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Abstract: Precisely estimating the position, diameter at breast height (DBH), and height of trees is
essential in forest resource inventory. Augmented reality (AR)-based devices help overcome the issue
of inconsistent global point cloud data under thick forest canopies with insufficient Global Navigation
Satellite System (GNSS) coverage. Although monocular simultaneous localization and mapping
(SLAM) is one of the current mainstream systems, there is still no monocular SLAM solution for forest
resource inventories, particularly for the precise measurement of inclined trees. We developed a forest
plot survey system based on monocular SLAM that utilizes array cameras and Inertial Measurement
Unit (IMU) sensors provided by smartphones, combined with augmented reality technology, to
achieve a real-time estimation of the position, DBH, and height of trees within forest plots. Our
results from the tested plots showed that the tree position estimation is unbiased, with an RMSE
of 0.12 m and 0.11 m in the x-axis and y-axis directions, respectively; the DBH estimation bias is
−0.17 cm (−0.65%), with an RMSE of 0.83 cm (3.59%), while the height estimation bias is −0.1 m
(−0.95%), with an RMSE of 0.99 m (5.38%). This study will be useful in designing an algorithm to
estimate the DBH and position of inclined trees using point clouds constrained by sectional planes
at the breast height of the trunk, developing an algorithm to estimate the height of inclined trees
utilizing the relationship between rays and plane positions, and providing observers with visual
measurement results using augmented reality technology, allowing them to judge the accuracy of
the estimates intuitively. Clearly, this system has significant potential applications in forest resource
management and ecological research.

Keywords: monocular SLAM; smartphones; real-time estimation; augmented reality; forest inventory;
point cloud

1. Introduction

Forests are indispensable in the Earth’s ecosystem, providing habitats for various
species, regulating the climate, storing carbon [1–3], and similarly offering a wealth of
ecosystem services, such as timber, non-timber forest products, and recreational opportu-
nities [1–3]. Additionally, forests are vital for human welfare, providing energy, building
materials, and food [4]. A forest resource inventory enables the collection of forest resource
data, laying the foundation for the planning and monitoring of sustainable forest man-
agement [5]. The forest plot survey is a crucial method for forest resource inventories [6],
typically involving collecting tree data through individual tree measurements [7–10]. The
primary data collection includes tree position, DBH, and height [11–13]; this information

Forests 2024, 15, 939. https://doi.org/10.3390/f15060939 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f15060939
https://doi.org/10.3390/f15060939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-1126-0858
https://orcid.org/0000-0002-3705-3697
https://orcid.org/0000-0002-1444-7976
https://doi.org/10.3390/f15060939
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f15060939?type=check_update&version=1


Forests 2024, 15, 939 2 of 22

is widely used to predict other essential tree attributes such as age, volume, biomass,
and carbon storage, which non-destructive methods cannot accurately measure [14]. In
addition, real-time measurement can provide immediate data, allowing fields such as forest
management, environmental monitoring, and urban planning to make more agile decisions
and respond to changes promptly.

Traditional forest resource surveys involve manual measurements using mechanical
or optical instruments such as calipers, compasses, and rangefinders [15,16]. However,
these conventional techniques are time-consuming, expensive, and prone to measurement
errors [17,18]. In recent years, Terrestrial Laser Scanning (TLS) systems have been success-
fully applied in forestry [7,19–22]. The main advantage of TLS is its ability to measure
digitized forest detail accurately, quickly, and automatically, with millimeters of error
level [23,24], and on the other hand, enabling precise estimation of the main attributes of
trees [25]. However, due to the static nature of TLS [26], single-scan modes suffer from
severe occlusion issues [27], multi-scan modes are time-consuming [28], and the high cost
of TLS inhibits forest resource surveys [29]. Forest surveying through mobile laser scanning
(MLS) overcomes the static nature of TLS and reduces occlusion effects [30], serving as
an alternative to TLS [31]. MLS used a laser scanner with an Inertial Measurement Unit
(IMU)GNSS, with the quality of its point clouds being influenced by the accuracy, precision,
and synchronization of these three components [32]. However, dense tree canopies obstruct
GNSS signals, preventing MLS from constructing globally consistent point clouds [33,34].
Simultaneous localization and mapping (SLAM) is a technology for autonomous posi-
tioning and mapping in unknown environments using sensor data [35,36]. The advent
of SLAM algorithms reduces reliance on GNSS signals [37], offering a potential solution.
Nowadays, SLAM technology is integrated into personal Light Detection and Ranging
(LiDAR) systems [18,38], enabling scanners to achieve precise positioning in forest envi-
ronments where GNSS signals are obstructed [39]. However, the point cloud accuracy of
this system is relatively low, compounded by challenges in SLAM matching during field
operations, resulting in the limited application of PLS in forest resource inventory.

With significant advancements in computing capabilities and sensor technologies,
consumer-grade array cameras, ToF cameras, LiDAR, and IMUs have been integrated into
mobile devices [40]. SLAM algorithms such as Tango, ARCore, and ARKit can run on
mobile devices, supporting the implementation of augmented reality. Tango is a technology
platform developed by Google; it combines advanced sensors, cameras, and computational
power, enabling devices to perceive and understand their surroundings in real-time and
collect 3D data [41,42]. This technology has been widely used by researchers in forestry [43],
who have tested its accuracy for tree position and DBH in circular plots. On the other
hand, the authors of [44,45] accurately tested the observation procedures and algorithms
for tree position, DBH, and tree height, building an RGB-D SLAM portable tree-measuring
system for single-tree and forest plot surveys. However, starting in 2018, Google announced
discontinuing support for the Tango platform, shifting its focus to other augmented reality
technologies like ARCore and ARKit, which are more general augmented reality solutions
that do not require special hardware [40], have the demerit of weaker precision in acquiring
3D data, but offer advantages in device compatibility and popularity. Fan et al. were among
the first to use this approach to design precise estimation algorithms for DBH and tree
position, and they constructed a monocular SLAM augmented reality forest tree-measuring
system, achieving the real-time monitoring of measurement results [40]. Due to its high
estimation accuracy and robustness, this system is a potential solution for precise forest plot
surveys [40]. But still, it is unsuitable for accurately estimating inclined trees’ DBH, position,
and height. Furthermore, there is no established comprehensive forest plot survey system.

