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Abstract: Optimizing forest plantation management has become imperative due to increasing forest
product demand, higher fertilization and management costs, declining land availability, increased
competition for land use, and the growing demands for carbon sequestration. Precision forestry refers
to the ability to use data acquired with technology to support the forest management decision-making
process. LiDAR can be used to assess forest metrics such as tree height, topographical position,
soil surface attributes, and their combined effects on individual tree growth. LiDAR opens the
door to precision silviculture applied at the tree level and can inform precise treatments such as
fertilization, thinning, and herbicide application for individual trees. This study uses ALS LiDAR
and other ancillary data to assess the effect of scale (i.e., stand, soil type, and microtopography) on
dominant height and site index measures within loblolly pine plantations across the southeastern
United States. This study shows differences in dominant height and site index across soil types,
with even greater differences observed when the interactions of microtopography were considered.
These results highlight how precision forestry may provide a unique opportunity for assessing soil
and microtopographic information to optimize resource allocation and forest management at an
individual tree scale in a scarce higher-priced fertilizer scenario.

Keywords: LiDAR; site index; precision forestry

1. Introduction
1.1. Loblolly’s Pine Importance

Loblolly pine (Pinus taeda L.) is the most prevalent planted forest species in the south-
ern US and covers 14.4 million planted hectares across 13 states [1]. In the context of
plantation management, site index is a measure of site quality that reflects the poten-
tial maximum height productivity of a fully stocked, even-aged stand, and is generally
considered to be independent of stand density [2].

1.2. Dominant Height as a Measure of Productivity

For any given tree, total height is directly related to the tree’s above-ground biomass
and total volume, while merchantable height is based on local specifications for given wood
products [2–4]. Dominant height is defined as the average total height of the dominant and
codominant trees for a given area and is often used to calculate site index [5].
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Due to the difficulty in measuring the total height for all trees within a stand, different
definitions for dominant height have been created, largely founded on field-plot sampling
methodologies. One of the earliest definitions of dominant height was the average height
of the tallest one hundred trees per hectare [6,7]. Other sources define dominant height as
the average height for the largest one hundred trees per hectare, determined by the greatest
diameter at breast height (DBH), measured at 4.5 feet from the ground) [8] In general,
definitions for dominant height for a given area can be placed into three categories [9]:

1. Mean height for a given percentage of the tallest trees;
2. Mean height for a given number of the tallest trees as defined by size/density;
3. The tallest single tree height.

Regardless of the definition used, sampling methods are necessary to obtain an esti-
mate of dominant height. These sampling methods can introduce bias when the tallest trees
are unevenly distributed across the stand [10]. A suggested approach to correcting this
bias involves the random placement of large field plots (>1 ha) to measure at least 100 trees
per plot, across the stand [8]. With regard to field sampling, bias can be addressed if the
plot size can appropriately capture the spatial distribution of tree heights within the given
area [8,11].

1.3. Stand Characterization with Remote Sensing Data

Remotely sensed data such as satellite imagery or LiDAR data provide a unique
opportunity to assess dominant height and site index at finer resolution scales than a stand
level, further classifying a stand into multiple strata to inform the estimations of the site
index. Ultimately, allowing forest managers to obtain a more detailed understanding of
how tree growth varies across different micro-topographical positions within a stand will
create opportunities for increased management action effectiveness that may lead to cost
savings. The acquisition of large-scale, high-resolution ALS data additionally provides an
opportunity to advance the role of precision forestry in assessing site quality and forest
inventory; however, the standardization of a definition for “dominant height” across any
region is needed given the new era of big data in forestry.

