote sensing data and classification
methods in this field. To address this gap, we search for major trends in remote sensing data and tree
species classification methods, provide a detailed overview of classic deep learning-based methods
for tree species classification, and discuss some limitations of tree species classification.

Keywords: tree species classification; unimodal remote sensing data; multimodal remote sensing
data; classic deep learning-based methods

1. Introduction and Review Approach
1.1. Significance of Tree Species Information

Timely and accurate information on the spatial distribution of tree species (TS) has
immeasurable value. In forest management, information on TS classification is required
for forest inventory [1], biodiversity assessment and monitoring [2], invasive species moni-
toring [3], and forest sustainable management. In ecology, large-scale spatial information
on tree species improves the understanding of the ecology of tree species [4,5]. In the
environmental field, tree species information facilitates the estimation of wildlife habitat [6]
and forest insect abundance [7,8].

In recent decades, remote sensing technology has made great progress in spatial and
spectral resolution, and a variety of remote sensing data has made it possible to classify TS.
The interest of practitioners in remote sensing-derived tree species information is reflected
in the survey conducted by Felbermeier et al. [9]. They analyzed 347 questionnaires sent
to professionals working in the forestry sector. Two-thirds of the interviewees reported
deficiencies in forest information, and 90% of them expected improvements through the
application of remote sensing. When asked which parameters should be addressed by
remote sensing applications, tree species were ranked first out of 63 parameters [10].
Additionally, in the sustainable management of urban trees, remote sensing methods have
been an effective alternative to field surveys [11].

1.2. Objectives

This review of tree species classification includes species groups, dominant species,
stands, and individual trees, but does not include forest type. The main objectives of this
review on TS classification are as follows:
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1. Analysis of the literature on the classification of tree species by remote sensing in the
past 25 years and quantifying general trends.

2. A statistical analysis of the unimodal and multimodal remote sensing data in TS
classification is conducted by reading and analyzing each paper. Subsequently, the
remote sensing data trends are studied.

3. Provide a detailed overview of the classic deep learning-based methods that solely
utilize convolutional neural networks (CNN) for classifying tree species.

4. Identification of research gaps in TS classification and description of future trends in
TS classification using remote sensing data.

1.3. Review Approach

In this review, we browsed the literature from Web of Science (WOS) Core Collection
and Google Scholar databases for the last 35 years, in the period of January 1988–June 2023,
using the following keywords: remote sensing OR LiDAR OR UAV OR tree species OR
clsssifi* OR map* OR indenti* OR discriminat* OR detect*. Given the fact that there were
fewer qualified papers published in 1988–1998, this review is focused on papers published
after 1998, especially after 2013. The studies that were found to satisfy the above conditional
search were then further filtered based on the following criteria:

1. TS classification objects must be group tree species OR main tree species OR dominant
tree species OR stand tree species OR individual tree.

2. The research must report on the corresponding specific remote sensing data.
3. The research must report the tree species classification methods.
4. The research must report the assessment of the classification result.

A total of 300 papers met the review criteria for this study. Each paper was read and
analyzed manually. The methods and data with the highest classification accuracy were
recorded and subsequently summarized and analyzed for general trends. Additionally,
classic deep learning-based methods for TS classification methods were recorded and
analyzed with summary statistics.

The remainder of the study is organized as follows: Section 2 analyzes the literature
on TS classification by remote sensing in the past 25 years and the quantification of general
trends. Section 3 provides a detailed overview of classic deep learning-based methods for
tree species classification. Limitations and future work in TS classification are discussed in
Section 4, and in Section 5 conclusions are drawn.

2. Trends in Tree Species Classification
2.1. Remote Sensing Data for TS Classification

The four primary categories of remote sensing data utilized for the TS classification
include passive optical remote sensing data, active remote sensing data, unmanned aerial
vehicle (UAV) data, and auxiliary data. Passive optical remote sensing data offer a valu-
able means of distinguishing between tree species by measuring the spectral response of
directional electromagnetic radiation emitted by the sun and reflected by the canopy (and
other surfaces) in sensor-specific wavelength regions [10]. Active remote sensing sensors
emit energy pulses and record the return time and amplitude to derive information about
the TS structure. Fassnacht et al. [10] and Ruiliang Pu [12] provide a detailed overview
of the four primary categories of remote sensing data. This article offers only a cursory
overview of the remote sensing data for TS classification. Passive optical data encompass
multispectral images (MSIs), very high spatial resolution (VHR) images, and hyperspectral
images (HSIs). Active data include light detection and ranging (LiDAR) and synthetic
aperture radar (SAR). The primary UAV data are LiDAR [13–15], HIS [16,17], MSI [7,18],
and the red, green, and blue image (RGB) [19–22]. Auxiliary data encompass a range of
variables, including elevation, slope, slope direction, temperature, and precipitation.

Passive optical remote sensing measures the spectral response of the tree canopy to
provide useful information for TS classification [23,24]. This information can be obtained
from the moderate spatial resolution satellite MSI sensors, including Advanced Space-
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borne Thermal Emission and Reflection Radiometer (ASTER), Landsat-5 TM, Landsat-7
ETM+, Landsat-8 OLI/TIRS, Landsat-9 OLI-2/TIRS-2, Sentinel-2A MSI, Compact Airborne
Spectrographic Imager (CASI), Advanced Himawari Imager (AHI), and Satellite Pour
l’Observation de la Terre High-Resolution Visible (SPOT) series [25–29]. It is not possible
to achieve individual TS classification using single sensor data at such resolutions, and
MSI sensors achieve TS classification by coupling with other sensor data. MSI sensors have
an auxiliary role in the improvement of individual TS classification accuracy [12]. Since
2000, data from VHR commercial satellite sensors have had the potential to create digital
base maps [30]. Furthermore, images acquired by VHR sensors have enabled the success-
ful classification of tree species [31–35]. Typical VHR satellite sensors include GeoEye-1,
Gaofen-2, IKONOS, Quickbird, Plé-aides, RapidEye, and WorldView-2/3/4 (WV2/3/4).
The most common HSI sensors used for TS classification include airborne sensors (AVIRIS,
CASI, HYDICE, and HyMAP) and satellite sensors (Hyperion, Gaofen-5, and CHRIS). The
researchers used the subtle spectral information of HSI to successfully classify tree species.
Due to the small number of satellite HSI sensors in operation, only a few satellite HSI
sensor data are currently available to classify TS [36], of which airborne HSI data are more
useful and important for the classification of tree species [37–44].