This paper aims to estimate forest attributes in real time in a forest inventory using
a mobile phone with monocular SLAM technology. The main objectives of this research
are (i) to develop a forest plot survey system for smartphones with a monocular SLAM
system; (ii) to develop an algorithm for estimating the DBH and position of trees, utilizing
point clouds constrained by sectional planes’ DBH, addressing the challenge of accurately
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estimating inclined trees; and (iii) to design an algorithm for estimating the height of
inclined trees using the relationship between rays and plane positions.

2. Protocols and Mechanism
2.1. Monocular SLAM Theory

SLAM technology is a crucial research area in autonomous robots and automated
systems, addressing the complex problem of self-localization and environmental mapping
in unknown environments [35]. In SLAM systems, state estimation is fundamental and
is typically achieved through Bayesian filters, such as the Extended Kalman Filter (EKF)
or Particle Filter [44]. These filters combine motion models and observation models to
estimate the state. The monocular SLAM system in this research uses an array camera as
the observation model and an IMU as the motion model. The motion model describes how
the device moves and is typically represented as:

xt = f (xt+1, ut, wt) (1)

Here, xt is the state at time t, ut is the control input (such as velocity and direction),
and wt is the process noise. The observation model describes how to generate observation
data from the current state, represented as:

zt = h(xt, nt) (2)

where zt is the observation value and nt is the observation noise. The SLAM process
integrates camera observation data with IMU data and performs a real-time estimation of
the pose and observation data at each moment, represented as Equation (3):

x1:t = {x1, ..., xt} (3)

The mathematical foundation of SLAM technology is based on probability theory and
estimation theory [44]. Bayesian filters are at the core of SLAM, using an equation for state
estimation; see Equation (4):

P(xt|z1:t, u1:t) =
P(zt|xt)P(xt|z1:t−1, u1:t)

P(zt|z1:t−1, u1:t)
(4)

where P(xt|z1:t, u1:t) represents the posterior probability of the state, given all observations
and control inputs.

Monocular SLAM is one of the mainstream SLAM systems today [46], consisting of a
camera and a low-cost IMU for measuring the smallest suite of sensors for six-degree-of-
freedom state estimation. This configuration meets the requirements of most smartphones.
ARCore, the augmented reality platform launched by Google, has been integrated into most
current Android smartphones without the need for special hardware support, providing
high scalability and portability [40]. Therefore, in this paper, we chose to use an Android
smartphone that meets the above requirements to build a forest plot survey system.

As shown in Figure 1, the implementation of monocular SLAM typically consists
of modules, i.e., data preprocessing, initialization, non-linear optimization based on a
sliding window, loop closure detection, and pose graph optimization [46]. In the data
preprocessing stage, images undergo Harris corner extraction and pyramid optical flow
tracking. However, the outliers are removed using the RANSAC algorithm, and the tracked
feature points are added to the image queue for backend processing. Concurrently, IMU
data are processed through an integration providing pose information such as position,
velocity, and rotation. The pre-integration increment, its Jacobian matrix, and covariance
are calculated, providing the necessary data for subsequent optimization. During the
initialization stage, the system performs a pure visual estimation using SFM (Structure
from Motion) technology, estimating the pose of all frames within the sliding window
and the inverse depth of 3D landmark points. The SFM is loosely coupled with IMU pre-
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integration, working to align and solve the initialization parameters. However, in the non-
linear optimization stage based on the sliding window, the system integrates visual IMU
and loop closure constraints into a significant objective function for non-linear optimization,
solving for the pose and bias of all frames within the sliding window. Loop closure detection
is conducted by using the DBow (Distributed Bag of Words) algorithm. Once a loop is
successfully detected, the system relocalizes and optimizes the camera trajectory to enhance
the accuracy of the trajectory estimation. Finally, pose graph optimization ensures the global
optimization of historical poses based on the relocalization results, further strengthening
the system’s stability and accuracy.
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2.2. Monocular Densification Reconstruction

Although the system in this paper does not require special hardware support, only
sparse point cloud information can be obtained during the environment-understanding
process. This poses a great challenge for designing DBH and location estimation. In order
to reduce the estimation difficulty and error due to insufficient point cloud information,
the environment information needs to be densified.

The core of monocular densification is to enhance environmental understanding by
estimating depth maps [40]. This process relies on the pose and sparse map information
provided by SLAM. Based on the Lambertian surface assumption, which states that the
intensity of light reflected by a surface only depends on the angle of incidence, and the
photometric consistency assumption that maintains the intensity of light on the same
surface and states that it should be consistent from different viewpoints combined with
visibility constraints, a photometric consistency non-linear optimization model was con-
structed [47,48]. This model can be represented as:

E = ∑
ijk

(
IR
ij − ck Ik

ij

)
(5)

Here, E represents the sum of photometric residuals between the current frame and
multiple surrounding frames; IR

ij is the photometric value of the pixel in the recent Patch in

the reference frame (the current frame); Ik
ij represents the photometric value of the pixel in

the corresponding Patch of the k-th frame; and ck is the color scale of the k-th frame. This
model focuses on the photometric differences of the pixels, comparing the photometric
values of a small section (Patch) in the current frame with those of the corresponding
section in previous frames. The photometric differences of these pixels are accumulated
into a total residual value. By minimizing the sum of squares of these photometric residuals,
the depth of the central pixel in the current Patch can be estimated and further expanded to
generate the entire depth map and its confidence map using region-growing techniques.
When applied to specific scenarios such as estimating the depth maps of tree trunks in
forests, this method allows the conversion of the obtained depth maps into point clouds,
further enabling the estimation of the position and DBH of the trees.
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3. Materials and Methodology
3.1. System Workflow