Remotely sensed data can mitigate some challenges related to sampling for dominant
height within a stand. For example, ALS point clouds can provide wall-to-wall geospatial
measurements and the locations of tree canopies within a stand. It is also possible to use ALS
point clouds to estimate additional metrics, such as crown length and height to live crown,
for individual trees, as well as total stand biomass [2,12–16]. Commonly applied methods
for determining total tree height from ALS data include the identification of the highest
LiDAR returns within a pre-defined area assumed to represent an individual tree crown [16].
However, total tree height estimation using individual tree crown (ITC) methodologies
from ALS data can provide results that are comparable to field measurements [15,17–19].
For example, Sumnall et al. [15] found an overall R2 value of 0.87 and a Normalized Root
Mean Square Error (NRMSE) of 6.52% between field measurements and LiDAR-derived
measurements for total tree height. With the ability of ALS to provide wall-to-wall coverage
and more accurate estimates of individual total tree height than field measurements within
a stand, the definition of dominant height can be reexamined across different scales. In
most situations, estimating DBH from ALS data is still a challenge as data density plays
a significant role in model accuracy and tends to decrease with closer proximity to the
ground [12]. To solve this point density issue, terrestrial laser scanning (TLS) has been
used to estimate DBH and individual tree volume [13,20–22]; however, scaling these
methods from a few hectares to full stands or the landscape scale has been challenging [20].
Nevertheless, the use of the ultra-high-density drone LiDAR can produce clouds with
thousands of points per square meter, with low-altitude flights and wide scan angles that
resolve individual stem and branch structures [20].
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1.4. Use of Remote Sensing in Precision Forestry

Precision forestry uses information collected from various sensors to optimize spatial
and temporal inputs aimed at maximizing forestland productivity. The goal of preci-
sion forestry is to improve stand productivity and operational efficiencies through high-
resolution data [23]. Several data sources can be used in precision forestry, including
satellite imagery, photogrammetric detection and ranging (PhoDAR), and light detection
and ranging (LiDAR) data. Airborne laser scanning (ALS), which is one method of col-
lecting LiDAR data, penetrates the canopy from above and provides feedback about the
bare earth, forest structure, and understory cover. LiDAR data can be used to measure
individual tree height, which can then be integrated with existing biometric equations [24]
to estimate stand- or tree-level metrics, ecosystem services such as CO2 sequestration,
and other attributes that are important for economic valuation and management plan-
ning. Moreover, when combined with precise digital terrain models (DTMs) and soil
maps, these high-resolution data products provide a unique opportunity to investigate
the drivers of tree height at multiple scales and could replace costly ground-based forest
inventory measurements. Furthermore, ALS produces high-quality metrics that can be
used for creating and validating allometric models that inform the decision process of forest
management [17,18].

The goal of this study is to enhance the characterization of forest stand productivity by
assessing forest inventory methodologies that can benefit from the use of LiDAR-derived
individual tree heights and better within-stand variability measurements to inform stand-
level dominant height and site index estimates for loblolly pine plantations located across
the southern USA. Our objectives were as follows:

1. Assess how scale impacts these estimates for loblolly pine plantations;
2. Compare different definitions of dominant height;
3. Evaluate methods for stand stratification (e.g., soils, topography, and soils plus topog-

raphy), relative to simulations of traditional field inventory sample plot data.

This study makes several contributions to the literature. First, we provide an applica-
tion that uses ALS LiDAR and topographic data to characterize within-stand productivity
for loblolly pine plantations—a globally important supply source of timber. Second, our
analysis demonstrates that while dominant height definitions may be consistent, the per-
centile definition does a better job representing dominant height in contrasting tree densities.
The study also reveals that soil and topography play an important role in dominant height,
even at the sub-stand level, and should not be overlooked. We also develop and demon-
strate a method to stratify and weight site productivity, and provide tools to incorporate
soils and microtopography in management decisions. Finally, we discuss the implications
of our findings for forest managers interested in precision silviculture.

2. Materials and Methods
2.1. Site Locations

Three study sites were located in the southeastern United States, inclusive of Texas,
Alabama, and North Carolina (Figure 1). Eight separate forest stands were captured within
these study sites. The sites in Texas and Alabama each contain two stands, with four
additional stands located in North Carolina. Latitude ranges from 30◦32′′ N to 36◦15′′ N
and longitude from 94◦43′′ W to 77◦58′′ W. Stands at each site are close in proximity, under
10 km apart.
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Figure 1. Location of the three study sites. Study site locations are indicated with a red triangle and
stand locations are identified in the insets ((A)—Texas; (B)—Alabama; (C)—North Carolina).