Active remote sensing LiDAR data measure the reflected energy from the target
surface and record features of the reflected spectrum, such as amplitude, frequency, and
phase, which allows for the extraction of tree structural parameters and vertical structural
properties [45]. LiDAR sensors calculate parameters such as tree height, forest density, and
leaf area index at the single wood and stand level from the recorded intensities [46–48],
which are mainly determined by the structural morphology of the tree foliage, so there
are differences in the parameters of different tree species, so LiDAR-derived information
allows for the classification of tree species [49–53]. But TS classification accuracy is limited.
LiDAR data are usually combined with passive optical remote sensing data [14,15,18,54–56],
and it has been shown that the combination of LiDAR data and passive optical remote
sensing data for TS classification can significantly improve accuracy [46,57], because passive
optical remote sensing data provide rich spectral, spatial, and textural information of tree
species, and LiDAR data provide a vertical profile and structural information, which
form a useful complement to each other and can more comprehensively describe the
characteristics of tree species and achieve better classification results. SAR is primarily
used to classify forest types because forest information by SAR relates mainly to canopy
structure and water content [58]. Alberto Udali et al. used the Sentinel-1 C-Band SAR data
in southern Sweden to classify TS, and yielded an overall accuracy (OA) of 0.66 [59]. Sasan
S. Saatchi and Eric Rignot acquired synthetic aperture radar (SAR) data during the Boreal
Ecosystem Atmospheric Study’s intensive field campaigns over the southern study area
near Prince Albert, Canada. They employed SAR images to classify the dominant forest
types present, including jack pine, black spruce, trembling aspen, clearing, open water,
and three categories of mixed strands, achieving a classification accuracy of greater than
90% [60]. Y W Kee et al. employed the L-band ALOS PALSAR-2 dataset and open-source
C-band Sentinel-1 SAR datasets to distinguish between oil palm trees and weeds [61].

UAV remote sensing systems are adaptable and can fly freely in unrestricted areas.
Additionally, they are affordable, devoid of cloud infrastructure, and capable of obtaining
data at a precise temporal, spatial, and spectral level [62,63]. UAV data can be used
to accurately classify tree species and even individual trees [22,64–72], as different data
provide different quantitative features for TS classification. UAV remote sensing systems
are limited in the application of large-scale TS classification due to short flight endurance
and unstable conditions such as high winds.

Ancillary data are mainly the topographic and meteorological information obtained,
such as elevation, slope, slope direction, temperature, and precipitation [73,74]. Shirazine-
jad employed multi-temporal Sentinel-2 and DEM data to classify ten tree species within the
Hyrcanian region of northern Iran. The results demonstrated that the incorporation of DEM
data enhanced classification accuracy by 3% in comparison to Sentinel-2 data alone [73].
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Qi et al. utilized Landsat data to delineate the distribution of bamboo forests in China. The
findings indicated that elevation facilitated the enhancement of the classification accuracy
of bamboo forests [74]. Fang et al. employed the Sentinel-2 imagery, SRTM elevation data,
and WorldClim bioclimatic data to classify 19 dominant tree species in Yunnan Province.
The resulting classification exhibited an OA of 72.03% and a Kappa coefficient of 0.69 [25].

2.2. Literature Trends in Remote Sensing Data

Multimodal remote sensing data are currently considered mainstream due to their
availability at low cost, and the emergence of multimodal deep learning methods for
image classification. In this paper, to study trends in tree species classification from the
perspective of remote sensing data use, we statistically analyze the literature on tree species
classification from a data-driven perspective.

Detailed statistical analyses were performed on the 300 papers. The number of studies
focusing on TS classification has increased constantly over the past 25 years (in Figure 1),
which indicates that TS classification is a hot topic in current research. This growth is closely
linked to the development of remote sensing technology and its corresponding computer
science and technology. Remote sensing technology has advanced significantly since
2010, particularly for UAV, hyperspectral data, and LiDAR data. Advances in computer
science and technology have brought about the evolution of classifiers for TS classification.
The employment of high-resolution spatial and spectral remote sensing data, along with
sophisticated classification algorithms, has resulted in further facilitation of TS classification
research. Figure 1 shows that there is no advantage in tree classification between unimodal
and multimodal remote sensing data.
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Figure 1. Number of papers published per five-year interval for unimodal and multimodal data, respectively.

A total of 208 papers were analyzed on the use of unimodal remote sensing data for tree
species classification over the last 25 years. Among them, four papers were published from
1 January 1998 to 1 January 2003, three of which used colored infrared aerial photographs
and one used MSI. Additionally, a total of 92 papers were analyzed on the use of multimodal
remote sensing data for tree species classification over the last 20 years. Multimodal data
tree species classification literature before 2003 was not found. Figure 2 shows the number
of papers per five-year interval for various modal data.
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Focusing on unimodal remote sensing data in Figure 2a, the most used unimodal
data are HIS. In the 2 January 2018 and 1 January 2023 time span, the main unimodal
data used for tree species classification were HIS (total of 28 cases), and RGB (24 cases).
Since 2018, deep learning algorithms have dominated digital image processing. These
algorithms rely on RGB images as input data, and the proliferation of drones has made it
easier to obtain small-scale RGB images of tree species. Consequently, a vast amount of
tree species classification literature on CNN and RGB has emerged within this timeframe.
In the 2 January 2013 and 1 January 2018 time span, the main unimodal data were LiDAR
(total of 16 cases) and HSI (total of 11 cases). In the 2 January 2008 and 1 January 2013
time span, the main unimodal data were LiDAR (seven cases), HIS (four cases), and VHR
(five cases). In the 2 January 2003 and 1 January 2008 time span, the main unimodal data
were HSI (four cases) and MSI (five cases). So, the main unimodal data for tree species
classification were HSI, LiDAR, RGB, and VHR.