An Android application for forest plot surveys was developed to enable SLAM mobile
phones to be used for forest inventory. The application uses augmented reality technology,
combining an array camera as the observation sensor and an IMU as the motion sensor.
In this, the array camera exhibits more minor errors in long-duration and long-distance
pose estimation. At the same time, the IMU shows a higher accuracy in short-duration
and short-distance pose estimation, maintaining reliability even in rapidly changing condi-
tions [40]. The fusion of these two types of sensor data adequately compensates for their
shortcomings and will be a mainstream method in SLAM systems. Based on this system,
plotting a plot map and the individual tree estimation are achieved (Figure 2). The system
initially needs to construct a plot map by establishing a coordinate system at the center
of the plot, drawing plot boundaries, and adjusting and standardizing global coordinates.
Subsequently, each tree’s position, DBH, and height are estimated and recorded according
to the algorithm designed.
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3.2. DBH and Tree Position Algorithm

An algorithm is established to estimate the DBH and position of individual trees by
using point clouds collected at the breast height of trees as the primary data source. This
method applies to both vertical and inclined trees. Initially, the model is constructed based
on several key assumptions: (1) the tree is assumed to be a cylinder below breast height,
which may be either vertical or inclined, and this assumption provides a basic geometric
model for representing the tree; (2) the cutting plane can be formed from the camera’s center
to one side of the cylinder, which is crucial for understanding and measuring tree data;
(3) the cutting plane from the camera center to one side of the cylinder is considered a planar
constraint for the tree, which will help to define and understand the spatial positioning of
the tree; and lastly (4) the planar constraints at both ends help to form an overall constraint
for the cylinder, aiding in a more accurate understanding and estimation of tree parameters.

Figure 3 shows the vector relationships during tree diameter and position estimation,
where the red circle represents the DBH to be measured, and S represents the camera
center and L and R are the left and right cutting points at breast height, while nL and nR
are the cutting planes corresponding to these points, n1 and n2 are the normal vectors
corresponding to the cutting planes, and l is the normal vector of the tree, i.e., the unit
vector of the tree’s growth direction.
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Subsequently, the algorithm proceeds in several steps. First, the cutting plane and
breast height data are obtained via the depth map; the breast height is acquired through
user interaction, by capturing two points sequentially at the tree base point (x0, y0, z0) and
the approximate breast height. After that, a line segment with the starting point at the tree
base and a length of 1.3 m is rendered, based on the vector direction formed by these two
points (the direction of the l vector), with the end of the line segment indicating the breast
height position, as shown in Figure 4a. Figure 4a illustrates the rendering status during the
DBH measurement process. The blue line represents the 1.3 m line segment, with the end
of the blue line indicating the breast height position.
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Next, the measurement of DBH includes both single and multiple measurements.
Single measurements involve the estimating from data of a single frame point cloud,
ideal for near-circular trees, as shown in Figure 4a, while multiple measurements involve
collecting point cloud data from different orientations of the tree for a comprehensive
estimation, which is suitable for non-circular trees, as in Figure 4b, where the direction of the
angle intersecting with the circle represents an observation point, with three observations
in total. For the estimation of nL and nR in single measurements, the following vector
relationships apply:

nL · n1 = 0 (6)

nR · n2 = 0 (7)

Utilizing the characteristic of the IMU’s slight angle drift relative to position drift,
the tree’s normal vector l is estimated. In single measurements, using the vector formula
is followed:

l = RT(nR × nL) (8)
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Here, R represents the transformation matrix from the world coordinate system to
the image polar coordinate system. In multiple measurements, each measurement from
different orientations follows the following vector formula:[

RT(nR × nL)
]
× l = 0 (9)

While estimating the DBH based on the results of single measurements, we first
establish a temporary coordinate system with l as the z-axis. In this coordinate system,
the origin is the origin of the camera coordinate system, l is the z-axis, the y-axis direction
is the direction represented by nL ×

(
RT l

)
, i.e., the direction from S to L in Figure 3, and

the x-axis forms a right-hand system with the y- and z-axes. The world coordinate system
is converted to the temporary coordinate system through the transformation coefficients
shown in Equation (10): 

Z : RT l
Y : nL ×

(
RT l

)
X :

[
nL ×

(
RT l

)]
×

(
RT l

) (10)

After that, the point cloud data are transformed into this temporary coordinate system,
using a filter (Equation (11)) to select the point cloud near the breast height position and
setting the z-axis value of each transformed point to 0. Within the x and y planes, the
diameter and position data are obtained using a circle fitting method. The resulting state
received in the augmented reality scenario is shown in Figure 4.

xT − 1.00 < xDBH < xT + 1.00
yT − 1.00 < yDBH < yT + 1.00
zT − 0.10 < zDBH < zT + 0.10

(11)

For estimating the tree’s position, the following points must be considered: (1) there
might be drifting in the position data, (2) the result of the previous step’s fitting might be a
point on the axis, not the actual position, and (3) for inclined trees, the estimation of the tree
position is based on the ground diameter position, i.e., the center of the point where the
tree contacts the ground. To achieve this goal, we first transform the tree position estimated
in the temporary coordinate system to the world coordinate system, and according to the
direction of the normal vector l and the ground point elevation z0, obtain the intersection
points (xi, yi, z0)

T of different observation points with the ground. Finally, the mean of
these intersection points is taken as the final position of the tree, as shown in Equation (12).