Across this region, mean annual precipitation ranges from 1298 to 1154 mm and the
mean annual temperature from 20.1 ◦C to 15.6 ◦C (Table 1). The mean annual maximum
temperature varies from 35.6 to 33.1 ◦C, and the mean annual minimum temperature from
3.4 ◦C to −2.1 ◦C [25].

Table 1. Climate data for each study site covering the years 1981 to 2022 [25].

Location
Mean Annual
Precipitation

(mm)

Mean Annual
Temperature

(◦C)

Mean Annual
Maximum

Temperature
(◦C)

Mean Annual
Minimum

Temperature
(◦C)

Alabama 1298 17.3 33.8 0.2
North Carolina 1154 15.6 33.1 −2.1

Texas 1241 20.1 35.6 3.4

All stands were planted with loblolly pine between the years 1994 and 2005 and varied
in size from 13 to 56.5 hectares (Table 2). The majority of stands received a thinning at
16 to 19 years after establishment; two stands, one in Texas and one in North Carolina,
received a thinning at 22 and 27 years after establishment, respectively. Across all stands,
thinning treatments included removing every fifth row. Residual density ranged between
298 and 733 trees per hectare. The stand-level difference in elevation varies between 7.2
and 41.4 m, with the stands in Alabama located at higher elevations than those in Texas or
North Carolina.
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Table 2. Stand overview information including management actions and elevation.

State Stand Area
(ha)

Year
Planted

Age at
Treatment

(Years)

Tree Density
after Thinning

(Trees/ha)

Elevation
Range above
Sea Level (m)

AL
ALNorth1 49.1 2001 19 733 127.1–168.5
ALSouth1 20.4 2002 18 941 118.8–146.0

NC

NCNorth1 16.7 2003 18 443 58.8–88.9
NCNorth2 56.5 2005 16 403 55.7–88.9
NCSouth1 51.5 1994 27 298 52.0–78.9
NCSouth2 13.0 2004 17 401 60.4–79.5

TX
TXSouth1 52.3 2004 17 577 49.3–57.4
TXSouth2 35.8 1999 22 411 42.0–49.2

2.2. Soils and Geology

Soil maps were provided by the Forest Productivity Cooperative (FPC) Site Produc-
tivity Optimization for Trees (SPOT) system’s soil code [26]. These soil maps provide a
comprehensive assessment of factors known to affect tree response to forest management
practices because the SPOT codes characterize soil based on a combination of factors such
as dominant profile texture, depth to an increase in clay, drainage class, three soil modifiers,
geology, and physiographic province. Data sources include the SSURGO database, which
is an effort deriving from more than 100 years of work [27]. The sites located in Alabama
are in the southern Piedmont and contain igneous, sedimentary, and metamorphic rocks
that contain calcium (Ca), iron (Fe), potassium (K), and magnesium (Mg). They have a fine
or coarse loamy texture with varying degrees of drainage ranging from somehow poorly
to well drainage. The North Carolina sites are situated in the transitional area between
the Piedmont and the Atlantic coastal plain. Soil texture varies from silty to fine loamy
and is well-drained. The sites located in Texas are in the Gulf coastal plain physiographic
province and the Lissie formation; these soil units were found to be severely deficient in
phosphorus and have a coarse or fine loamy texture that varies from poorly drained to
moderately well drained (Table 3).

Table 3. Soil occurrences described by the FPC SPOT codes at each stand location.