Focusing on multimodal remote sensing data in Figure 2b, regardless of the time
frame, the most used multimodal data were HIS and LiDAR; in the 2 January 2018 and
1 January 2023 time span, the main multimodal data used for tree species classification
were HIS and LiDAR (total 26 cases), VHR and LiDAR (total 10 cases), and MSI and HSI
(total 6 cases). In the 2 January 2013 and 1 January 2018 time span, the main multimodal
data were HIS and LiDAR (total nine cases). In the 2 January 2008 and 1 January 2013 time
span, the main multimodal data were HIS and LiDAR (total five cases).

2.3. Methods for TS Classification

Firstly, the classification methods and corresponding data with the highest accuracy
rate for tree species classification in each paper were recorded. Thereafter, the classification
methods and corresponding data for tree species classification were statistically analyzed
according to a time period of every five years. Finally, the classification methods and
corresponding data for every five years were statistically displayed in a graph.

2.3.1. Classification Methods of Unimodal Remote Sensing Data

A total of 208 papers with unimodal data were statistically analyzed using the clas-
sification method that yielded the highest classification accuracy (Figure 3). A total of
13 papers, for which the corresponding unimodal data and classification methods yielded
a frequency of 1, were not included in Figure 3. This was due to the fact that they were
not statistically significant. In addition to the primary classifier depicted in Figure 3, the
remaining 30 papers employed a variety of other classifiers, including logistic regression
classifiers, linear discriminant analysis (LDA), maximum likelihood classifiers (MLC),
fractal geometry, and quantitative structure models, among others.
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Figure 3. Frequency of studies about the unimodal remote sensing data and their most efficient
classifier per five-year time interval. Abbreviations are HIS = hyperspectral image; VHR = Very
high (high) spatial resolution; LiDAR = Light detection and ranging; MSI = Multispectral image;
RGB = Red, Green, and Blue image; SAR = synthetic aperture radar; SVM = Support vector machine;
RF = Random forest; CNN = convolutional neural network; MLC = maximum likelihood classifiers;
LDA = linear discriminant analysis.

Focusing on unimodal remote sensing data and their most efficient classifier in Figure 3,
in the 2 January 2018 and 1 January 2023 time span, the main classifiers were CNN, SVM,
and RF. In the 2 January 2013 and 1 January 2018 time span, the main classifiers were RF
and SVM, In the 2 January 2008 and 1 January 2013 time span, the main classifier used
for optimal classification results was LDA. With the development of remote sensing and
computer science and technology, the main classification methods of unimodal remote
sensing were CNN, RF, and SVM.

2.3.2. Classification Methods of Multimodal Remote Sensing Data

A total of 92 papers with multimodal data were statistically analyzed using the classi-
fication method that produced the best results. The literature on tree species classification
using multimodal data prior to the year 2003 was not retrieved. Two papers, one using
HIS and LiDAR data and nearest neighbor rules classifier and another using MSI and SAR
data and Bayes rule classifier were published from 2 January 2003 to 1 January 2008. The
statistical analysis results of the multimodal data and the main classifiers from 2 January
2008 to 1 January 2023 are shown in Figure 4. In addition to the main classifier in Figure 4,
the remaining 12 papers used other classifiers such as spectrum angle mapper classifiers,
nearest neighbor classifiers, and so on.

Focusing on multimodal remote sensing data and their most efficient classifier in
Figure 4, in the 2 January 2018 and 1 January 2023 time span, the main classifiers were
CNN, SVM, and RF. In the 2 January 2008 and 1 January 2018 time span, the main classifiers
were SVM and RF. In all, the most used classification method was SVM, followed by RF
and CNN.
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2.4. Literature Trends in TS Classification Methods

Figures 3 and 4 present the trends of the TS classification methods. Currently, there
are two main types of methods, traditional machine learning methods and classic deep
learning-based methods. The former’s classifiers include RF, SVM, LDA, and MLC, among
others. The latter refers specifically to CNNs and excludes methods such as transformers.
Figure 5 depicts the tree classification process of these two methods.

Scales and categories for TS classification were determined based on a study of the
natural variability and tree species composition of the study area. Remote sensing data
for TS classification were collected and acquired based on data accessibility. The data
underwent preprocessing, including atmospheric and terrain correction, de-clouding, and
image inpainting. The tree samples were then labeled based on the complete ground
inventory data, as the tree species categories in the remotely sensed data were not easily
identifiable through visual interpretation alone.

The classification process for tree species using traditional machine learning methods
involves preprocessing, extracting and selecting features, classifying the species using
classifiers, and evaluating the results. The process of classic deep learning-based methods
involves preprocessing, and cutting the remote sensing image data with labels into a patch
cube, dividing the patch cube into a training set and a test set, using the data from the
training set to train the CNN, storing the parameters of the best classified CNN model, and
finally testing the network with the data from the test set to obtain the final TS classification
result. The main difference between these two methods is whether or not the feature
extraction is automated.