(x, y, z)T =
1
m∑(xi, yi, zi)

T (12)

Here, m is the number of measurements, and (xi, yi, zi)
T is the result of the i-th measurement.

3.3. Tree Height Algorithm

In the coordinate system of the SLAM system, the y-axis is always vertically up-
wards; this research sets the z-axis as vertically upwards, and therefore, by subtracting the
z-coordinate of the treetop in augmented reality from the z-coordinate of the tree base, the
resulting difference gives the height of the tree (the difference in z-coordinates of points
P and O in Figure 5a). The conversion in inclined trees is necessary and is achieved by
converting the coordinate system to a temporary coordinate system, with the tree trunk
direction as the z-axis, as shown in Equation (10) in Section 2.2. For measuring an individual
tree, the user obtains the base coordinates by tapping a point at the bottom of the tree.
Therefore, the main task in determining tree height is to find the coordinates of the treetop
point P. The user needs to move to a position where they can observe the top of the tree,
aim the camera at the treetop, and tap the treetop point on the screen. When tapping, the
device emits a ray with a known starting point and direction. The starting point S of the
ray is the device’s position in the augmented reality coordinate system at that time, and
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the ray’s direction vector is denoted as v, so that point P can be obtained as represented in
Equation (13).

P = S + tv (13)
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Figure 5. Geometric relationships in tree height calculation, where O is a point at the base of the tree;
S is the optical center of the camera; v is the direction vector of ray SP; Q is the plane facing point S
and parallel to the direction of the tree trunk; P is the intersection of the ray and the plane; and n is
the normal vector on the plane passing through point O. (a) Vertical tree; (b) inclined tree.

Here, t is a parameter so that the ray will strike a plane Q parallel to the y-axis and
face the device, with the normal vector of the plane passing through the tree base point as
n. Since plane Q faces the device, n can be represented as in Equation (14):

n =

1 0 0
0 1 0
0 0 0

(S − O) =

XS − Xo
YS − Yo

0

 (14)

Currently, the intersection of the ray and the plane is P, and P is a point on plane Q;
then, it satisfies the equation:

n · (P − O) = 0 (15)

Combining Equations (13)–(15), the parameter t and the coordinates of point P can
be obtained. Therefore, the tree height H can be estimated as in Equation (16). After
completing the tree height calculation, a line segment from the bottom of the tree to the
top of the tree is rendered in the augmented reality scene, which is available for the user to
monitor the accuracy of the results.

H = Zp − Zo (16)

4. Test Cases
4.1. Research Area and Test Data

The study was conducted in Beijing Olympic Forest Park, situated in Beijing (116◦23′2.98′′ E,
40◦01′3.00′′ N). The park is characterized by a river alluvial plain geologic structure span-
ning over 680 hectares (ha), with green belts having an area of 478 hectares (ha) and with a
total green cover of 95.61%. As a vital component of urban greening, the park’s vast area
and lush greenery are ideal for citizens’ recreation, fitness, and nature observation. The park
has diverse forest types, over 100 tree species, 80 shrub species, and over 100 herbaceous
plants, forming a biodiversity-based natural forest system. Such an environment provides
an ideal experimental site for the study.

To ensure an adequate sample size and plot diversity, this research was conducted
in 12 circular plots, each with a radius of 7.5 m (the area of each plot was 177 square
meters), in the research area. The selection of these plots represents different forest types
in terms of tree species composition, age, and stem density. We selected five tree species
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(Figure 6): Populus tomentosa, Ginkgo biloba, Styphnolobium japonicum, Pinus tabuliformis, and
Salix matsudana. The selected plots had fewer shrubs and were accessible to locals. The
position, DBH, and height of each tree in these plots were recorded, with the attributes of
the plots, as shown in Table 1. The number of trees in each test plot varied from 11 to 19;
the average DBH of each study plot ranged from 16.7 cm to 28.5 cm; and the average tree
height ranged from 9.6 m to 25 m. Figure 7 is the probability density function of diameter
at breast height and tree height in the 12 circular plots.
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Figure 6. Location of study area: (A) (Populus tomentosa plot), (B) (Ginkgo biloba plot), (C) (Styphnolo-
bium japonicum plot), (D) (Pinus tabuliformis plot), (E) (Salix matsudana plot).

Table 1. Summary statistics of plot attributes.

Plot Tree Number Dominant Species
DBH (cm) Tree Height (m)

Mean SD Min Max Mean SD Min Max

1 13 Pinus tabuliformis 19.1 2.1 16.5 24.6 9.6 1.9 6.8 13.2
2 15 Pinus tabuliformis 18.2 2.5 13.3 22.2 10.3 2.0 5.9 14.5
3 12 Populus tomentosa 26.5 9.6 8.3 44.2 19.4 6.0 8.1 26.9

4 18 Styphnolobium
japonicum 16.7 2.0 13.8 21.3 16.0 2.4 12.0 21.2

5 18 Populus tomentosa 23.6 3.0 19.8 30.0 22.3 2.3 18.5 27.2
6 11 Ginkgo biloba 22.4 4.5 15.8 29.6 14.4 1.7 11.6 17.4
7 15 Salix matsudana 21.9 4.3 12.7 27.2 18.1 3.3 10.2 23.0

8 16 Styphnolobium
japonicum 21.6 4.4 16.5 31.5 16.6 3.8 10.4 23.3

9 14 Salix matsudana 23.5 4.7 16.6 36.5 12.7 2.7 9.0 16.0
10 17 Populus tomentosa 28.5 6.5 16.2 43.8 25.0 4.8 7.7 30.0
11 14 Ginkgo biloba 17.0 4.3 12.8 30.2 10.1 2.5 8.1 18.1
12 19 Ginkgo biloba 22.8 3.4 16.8 30.9 14.7 1.7 11.1 17.7
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4.2. Plot Inventory Procedure

This study experimented with a circular plot with a diameter of 7.5 m (the area was
177 m2). The measurement route of the plot was the sunflower path (see Figure 8). This path
starts from the center of the plot, heading towards the north, and then measures the trees
in each petal area in a clockwise direction, returning to the plot’s center after measuring
one petal area. To ensure the exact position of the plot center, a marker (an object used
for marking) is typically placed at the plot center before starting the measurement task,
with the marker pointing towards true north (Figure 9a). This research also uses an array
camera as the observation sensor. However, global position optimization is performed by
recognizing the marker each time the plot center is passed. Therefore, the sunflower path
optimizes the position by passing through the plot center multiple times and obtaining a
globally consistent plot map.