Site Stand Soil Type (FPC SPOT Codes)

AL
ALNorth1 B4SyxfSrPD and C2WextScPD

ALSouth1 B1WeaoBgPD, B4SyxfBgPD, C2WextBgPD, and C2WextScPD

NC

NCNorth1 B2WekoAuPD and E2WykoAuPD

NCNorth2 B2WekoAuPD

NCSouth1 B2WexvAuPD, B3WekoAuPD, E2WykoAmPD, and E2WyxvAuPD

NCSouth2 B2WexvAuPD, B3WekoAuPD, and E2WyxvAuPD

TX

TXSouth1 B3WeioLbGF, C3MeioLbGF, C3PyaoLbGF, and C3WeioLbGF

TXSouth2 C2MeioLbGF, C3MeioLbGF, C3PyaoLbGF, C4WoioLbGF,
C6MyioLbGF, and C6PyanLbGF

2.3. Data Collection and Processing

Data were collected using multiple aerial LiDAR sensors across the three study sites
over the years 2020 and 2021. Table 4 provides the details for the LiDAR acquisitions.
The choice of sensors was dictated by data availability rather than a deliberate intent
to compare various sensors simultaneously. All the flights were conducted in a parallel
pattern at 400 m above the ground in Alabama, 180 m above the ground in Texas, and
60 m above the ground in North Carolina. All airborne acquisitions used onboard aircraft
navigation and real-time kinematic geographic positioning system with a precision of
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≤10 cm and positional accuracy of ≤5 cm using RiACQUIRE [28]. Re-processing tasks,
such as calibration scan data and strip adjustment, were performed in RiProcess [29].

Table 4. LiDAR acquisition details including dates of collection, and sensor and flight information.
For more details and outcomes from the flight in North Carolina, please see Sumnall et al. [15].

Location Dates of Collection Sensor Pulse Density Flight Line
Overlap

AL January 2020 Riegl 1560ii 26 pulses/m2 60%

NC July 2021 Riegl MiniVux1 20 pulses/m2 80%

TX January–March 2021 Riegl VQ-480 II 289 to 493 pulses/m2 55%

All analyses were completed within R v.4.1.2 [30]. The LiDAR point cloud was
processed to ensure all outliers were removed using the LidR package [31]. We applied the
statistical outlier removal (SOR) tool to identify outliers in the point cloud (e.g., extreme
ground points and extreme canopy points). Filter parameters for this process included the
use of one normal distribution and a k-nearest neighbor value of eight points [31]. The
LAScatalog processing engine was used to segment the LiDAR point cloud into smaller
data files [32] and default parameters for segmentation size were used. After outliers
were removed, we processed the LiDAR point cloud to create two products used in the
analysis: (1) the digital terrain model (DTM) and (2) the individual tree crown (ITC)
segmentation layer.

We performed ground classification of the LiDAR point cloud using the classify
ground function in R, with a progressive morphological filter with window sizes of 3, 12,
and 3 m and elevation difference threshold sizes of 0.1 and 1.5 m [32,33]. The resulting
DTM represents a pixel size of 0.25 m. We generated the DTMs using the grid_terrain
function and the TIN algorithm within the LidR package. Using the DTM, we calculated
the difference between elevation at a central point and the average elevation around it for
a given radius or topographical position index (TPI) [34] for each 0.25 pixel. To calculate
TPI, we used the TPI function within the spatialEco package [35] with an adaptive window
size. The size of the window was different for each site and based on the rate of elevation
change for a given unit area. Hence, we used a smaller window size for sites with a
smaller elevation change and a larger window size for sites with a greater elevation change.
We performed a sensitivity analysis to determine the correct window size by conducting
comparisons between the TPI raster file and known topographical structures within the
stands. The sensitivity analysis indicated that an ideal window size was correlated with
ten times the range of elevation within the stand.

From the DTM, a topographic position index (TPI) layer was created to describe three
microtopography classes: valley, flat, or ridge. For each pixel in the DTM, microtopography
classes were calculated [34] as follows:

1. Valleys—value of less than one negative standard deviation of the TPI;
2. Flat—value greater than or equal to one negative standard deviation but less than one

half standard deviation of the TPI;
3. Ridge—value greater than one half standard deviation of the TP.