In Figure 6a, the study areas are categorized by size. Red dots represent areas larger
than 10,000 hectares, green rectangles represent areas between 1000 and 10,000 hectares,
blue triangles represent areas between 100 and 1000 hectares, and magenta hexagrams
represent areas smaller than 100 hectares. In Figure 6b, the size of study areas for traditional
machine learning methods is represented by green bubbles and classic deep learning-based
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methods are represented by orange bubbles. Meanwhile, a larger bubble indicates a larger
study area.
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Figure 6. The area size of the study site. (a) The study areas are categorized by size. (b) Size of the
study area for the two primary classification methods.

Figure 6 only statistically analyzes the literature that presents the area and lati-
tude/longitude range of the study area. In cases where multiple papers cover the same
study area, only one area is counted. Figure 6a indicates that tree classification studies are
typically conducted on a larger scale. Additionally, Figure 6b demonstrates that traditional
machine learning methods are utilized for tree classification in large study areas, while
classic deep learning-based methods are employed for tree classification in small study
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areas. It is worth noting that there are larger orange bubbles in Figure 6b, where the classic
deep learning-based methods are also beginning to be used for tree classification in large
study areas. A multi-sensor, multi-label dataset for tree species classification using CNN
was created by Steve Ahlswede et al. [75] using aerial images, Sentinel-1 images, and
Sentinel-2 images. The study area, which covers approximately 47,710 km2, is located in
the federal state of Lower Saxony, Germany. Xueliang Wang and Honge Ren [76] used HSI
from the HJ-1A satellite and MSI from the Sentinel-2 satellite to classify tree species using
CNN. The study was conducted in the Tahe Forestry Bureau, which is situated in the center
of the Daxing’an Mountains in the northwest of China’s Heilongjiang Province. The total
area covered by the study was 14,420 km2.

Fassnacht et al. [10] and Ruiliang Pu [12] provide a detailed overview of traditional
machine learning methods for TS classification. This thesis only covers classic deep learning-
based methods for TS classification.

3. Literature Review on Classic Deep Learning-Based Methods

In 2015, the article “Deep Learning” was published in Nature, in which LeCun Y and
others predicted that the future application of deep learning in images, video, audio, and
other aspects will break through [77], and deep learning algorithms based on a big data
platform is the direction of the future development of artificial intelligence, and also the
mainstream of modern artificial intelligence research. Image recognition is one of the
important research components of deep learning, and they predicted that research on
classic deep learning (convolutional neural network, CNN) applied to TS classification in
remote sensing images will be conducted more and more in 2018 and beyond.

The classic deep learning structure consists of a convolutional layer, a pooling layer,
and a fully connected layer, and the activation function (commonly used as Relu) is typ-
ically used after the convolutional layer. The basic structure is shown in Figure 7, the
convolutional layer and the pooling layer are used to extract TS features, and the fully
connected layer is used to classify TS. The whole classification process is an automatic
process, which is an end-to-end process, only the corresponding data of the input layer
need to be given, and features are automatically extracted from the network. It is more
time-consuming and labor-intensive to create the samples (labels).
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A total of 71 research papers were filtered. These papers focused on classic deep
learning-based methods for tree species classification. Seventy papers were published
between 2 January 2018 and 1 January 2023, highlighting the rapid development of deep
learning-based methods for TS classification, which is a relatively new field.
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3.1. Patch Size

After preprocessing the remote sensing data, the images must be divided into patches
of size m × n. These patches will form the CNN dataset, also known as the patch cube. The
size of the patches is the size of the CNN input image and is crucial for the classification
object, such as individual TS, dominant TS, and the design of the classification CNN
network structure. Out of all the literature, 62 papers provided a description of patch size,
while 9 papers did not mention the size of the input image (patch size) for the CNN. Table 1
shows some patch sizes used for various data.

Table 1. Patch sizes.

Data Patch Size

LiDAR and HSI 11 × 11
RGB and HSI 15 × 15
MSI and HSI 500 × 500

VHR 12 × 12, 15 × 15
MSI 64 × 64, 400 × 400, 500 × 500

HSI 3 × 3~15 × 15, 5 × 5~29 × 29, 9 × 9~21 × 21, 25 × 25, 27 × 27,
11 × 11, 33 × 33, 64 × 64

RGB 224 × 224 (22%), 256 × 256 (33%), 512 × 512 (22%), 56 × 56, 32 × 32,
128 × 128, 304 × 304

LiDAR 256, 150, 128, 512, 1024, 2048, 4096, 8192, 3072, 5120, 6144, 7168, 8192
(sampling points)

In Table 1, bold patch size indicates a higher frequency of occurrence in the literature,
and “3 × 3~15 × 15” means that patch size was tested from 3 × 3 to 15 × 15 in Step 2.

After analyzing and summarizing the literature on patch size, we concluded that there
are five ways to introduce patch size. (1) Patch size is the same as the input image size of
the CNN model itself in some papers, such as 224 × 224, and 227 × 227. (2) The optimal
patch size for classification results is given in some papers, while other patch sizes used for
comparison are not mentioned. (3) Some papers used multiple patch sizes without final
analytical interpretation. (4) In three research papers, a variety of patch sizes were tried
and some analytical interpretations were made. Long Chen et al. [42] used prototypical
networks and HSI data to classify TS. They experimented with 3 × 3~31 × 31 patch sizes
and found that under the same conditions, a patch size of 17 × 17 resulted in significantly
improved classification accuracy. This suggests that the spatial and channel feature extrac-
tion of prototypical networks for this patch size meets the requirements for high-precision
classification. As patch size increases, more noise may be introduced, potentially causing
fluctuations in classification accuracy. Janne Mäyrä et al. [54] utilized a 3D CNN network
and HSI data to classify individual TS. The patch sizes used were 9 × 9, 13 × 13, 17 × 17,
and 21 × 21 (square patches with diameters of 4, 6, 8, and 10 m, respectively). The results
showed that the 9 × 9 patch size had the highest producer accuracy of 0.84. The classifi-
cation accuracy was not significantly affected by the different patch sizes throughout the
experiment. The paper demonstrates that larger image patches contain multiple trees of
different species. Ying Sun et al. [78] utilized RGB to classify individual TS, and demon-
strated the best performance for TS classification. RGB and CHM and RGB and VHR were
also utilized but did not perform as well. The patch sizes used were 32 × 32, 48 × 48, and
64 × 64, with ResNet50 performing best in the 64 × 64 patch size. The study concluded
that larger patch sizes are more effective in deep learning-based methods, while smaller
patch sizes lead to higher overall accuracy in traditional machine learning methods. When
using traditional machine learning methods, larger patch sizes may mix other information
and influence the features of the tree species if the mean feature value was used. (5) Six
research papers provided information on patch size and its corresponding spatial resolution
(Table 2).