Forests 2024, 15, x FOR PEER REVIEW 10 of 23 
 

 

Table 1. Summary statistics of plot attributes. 

Plot Tree Number Dominant Species 
DBH (cm) Tree Height (m) 

Mean SD Min Max Mean SD Min Max 
1 13 Pinus tabuliformis 19.1 2.1 16.5 24.6 9.6 1.9 6.8 13.2 
2 15 Pinus tabuliformis 18.2 2.5 13.3 22.2 10.3 2.0 5.9 14.5 
3 12 Populus tomentosa 26.5 9.6 8.3 44.2 19.4 6.0 8.1 26.9 
4 18 Styphnolobium japonicum 16.7 2.0 13.8 21.3 16.0 2.4 12.0 21.2 
5 18 Populus tomentosa 23.6 3.0 19.8 30.0 22.3 2.3 18.5 27.2 
6 11 Ginkgo biloba 22.4 4.5 15.8 29.6 14.4 1.7 11.6 17.4 
7 15 Salix matsudana 21.9 4.3 12.7 27.2 18.1 3.3 10.2 23.0 
8 16 Styphnolobium japonicum 21.6 4.4 16.5 31.5 16.6 3.8 10.4 23.3 
9 14 Salix matsudana 23.5 4.7 16.6 36.5 12.7 2.7 9.0 16.0 

10 17 Populus tomentosa 28.5 6.5 16.2 43.8 25.0 4.8 7.7 30.0 
11 14 Ginkgo biloba 17.0 4.3 12.8 30.2 10.1 2.5 8.1 18.1 
12 19 Ginkgo biloba 22.8 3.4 16.8 30.9 14.7 1.7 11.1 17.7 

4.2. Plot Inventory Procedure 
This study experimented with a circular plot with a diameter of 7.5 m (the area was 

177 m2). The measurement route of the plot was the sunflower path (see Figure 8). This 
path starts from the center of the plot, heading towards the north, and then measures the 
trees in each petal area in a clockwise direction, returning to the plot’s center after meas-
uring one petal area. To ensure the exact position of the plot center, a marker (an object 
used for marking) is typically placed at the plot center before starting the measurement 
task, with the marker pointing towards true north (Figure 9a). This research also uses an 
array camera as the observation sensor. However, global position optimization is per-
formed by recognizing the marker each time the plot center is passed. Therefore, the sun-
flower path optimizes the position by passing through the plot center multiple times and 
obtaining a globally consistent plot map. 

 
Figure 8. Mapping path of survey plot. 

Figure 9 describes the measurement steps of the forest plot survey application de-
scribed in this paper. Generally, SLAM systems use the first frame position of the device 
at application startup as the global coordinate origin. Still, this approach is unsuitable for 
managing plot tree positions. Therefore, before measuring each tree, we first establish a 
coordinate system at the plot center (Figure 9b) to move the coordinate zero point to the 
plot center, making it more convenient to record tree positions. After establishing the co-
ordinate system, the system draws the plot boundaries according to the plot center (Figure 
9c). Next, follow the measurement path for measuring each tree, tap the base of the tree 
on the screen (Figure 9d), determine the breast height position of the tree (Figure 9e), and 
then fit the DBH based on the single-frame point cloud at the breast-height position 

Figure 8. Mapping path of survey plot.

Figure 9 describes the measurement steps of the forest plot survey application de-
scribed in this paper. Generally, SLAM systems use the first frame position of the device
at application startup as the global coordinate origin. Still, this approach is unsuitable for
managing plot tree positions. Therefore, before measuring each tree, we first establish a
coordinate system at the plot center (Figure 9b) to move the coordinate zero point to the plot
center, making it more convenient to record tree positions. After establishing the coordinate
system, the system draws the plot boundaries according to the plot center (Figure 9c). Next,
follow the measurement path for measuring each tree, tap the base of the tree on the screen
(Figure 9d), determine the breast height position of the tree (Figure 9e), and then fit the
DBH based on the single-frame point cloud at the breast-height position (Figure 9f). If the
fitted circle does not match the tree trunk boundary, fit the circle by adding extra frames
in different directions from the trunk (Figure 9g). Subsequently, move to a position where
the treetop is visible and tap the treetop point on the screen to estimate the tree height
(Figure 9h). Repeat steps d to h to complete the measurement task for all trees in the plot
(Figure 9j).
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Figure 9. System operation steps: (a) placement of markers; (b) placement of axes; (c) drawing of plot
boundaries (draw with a cyan line); (d) tap bottom of tree; (e) drawing the chest-height line (draw
with a blue line); (f) single-frame fitted DBH (draw with a orange line); (g) multi-frame fitted DBH;
(h) tap top of tree to estimate tree height (draw with a blue line); (i) tree height panorama; (j) results
of completed plot surveys (draw with a yellow line).