Forests 2024, 15, 852 11 of 23

Table 2. Patch size and its corresponding spatial resolution.

Author PublishedYear Data Patch Size Spatial
Resolution

Classification
Object Accuracy

Tao He et al.
[79] 2023 MSI 64 × 64 10 m dominant TS 87.9%

Caiyan Chen
et al. [80] 2023 MSI 32 × 32 0.31 m Individual TS 87.67%

Eu-Ru Lee et al.
[81] 2023 drone

optic/LiDAR 27 × 27 21 cm 4 TS 95%

Xueliang Wang
et al. [76] 2022 HIS/MSI 500 × 500 10 m 6 TS 92%

Shijie Yan et al.
[82] 2021 VHR 15 × 15 0.4 m 6 Individual TS 82.7%

Sebastian Egli
et al. [83] 2020 UAV RGB 120 × 80 1.25 m 4 TS 88%

3.2. Reference Data

Classic deep learning-based methods belong to the supervised modeling approach.
These datasets require remote sensing images and reference data, also known as annota-
tions, samples, or labels. The most commonly used method for acquiring reference data
was through field plot surveys (79%). A small percentage of the literature used forest
management inventory data (7%), while 6% relied on visual interpretation. The remaining
studies used public datasets with their own data labels.

3.3. TS Classification Scales

Determining the appropriate scale for TS classification depends on the needs of the
application. The scale can range from dominant tree species to individual trees, and it is
important to consider the required data resolution and labeling process. Based on classic
deep learning-based methods, 51% of the research papers achieved the individual tree
classification, 25% were focused on tree species classification, 19% on the dominant TS of
main TS classification, and the remaining papers used public datasets. The classification
of individual trees relies mainly on LiDAR and RGB data. In most cases, the crowns of
individual trees are segmented and used for classification. In some literature, each image
contains only one tree, and therefore, individual tree classification is performed directly.

3.4. CNN Architectures and Application
3.4.1. CNN from the Functional Perspective

Depending on the specific use, classic deep learning-based methods can be categorized
into four main groups. The main function, representative networks, labeling structure,
resulting output, and usage of these four groups in TS classification are shown in Table 3.

CNNs can be classified into four categories: classic CNN, object detection, semantic
segmentation, and instance segmentation based on their functions. Classic CNN, object
detection, and instance segmentation have the function of classification, so classic CNN,
object detection, and instance segmentation can be used to classify TS, while object de-
tection and instance segmentation, which have additional functions such as localization,
require more complex and time-consuming labeling. Before TS classification, semantic
segmentation is performed to obtain the tree’s canopy.

The statistical analysis results of the 71 papers categorized by the function of CNNs
are presented in Figure 8.
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Table 3. The four main groups of classic deep learning-based methods in TS classification.

Group Main Function Representative
Networks Labeling Structure Resulting Output Usage

Classic CNN
[20,79,80,84]

Assignment of a TS
class to an entire image

VGG, Resnet
Alexnet one patch one TS class the patch TS class High

Object detection
[17,81,85–87]

Location of a TS class
with an image YOLO, R-CNN TS class, rectangular

bounding box
TS class and

bounding box Rare

Semantic
segmentation

[88–91]

Delineation of the
explicit spatial extent of

the TS class in the
image

U-Net, SegNet,
DeepLab

labels in the form of
spatially explicit masks

to provide a TS class
assignment for each

single pixel

An individual
prediction for each

pixel
High

Instance
segmentation

[92–94]

Detection of individual
things (classification +

segmentation)
Mask-R-CNN TS class, bounding box,

mask
TS class, bounding

box, TS mask Rare
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Figure 8 shows that ResNet is the most commonly used classic CNN network for TS
classification. In TS classification, the input image size to the network is relatively small,
which limits the use of some classic networks. Self-designed shallower CNN networks
are more common due to the feature extraction problems that arise in the convolutional
and pooling layers when using classic CNN networks. The PointNet network is often
preferred when segmenting individual trees for TS classification using LiDAR point cloud
data (Figure 8). The infrequent use of object detection and instance segmentation in TS
classification is shown in Figure 8; the labels can be complex, the bounding box often does
not explicitly define crown/canopy boundaries, and the crown/canopy is not rectangular.
Natural canopies often have smooth transitions or overlapping crowns, which limits the
object detection and instance segmentation that can be applied in TS classification. But for
certain tree species with non-overlapping crowns, it is important to try object detection and
instance segmentation so that the tree transformation can be easily tracked afterward.

3.4.2. CNN from the Input Data Perspective

Depending on the input remote sensing data, classic deep learning-based methods
can be categorized into 1DCNN, 2DCNN, and 3DCNN, where the number refers to the
dimensions of the convolutional kernel. The multi-temporal remote sensing data use
Recurrent Neural Network (RNN) or 1DCNN. Other input data can use 1DCNN, 2DCNN,
or 3DCNN. Among them, 2DCNN is the most commonly used in the TS classification
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(75%). 3DCNN was used most often for LiDAR and HSI data (19%), and the model was
self-designed.

Yanbiao Xi et al. [95] utilized 1DCNN in conjunction with spectral and crown texture
features of HIS to classify 7 TS, resulting in an overall accuracy of 85.04%. The features
were used to generate a vector as the input layer for the 1DCNN network, which comprised
two convolutional layers, one max-pooling layer, and fully connected layers. Research
papers on 3DCNN tree classifications are concentrated between 2019 and 2021. Haiyan
Guan et al. [96] and Maohua Liu et al. [53] utilized a self-designed 3DCNN and LiDAR
data to achieve a TS classification with an overall accuracy of 96.4% and 92.5%, respectively.
Somayeh Nezami et al. [97] achieved a TS classification using a self-designed 3DCNN,
and RGB and HIS data, with a producer accuracy of 99.6%. Bin Zhang et al. [43] and
Janne Mäyrä et al. [54] employed a self-designed 3DCNN and HSI data to classify the TS,
achieving classification accuracy of 93.14% and 87%, respectively. The two studies utilized
the canopy height model derived from LiDAR data to match ground reference data to
aerial imagery.

3.4.3. Multimodal Remote Sensing Data Fusion

Multimodal data fusion is generally categorized into three types: input-stack fusion,
feature-stack fusion, and decision-level fusion. In the literature on TS classification based
on classic deep learning-based methods, only two types of fusion were found: input-stack
fusion (six papers) and feature-stack fusion (three papers).

Bingjie Liu et al. [98] utilized PointMLP to extract features from LiDAR point cloud
data and 2DCNN to extract features from UAV RGB images for tree species classification
with 98.52% accuracy. Xueliang Wang et al. [76] proposed the double-branch multi-source
fusion (DBMF) method. One branch utilized the CNN network to abstract the spatial
features for the MSI, while the other branch employed the bidirectional long short-term
memory (Bi-LSTM) to abstract the spectral features for the HSI. The resulting features were
concatenated to classify TS, achieving an overall accuracy of 92%. Ira Harmon et al. [99]
and Sean Hartling et al. [100] utilized input-stack fusion. They used the HCM, DEM, and
RGB/HSI data, VHR and LiDAR data to classify TS, respectively.

3.5. CNN Model Assessment and Operational Framework in TS Classification
3.5.1. CNN Model Assessment

The TS classification results were evaluated based on the OA, precision, recall, F1 score,
and kappa [50,57,80,84,91,94,101], and these metrics are defined as follows:

precision = UA =
TP

TP + FP
(1)

Recall = PA =
TP

TP + FN
(2)

F1 = 2 × precision × Recall
precision + Recall

= 2 × UA .PA
UA + PA

(3)

OA =
TP + TN

TP + TN + FP + FN
=

TP + TN
N

(4)

kappa =
OA − Pe

1 − Pe
(5)

The variables used in this study include TP (true positives), FP (false positives), FN
(false negatives), TN (true negatives), Pe (expected proportion of agreement), and N (total
sample size). TP represents the number of positive samples correctly predicted by the
CNN model, while FP represents the number of negative samples incorrectly predicted as
positive. FN represents the number of positive samples incorrectly predicted as negative,
while TN represents the number of negative samples correctly predicted by the model.
Pe is calculated by dividing the sum of the product of the actual sample size and the
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predicted sample size by the square of the total number of samples. The user’s accuracy
(UA), producer’s accuracy (PA), and Dice similarity coefficient are equivalent to precision,
Recall, and F1, respectively. UA measures the proportion of relevant positive predictions,
while PA measures the proportion of correctly classified positive results. F1 is the weighted
average of UA and PA, with a best value of one and a worst value of zero. The kappa
coefficient and OA measure the overall consistency between the identification result and
the reference data. The OA value ranges from 0 to 1, while the kappa coefficient value
ranges from −1 to 1 and is typically greater than zero. Equations (1)–(5) compute their
values based on the confusion matrix, ranging from 0 to 1. A value of one indicates the
highest similarity between the predicted TS and reference data, while zero indicates no
similarity. Each of these five evaluation indicators has its own limitations. However, from a
theoretical perspective, there is no combination of evaluation indicators that can be used to
evaluate the optimal classification result of the models.

In semantic and instance segmentation, the intersection over union (IoU, also known
as the Jaccard Index) is used to evaluate the performance of the differently trained models
on independent testing datasets [94].

IoU =
area

(
Bactual ∩ Bpredicted

)
area

(
Bactual ∪ Bpredicted

) × 100% (6)

The crown polygons from the test set (Bactual) and the predicted crown polygons from
the segment CNN algorithm (Bpredicted) are compared using the intersection and union
operations to determine their common and combined areas, respectively.

3.5.2. CNN Model Operational Framework

Figure 9 shows the statistical results of the CNN operational framework for TS clas-
sification. There are lots of frameworks for deep learning. Based on the development of
deep learning in artificial intelligence, the most popular framework in the past few years
was Google’s TensorFlow, but in the past two years, the most popular framework has
been Facebook’s PyTorch. Our statistical results from the literature are consistent with
the development of deep learning artificial intelligence. Currently, the use of the PyTorch
framework is gradually increasing and replacing TensorFlow.
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mathworks.com/), and R (https://www.r-project.org/), Caffe has been merged into PyTorch.

4. Limitations and Future Work

There are still many factors that limit the accuracy and precision of TS classification,
such as spatial resolution, temporal resolution, spectral resolution, phenological transfor-
mation information, forest environments, shadows, cloud shading, small canopies, spectral
shapes of different canopies, and canopy overlap, and so on [102]. At the same time, the
current TS classification used in different study areas has some limitations because the

https://www.tensorflow.org/
https://pytorch.org/
https://www.mathworks.com/
https://www.mathworks.com/
https://www.r-project.org/


Forests 2024, 15, 852 15 of 23

algorithms themselves have prerequisites for using them, and the data may not always
be able to meet the prerequisites of the algorithms perfectly. Thus, TS classification based
on remote sensing is full of challenges, and there are many aspects worth our efforts in
the future.