4.3. Accuracy Assessment and Evaluation

This paper measures the DBH by using a diameter tape as a reference value, and the
total station (Leica Flexline TS06plus, South Surveying & Mapping Technology Co., Ltd.,
Guangzhou, China) was used to measure trees’ precise position and height as reference
values (the total station, with its laser ranging technology, can achieve precise measurements
under various terrain conditions). The reference value for the DBH of inclined trees is
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measured with a diameter tape 1.3 m above the ground, on a plane perpendicular to
the direction of the tree trunk, not in a direction parallel to the horizontal plane. When
measuring the position of trees, the total station is set up at the center of the plot. The total
station measures and records the angle between the center point of the tree at breast height
and true north, as well as the horizontal distance from this center point to the center of the
plot. For trees obstructed from view, we moved the total station a fixed distance towards
true north and set a second measurement point. Then, the actual position of the tree is
calculated based on the distance and angle, serving as a reference value; the reference value
data were used to verify the accuracy and feasibility of the system. The bias (BIAS), root
mean squared error (RMSE), relative bias (relBIAS), and relative root mean squared error
(relRMSE) were used to assess the deviation and variability of each measurement value,
with the following calculation formulas:

BIAS =
∑n

i=1(xi − xir)

n
(17)

relBIAS =
∑n

i=1(xi/xir − 1)
n

× 100% (18)

RMSE =

√
∑n

i=1(xi − xir)
2

n
(19)

relRMSE =

√
∑n

i=1(xi/xir − 1)2

n
× 100% (20)

Here, xi is the measured value, xir is the corresponding reference value of the measured
value xi, and n is the total number of measured values.

4.4. Experimental Results
4.4.1. Tree Position

The results showed an average error range in the x and y directions of about −0.11 m
to 0.16 m. Table 2 examines the average bias and root mean squared error in the x and
y directions. The average X-BIAS for each plot ranged from −0.11 m to 0.16 m, with an
overall average of −0.01 m, while the average Y-BIAS ranged from −0.07 to 0.15, with an
overall average of 0.03 m. These results indicate some systematic biases in the estimated stem
positions relative to their actual positions, but they are relatively small. The average values of
X-BIAS and Y-BIAS are close to zero, which is a positive sign. The average X-RMSE is 0.12 m,
while the average Y-RMSE is 0.11 m. The RMSE values are relatively consistent in the X and Y
directions, suggesting a uniform error distribution. Figures 10 and 11 show the position errors
for all plots. Although systematic errors exist in the estimated tree positions for each plot, the
overall errors are minor, and the systematic errors vary randomly across different plots.

Table 2. Accuracy of stem position estimations.

Plot X-BIAS (m) Y-BIAS (m) X-RMSE (m) Y-RMSE (m)

1 0.09 0.09 0.12 0.14
2 0.02 0.07 0.05 0.12
3 0.16 −0.01 0.18 0.03
4 −0.04 −0.05 0.06 0.09
5 −0.11 −0.01 0.13 0.08
6 −0.11 −0.07 0.15 0.1
7 −0.08 0.03 0.13 0.1
8 −0.08 0.01 0.16 0.09
9 0 0.03 0.08 0.16
10 0.07 0.15 0.1 0.17
11 −0.02 0.03 0.12 0.13
12 0.05 0.02 0.1 0.07

total −0.01 0.03 0.12 0.11
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4.4.2. Estimating DBH

The DBH shows a BIAS that ranged from −0.78 cm to 0.61 cm, with the relative BIAS
fluctuating between −2.98% and 3.22%, Table 3. The values of RMSE ranged from 0.46 cm
to 1.24 cm, with the range of the relative RMSE being 2.33% to 5.3%. There is some deviation
in the DBH estimation, but the percentage changes in relative bias and relative RMSE are
within the limits. The RMSE also remains relatively low in different contexts, indicating a
relatively high level of estimation accuracy. Figures 12 and 13 indicate that the dispersion
of measurement errors and observed values increases with the increase in DBH. Figure 14
shows that the error distribution between each plot’s measured and reference values is
relatively uniform, and the distribution is random.

Table 3. Accuracy of DBH estimations.

Plot BIAS (cm) relBIAS (%) RMSE (cm) relRMSE (%)

1 0.61 3.22 1.01 5.3
2 −0.02 −0.05 0.59 3.29
3 −0.78 −2.73 1.21 4.23
4 −0.12 −0.54 0.53 3.11
5 0.12 0.5 0.66 2.81
6 −0.03 0.04 0.46 2.33
7 −0.65 −2.98 0.83 3.66
8 −0.21 −0.91 0.7 2.91
9 0.26 1.03 0.74 3.11
10 −0.78 −2.79 1.24 4.46
11 0.04 −0.49 0.97 4
12 −0.31 −1.46 0.71 3.2

total −0.17 −0.65 0.83 3.59
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4.4.3. Estimating Tree Height

For tree height, BIAS ranged from −0.46 to 0.47 m, with relative bias varying between
−3.97% and 1.87%, Table 4. The RMSE values fluctuated between 0.48 and 1.84 m, with the
range of relative RMSE being 3.68% to 6.85%. As shown in Figures 15 and 16, the dispersion
of measurement errors and observed values gradually increases with the increase in tree
height. Figure 17 shows that the error distribution between each plot’s measured and
reference values is relatively uniform, and the distribution is random.

Table 4. Accuracy of tree height estimations.

Plot BIAS (m) relBIAS (%) RMSE (m) relRMSE (%)

1 −0.28 −2.63 0.58 4.99
2 −0.46 −3.97 0.73 6.37
3 −0.35 −1.78 1 4.85
4 0.17 1.13 0.75 4.51
5 0.47 1.87 1.27 5.49
6 −0.36 −2.34 0.8 5.4
7 −0.34 −1.73 1.14 5.82
8 −0.42 −2.58 0.8 4.93
9 −0.1 −1.11 0.71 5.89
10 0.47 1.69 1.84 6.85
11 −0.07 0 0.48 3.68
12 −0.27 −1.7 0.72 4.9

total −0.1 −0.95 0.99 5.38
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5. Discussion

Monocular SLAM is one of the current mainstream systems, but no monocular SLAM
solution exists for forest resource inventories. Therefore, this paper has developed a
forest plot survey system that utilizes the array camera and IMU sensors provided by
smartphones, as well as a data-processing platform based on a monocular SLAM system.

A portable RGB-D SLAM tree measurement system using SLAM technology has
already been tested successfully [44], which is used to observe various parameters of
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individual trees in forests and to conduct forest plot surveys. Nowadays, the Google
Tango platform that supports this system is no longer operational, and augmented reality
technology projects like ARCore and ARKit have emerged as alternatives. Although
these projects may have limitations in the precision of 3D data acquisition as a popular
augmented reality technology, they do not require exceptional hardware support; they
show significant advantages in device compatibility and popularity.

5.1. Tree Position Measurement

The tree position estimation was based on data obtained from device posture, which
was also successfully tested by [44] with minimum error. Drift in device posture is a major
factor affecting the accuracy of tree position. To overcome this problem, we performed loop
closure detection and non-linear optimization of the pose graph, requiring the design of
the measurement route to enable loop closure detection for repeated measurements [44].

The methodology depends on monocular SLAM in image recognition, automatically
optimizing the position by recognizing set markers and passing them multiple times along
the measurement path. Experimental results showed that the average error of this system
in the x and y directions is about −0.11 to 0.16 m, with RMSEs of 0.05 to 0.18 m and
0.03 to 0.17 m, respectively. Similarly, [44] reports errors of about −0.12 to 0.13 m in the
x- and y-axes, with RMSEs of 0.09 to 0.17 m and 0.07 to 0.17 m, respectively. In related
research, the authors of [38] combined personal laser scanning (PLS) devices and SLAM
technology to obtain the parameters of trees in forest plots, with the BIAS and RMSE of
the position results being 0.24 m and 0.26 m, respectively, which is lower than the accuracy
achieved in this research; furthermore, these studies were conducted in larger plots, so
the system proposed in this study still needs to be tested in broader scenarios. In such
scenarios, optimizing the position by passing markers multiple times could significantly
extend the measurement time, leading to posture drift. For large plots, a more rational
measurement path design and more marker settings may be required.

5.2. DBH Measurement

We attempted to attain the DBH values from point clouds. The method has been
widely studied. Researchers also successfully extracted the DBH values of trees by finely
fitting the columnar cloud and point cloud data obtained from TLS [49]. In single and
multiple scans of TLS with the system BIAS, measurements ranged from −0.18 to 0.76 cm
and 0.11 to 0.77 cm, respectively, while the RMSE fell between 0.74 to 2.41 cm and 0.9 to
1.9 cm. In another study [34], researchers used GNSS-IMU-assisted mobile laser scanning
technology to estimate the DBH, reporting an average error of 0.63 cm, an RMSE of 3.06 cm,
and a high determination coefficient (R2) of 0.97. Meanwhile, an innovative method of
automatically estimating tree trunk diameters using a mobile ground laser scanner was
performed by the authors of [31] and showed an average difference in DBH of 0.9 cm and a
root mean squared error of 1.5 cm. In this study, the reported bias ranged from −0.78 to
0.61 cm, with RMSE values between 0.46 and 1.24 cm, similar to the results of laser radar
measurements using high-precision point cloud data, possibly related to the application
of AR technology. AR technology provides an intuitive means for observers to assess the
accuracy of measurements.

Furthermore, we also used an RGB-D SLAM tree measurement system with AR
functionality [44] to measure the DBH of all the trees in 12 plots within the research area. We
compared these results with the actual field measurements shown in Figure 18. Both systems
had an R2 of 0.98, with RMSEs of 0.87 cm and 0.83 cm, respectively. This result indicates a
high consistency in the measurement results of both methods and validates the hypothesis
that AR technology can assist observers in intuitively assessing measurement accuracy.
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face having a sufficient texture to obtain the necessary point cloud density, requiring ad-
ditional frame-filling measurements when the circular fitting is poor. Therefore, although 
the system in this study may not be as efficient as the RGB-D SLAM tree measurement 
system, the method of multi-angle frame filling for circular fitting can achieve better re-
sults when dealing with flat or irregularly shaped trees. The RGB-D SLAM system uses 
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Figure 18. Scatterplot of DBH measurements using a steel tape measure versus DBH measurements
using other methods. (a) Scatterplot of DBH estimates from reference [44]; (b) scatterplot of DBH
estimates in this paper.

As far as the technical application of the two systems is concerned, there are differences.
The RGB-D SLAM tree measurement system can provide enough point clouds for circular
fitting during scanning. In contrast, the system in this study relies on the tree surface
having a sufficient texture to obtain the necessary point cloud density, requiring additional
frame-filling measurements when the circular fitting is poor. Therefore, although the system
in this study may not be as efficient as the RGB-D SLAM tree measurement system, the
method of multi-angle frame filling for circular fitting can achieve better results when
dealing with flat or irregularly shaped trees. The RGB-D SLAM system uses point clouds’
tangential and cutting point constraints in applying the DBH algorithm.