4.1. Data Fusion

• Spatially sharpened data fusion method

Pan-sharpening is a pixel-level fusion that can be applied to both single-sensor data
and multi-sensor images. Single-sensor fusion produces a high-resolution multispectral
image by fusing a pan-band and a low-resolution multispectral image. Such a sharpened
image has a nominal pan high resolution but its MS property may be slightly different
from the original MS property. Compared to the direct use of low-resolution MS images,
sharpened images improve the quality of individual canopy object segmentation for optimal
canopy object segmentation. Spatial sharpening of multi-sensor images is performed using
different optical sensor data, one high-resolution and one low-resolution multispectral data.
The low-resolution multispectral band image is then resampled to a higher resolution to
make the images from both sensors the same size, and finally, the spatially sharpened data
are obtained by using a spatial sharpening algorithm. No studies have been found in the
literature reporting the direct use of spatial sharpened methods to improve TS classification,
but spatial sharpening improves the spatial resolution and maintains the spectral properties
of MSI [103], and spatial sharpened fusion methods should be useful in practice for TS
classification [12].

• Feature-level data fusion method

Feature-level fusion is the fusion of features extracted from different sensors, which
is a simple overlapping of multi-source features to increase the number of features for TS
classification, not true fusion.

• Spatiotemporal Data Fusion method

At present, the spatiotemporal fusion algorithm of remote sensing data has matured.
The spatiotemporal fused time series data have a high temporal and spatial resolution, which
can respond well to the information on phenological changes in tree species. However, so far,
spatiotemporal fusion has not been directly applied to the research of TS classification.

Multi-source remote sensing data fusion has developed rapidly in recent years. The
fusion of homogeneous remote sensing data has achieved the fusion of multi-sensor data
in the three dimensions of time, space, and spectra, and obtained high-quality data with
multi-temporal phase, high-spectral, and high-spatial and temporal resolution. The fusion
of heterogeneous remote sensing data is mainly the fusion of optical remote sensing data
and active remote sensing data, of which the fusion of SAR images and optical remote
sensing data is more sophisticated. In the future, to effectively improve the accuracy and
precision of TS classification, the real fusion algorithm of multimode remote sensing data
will be applied to TS classification, or the existing multimode remote sensing data fusion
algorithm will be improved to study TS classification.

4.2. Phenology Information

Multi-temporal remote sensing data have great significance in improving the classifica-
tion accuracy of tree species [23,85,104–106], as current research has shown that time series
images can correspond to the phonological and seasonal characteristics of tree species, and
the characteristics change differently for different tree species throughout the year [107].
However, the seasonal division of the series is currently not uniform; some literature di-
vides the multi-temporal data into four seasons (Spring, Summer, Fall, and Winter), some
in two seasons (Wet/Dry, Dry/Rainy, Growing/Non-Growing, and so on), and some in
multiple seasons (Early Spring, Late Spring, and Midsummer). How to extract the valuable
features from the multi-temporal data and how to use the features has not yet been com-
pleted, and it has not yet been concluded which combination of two-season, one-season,
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or multi-season time series images is most effective for the classification accuracy of tree
species. For example, Li et al. [104] used two seasons of WV2 (14 September 2012) and WV3
(18 October 2014) data to classify five tree species in Beijing, China, and Karlson et al. [108]
used two seasons of WV2 images to classify five dominant species in West Africa and
found that TS classification using two seasons of time series data was better than that
using single or multiple seasons. Ferreira et al. [35] investigated whether using wet and
dry seasons separately or in combination improved tree classification accuracy, and the
study concluded that the two-season combination did not have higher tree classification
accuracy than the single-season. Pu et al. [23] tested combinations of two-, three-, four-, and
five-season multi-temporal images for a study on TS classification ability, and they found
that combining more than two combinations of seasonal images did not produce better TS
classification results than combinations of two seasonal images (dry/wet season images).

Most current studies select the best seasonal time-series images and do not fully
utilize images from all seasons when classifying tree species. In the literature, R. Pu and S.
Landry [109] proposed a seasonal trajectory difference index, which integrates the possible
contributions of all seasons as a feature for classifying tree species and can help improve
the accuracy and precision of classifying tree species. How to take full advantage of the
phonological and seasonal information, and combine the algorithms in the fields of time
series processing and digital signal processing to create a characteristic or method with
an explicit physical meaning of phenological variation, to improve the accuracy of TS
classification, still needs to be resolved.

4.3. Data Label

The remote sensing data label is directly related to the usefulness of the final TS
classification product. Currently, data are labeled through plot surveys, and it is generally
difficult for someone familiar enough with the study area to accurately identify all the tree
species through remote sensing data, so visual interpretation is essentially not used. For
large-scale TS classification, the plot survey is very difficult and takes several years or more,
resulting in a temporal mismatch between remote sensing data and labels. In some primary
forests or parts of forests with complex terrain and difficult transportation, it is impossible
to conduct field surveys, so it is even more difficult to solve the labeling problem.

Weakly supervised learning labels can be used at the image level or sparsely at the
pixel level, reducing the cost of manual labeling. Even when results from other data studies
are available and ground truth data are scarce, the method can help solve the labeling prob-
lem [110,111]. Semi-supervised learning lies between supervised and weakly supervised
learning. It has been shown that robust CNNs with a small number of high-quality labels
can be trained [112]. In the future, weakly supervised learning or semi-supervised learning
can be used to support data labeling when large datasets are constructed.

4.4. Patch Size

When utilizing remote sensing for tree species classification, it is important to consider
the optimal ground sampling density and spatial unit. Specifically, it is necessary to
determine the spatial unit for obtaining tree species information and the optimal ground
sampling density for deriving such information using a given sensor [9]. The size detailed
statistics and analysis reveal that out of 71 papers on classic deep learning-based methods
of tree species classification, only three provide rough explanations of different patch sizes,
and only six offer information on patch size and its corresponding spatial resolution.

Fromm et al. [113] have shown that the accuracy of detection of tree seedlings can vary
by up to 20% based on the resolution of the UAV image (0.3–6.3 cm). Similarly, when the
pixel size was reduced from 40 cm to 60 cm, Neupane et al. [114] found a 17% decrease in
detection accuracy for banana trees in plantations. So, when selecting the patch size for the
TS classification, it is important to consider the spatial unit and optimal ground sampling
density. This can contribute to the criteria for selecting patch size. This is a very interesting
problem, and it is worth trying to solve in the future.
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4.5. CNN Model Optimization Approaches

Due to the increasing performance of computer hardware, CNN models now have
billions of parameters. This gives them incredible fitting ability but also makes them
highly susceptible to overfitting for a particular dataset. To improve the generalization
ability of CNN models and alleviate the overfitting problem, the following strategies can
be employed: To improve the dataset, consider using data augmentation procedures. To
improve the CNN model, add regularization techniques to the weights. To improve the
training process, consider stopping the model early. To improve the model structure, add
the Dropout layer and the normalization layer.

When a CNN model experiences overfitting, the first network structure typically
considered for use is Dropout. Dropout reduces the coupling between nodes during
training by replacing some nodes with masks to achieve regularity. There are also other
improved versions of Dropout, such as Spatial Dropout, DropBlock, and Max-pooling
Dropout. Normalization is a rapidly growing set of algorithms in deep learning. Batch
normalization (BN) is a classical normalization algorithm that is frequently used to mitigate
overfitting in deep learning. It normalizes features from the same channel of different
samples and effectively solves the exploding gradient problem, making the CNN network
model more stable.

4.6. Outlook on New Technologies

Vision transformers (ViTs) have been trending in image classification tasks due to
their promising performance when compared to convolutional neural networks (CNNs).
Multimodal deep learning can fuse different modalities of remote sensing data to achieve
richer information representation and more accurate TS classification. We believe that the
transformer and multimodal-based methods will be applied to TS classification shortly.
The methods will comprehensively improve the effect of TS classification and create a new
situation of TS classification by mining and fusing the data information of each modality.

5. Conclusions

In this study, a total of 300 publications related to the study of classifying and mapping
TS using images from different remote sensing sensors were analyzed. In this regard, a
review of the unimodal and multimodal remote sensor data and the classic deep learning-
based methods for TS classification was carried out. After carrying out the review and
summary, some conclusions with remarks and recommendations will be summarized in
the following paragraphs.

1. From the number of publications, tree species classification has become a hot topic in
current research. From the unimodal and multimodal remote sensor data utilization,
the main unimodal data for TS classification were HSI, LiDAR, RGB, and VHR, and
the most used multimodal data were HIS and LiDAR.

2. According to the literature analysis of TS classification methods, the most commonly
used classifiers for remote sensing data, whether unimodal or multimodal, were
CNN, RF, and SVM. Therefore, this article summarizes the process of remote sensing
TS classification and condenses the two major current TS classification methods:
traditional machine learning methods and classic deep learning-based methods.

3. Traditional machine learning methods are utilized for tree classification in large study
areas, while classic deep learning-based methods are employed for tree classification
in small study areas. The classic deep learning-based methods are beginning to be
used for tree classification in large study areas.

4. The classic deep learning-based methods for TS classification are reviewed in detail
in terms of patch size, reference data, TS classification scales, CNN architectures and
applications, CNN operational framework, and CNN model assessment.

5. Six limitations and future work are discussed below, and suggestions are made
to overcome potential issues in the future. (a) Data fusion. A spatial-temporal
fusion algorithm and real fusion algorithm of multimodal remote sensing data can be
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applied to TS classification, or the existing multimodal remote sensing data fusion
algorithm should be improved to study TS classification. (b) Phenology information. A
feature or method was created with an explicit physical meaning of the phenological
variation used to improve the accuracy of TS classification. (c) Data label. Label
production is very labor-intensive, and field surveys for TS classification labeling are
time-consuming and laborious. It is recommended that field surveys with weakly
supervised and semi-supervised learning for labeling are combined. (d ) Patch size.
When utilizing remote sensing data for tree species classification, it is important to
consider the optimal ground sampling density and spatial unit. Specifically, it is
necessary to determine the spatial unit for obtaining tree species information and
the optimal ground sampling density for deriving such information using a given
sensor. Patch size has not been studied enough, and it may depend on the spatial
resolution of the classification target, the distribution and size of the forest stand area,
or other factors, which is an interesting problem to study. (e) CNN model optimization.
To improve the generalization ability of CNN models and alleviate the overfitting
problem, some strategies were given. (f) New technologies, such as transformer and
multimodal-based methods will be applied to TS classification shortly.
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Abbreviations

AHI Advanced Himawari imager
ASTER Advanced spaceborne thermal emission and reflection radiometer
Bi-LSTM Bidirectional long short-term memory
CASI Compact airborne spectrographic imager
CNN Convolutional neural network
Conv The convolutional layer
DBMF Double-branch multi-source fusion
FC The fully connected layer
HSI Hyperspectral image
IoU Intersection over union
LDA Linear discriminant analysis
LiDAR Light detection and ranging
MLC Maximum likelihood classifiers
MSI Multispectral image
OA Overall accuracy
PA Producer’s accuracy
RF Random forest
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RGB The red, green, and blue image
RNN Recurrent neural network
SAR Active remote sensing synthetic aperture radar
SPOT Satellite Pour l’Observation de la Terre HighResolution Visible
SVM Support vector machine
TS Tree species
UA User’s accuracy
UAV Unmanned aerial vehicle
VHR Very high spatial resolution
ViTs Vision transformers
WOS Web of Science
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