In contrast, this study uses cutting plane constraints to effectively solve the error
caused by measuring inclined trees, as shown in Figure 19. RGB-D SLAM tree measurement
systems and LiDAR point cloud DBH extraction usually use horizontal slices to extract
point clouds for fitting, often fitting into the red circles shown in Figure 19, for measuring
inclined trees, while cutting plane constraints can fit into the black circles. It is well known
that an inclined cylinder’s slanted circumference is greater than its base’s circumference;
therefore, algorithms without cutting plane constraints often lead to an overestimation
of results. Figure 20 further shows the results of testing 30 inclined trees using the RGB-
D SLAM tree measurement system (Figure 20A) and the system proposed in this paper
(Figure 20B), showing that the RGB-D SLAM system generally leads to an overestimation
when dealing with inclined trees. This problem is efficiently resolved in this paper.
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5.3. Tree Height Measurement

This study has designed a novel method for measuring tree height by utilizing vector
and plane relationships, and the use of augmented reality technology provides a visual
interface for the real-time supervision of observations, thereby ensuring measurement
accuracy. The experimental results show that the BIAS value of the measurements is
approximately between −0.46 and 0.47 m, with an RMSE ranging from 0.48 to 1.84 m, with
certain deviations in tree height estimation under different contexts. Still, overall, these
errors are relatively small. As shown in Figure 16, the dispersion of measurement errors
and observed values gradually increases with the increase in tree height. A clear trend is
that, within the range of tree heights not exceeding 20 m, the measured values have more
minor errors, but when the tree height exceeds 20 m, the measurement error significantly
increases. Additionally, according to the data in Figure 17, it can be observed that in the
Populus tomentosa plots 3, 5, and 10, the error is significantly increased compared to other
plots, further emphasizing the increase in error when the tree height exceeds 20 m.

Research conducted by [14] and [17,18] evaluated the reliability and stability of tree
height data obtained from airborne laser scanning (ALS), TLS, handheld personal laser
scanning (PLShh), unmanned aerial vehicle laser scanning (ULS), and UAV photogram-
metry (UAVimage) through field surveys. These devices reported average BIAS values
for ALS, TLS, PLShh, ULS, and UAVimage of −0.12 m, −1.02 m, −0.45 m, −0.62 m, and
−0.88 m, respectively; the average RMSE values were approximately 1.69 m, 2.11 m, 1.11 m,
1.38 m, and 1.58 m, respectively, unlike the above methods that measure tree height directly
from point clouds. Still, smartphone cameras can only capture point cloud data within a
limited distance range. The recommended threshold for reliable tree height measurement
by TLS is below 25 m [8], which is higher than the optimal measurement range of the
system in this paper.

In contrast, the methodology developed in this research shows more minor errors, which
may be related to the supervisory effect provided by augmented reality. However, accurately
displaying the top of the trees on a screen poses a challenge, particularly in forests with
dense canopies. Users need to move to a position where they can observe the treetop [44],
preferably at a horizontal distance from the tree similar to its height, to minimize the visual
disparity effects induced by angles, which are more pronounced for taller trees. Meanwhile,
with their aerial advantage, ALS, ULS, and UAVimage provide more reliable tree height data
for taller trees, contrary to this study’s trend. On the other hand, PLShh shows a balanced
performance across different tree height ranges, which this study has not achieved. Hence,
future research must provide solutions for measuring taller trees and conduct extensive
experimental validation. Other studies showed [44] that tree heights less than 20 m have a
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higher accuracy, with BIAS values approximately between −0.83 m and 2.08 m and RMSE
values between 0.46 m and 2.44 m, consistent with the results of this study.

In SLAM algorithms, corners or blobs are typically chosen as visual feature points.
Effective features should have a localized accuracy (both in position and scale), repeatability,
and robustness, etc. However, identifying suitable corner points or blobs is challenging
in forests with complex terrain and dense shrubs. Moreover, the presence of shrubs can
obstruct the base marking of target trees, increasing the difficulty of localization. The plot
data utilized in this study are sourced from human-accessible areas, where ground-level
shrubs are relatively sparse. However, such terrain conditions are not representative of
most forest environments, potentially posing greater challenges in practical applications.

The one limitation is that the current system can only measure trees one by one, which
is less efficient, and there is still room for improvement in this system’s measurement
methods. For example, marking at the base of the tree is currently required to assist in
filtering point clouds for fitting the DBH. Still, this step is difficult to implement in dense
shrubby vegetation. Also, when there is a bulge at the DBH position of the tree, it is
impossible to deviate manually from the standard position for measurement, which not
only reduces work efficiency but also affects the operational experience of forestry workers.
Future system improvements must be able to fit diameters at any position, which will be
more in line with humanized operation. Under the current technological environment,
the lenses of most smartphones can only capture sparse point clouds through imaging,
and the point cloud density is not rich. Devices with higher-performance lenses can
provide dense point cloud data. Devices such as infrared-based RGB-D sensor devices [44]
have a relatively low compatibility and popularity; with the continuous development of
technology, it is believed that a balance can be found in these two aspects in the future.
At the same time, research in forestry still needs to be deepened to promote technological
progress and widespread application.

6. Conclusions

This paper provides a solution for the real-time estimation of inclined trees’ position,
DBH, and height using monocular SLAM on a mobile phone when GNSS signals are
unavailable. The paper utilizes cross-section constraint techniques and point cloud data
for circular fitting to estimate the position and DBH of trees. The cross-section constraint
method applies to situations where trees are inclined. Simultaneously, incorporating a
multi-frame fitting approach effectively compensates for irregularities in tree trunks. The
paper addresses the height measurement problem of inclined trees by utilizing real-time
pose data provided by the SLAM system. The experimental results also showed that this
method can accurately estimate the tree position, DBH, and height.

Using a monocular SLAM system and smartphones for forest plot surveys is feasible,
and particularly suitable for forest areas with shorter trees. However, when dealing with taller
trees, the system error significantly increases, so future research needs to improve further and
optimize the system. At the same time, this equipment should be tested in more complex
forest environments to enhance its robustness. Future research should also focus on extracting
other forest attributes, such as stem curves, crown diameters, and tree trunk volume.
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