We delineated individual tree crowns (ITC) within the LiDAR point cloud using the
ITC segmentation method created by Sumnall et al. [15] for loblolly pine. The detection
of stem locations in this method relies on exploiting the high pulse density of the LiDAR
data. ITCS delineation is based on segmenting the canopy height model (CHM) [12] using
previously detected stems as initial markers. The author reported an average proportion of
missed alive trees of around 8%; however, for low tree densities (618 trees/ha), the method
only missed 1–3%. For each tree crown, we used the tallest returned pulse to determine the
total height and the center of the tree. A microtopography class was assigned to each tree
center. Microtopographic classifications were determined as the mode value for all pixels
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contained within a 2.76 m radius circle around the tree center using the majority option in
the exact_extract function from the exactextractr package [36]. In addition, for each tree
center, we assigned a corresponding FPC SPOT soil code. We removed all trees contained
within a buffer zone of 15 m from the edge of each stand to address any edge effects on tree
height growth for this analysis.

2.4. Data Analysis
2.4.1. Dominant Height Definitions

Three definitions of dominant height were calculated for each stand using all trees
identified from the ITC methodology. In addition, plots were simulated for each stand
and the dominant height values were determined for trees found within each plot. The
simulation included the generation of a grid of 150 m in size randomly placed within each
stand, with a 12.6 m radius circular plot (1/20 hectare) at the “node or centroid” of each
grid cell (total plots within each stand are provided in Table 5). The size and shape used
in the simulation are common in forest inventories for pine plantations [37]. Bar graphs
were created to assess the differences across the dominant height definitions for each stand
and the plot simulation. Based on these differences, one definition was selected for further
analysis of how scale impacts dominant height and site index. The definitions for dominant
height were as follows:

1. Top HT 85—mean height of the 85th percentile of tallest trees;
2. Top HT 100—mean height of the tallest 100 trees per hectare within the stand;
3. Top HT 40—mean height of the tallest 40 trees per hectare within the stand.

Table 5. Summary of LiDAR-derived population tree detection value results by stand, including
the size of the stand, total and mean trees detected, and mean tree height with the corresponding
standard deviation.

Location Stand Area
(ha)

Number of
Trees

Mean Trees
per Hectare

Mean Tree
Height (m)

Number of
Plots Simulated

AL
ALNorth1 49.1 35,537 724 17.3 (1.9) 22

ALSouth1 20.4 19,154 938 17.2 (1.6) 9

NC

NCSouth1 51.5 15,136 294 21.2 (1.7) 26

NCSouth2 13.0 5260 404 17.0 (1.4) 9

NCNorth1 16.7 7296 437 17.3 (1.5) 9

NCNorth2 56.5 22,723 400 17.2 (1.7) 31

TX
TXSouth1 52.3 19,061 365 17.7 (1.2) 24

TXSouth2 35.8 18,585 519 22.0 (2.0) 16

2.4.2. Scale

To assess the effects of scale on dominant height, each stand was stratified into
four scales:

1. Full stand: dominant trees are selected from the tree population for each stand
without stratification.

2. Soil classification: dominant trees are selected from the tree population for each
soil type.

3. Microtopography classification: dominant trees are selected from the tree population
for each microtopography type.

4. Combined soil and microtopography classification: dominant trees are selected from
the tree population for each combination of soil and microtopography.

Each tree center found from the ITC methodology was classified for each scale and the
area within each stand was determined for each classification (Figure 2).
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Figure 2. Stand scale and tree selection process for stand NCSouth1.

To explore the impacts of scale on dominant height, dominant height was calculated
for each class within each scale (e.g., soils, microtopography, and the interaction of soils
and microtopography). Boxplots were created to compare the range of tree heights used
to compute the dominant height value for each soil type for each stand. These boxplots
were compared to the trees used at the full stand scale. In addition, Dunnett’s tests [38]
were conducted to determine if there was a difference between the means for each soil
class compared to the full stand values for each stand. The tests were conducted at the
stand level to ensure the effect of age was removed. Dunnett’s tests were also conducted to
compare each microtopography scale to the full stand values for each stand. For each test,
an alpha level of 0.05 was used to determine statistical significance.

To investigate the interaction of soils and microtopography, we developed heat maps
for each study site. The heat maps visualize the percent differences between the mean
dominant height values at the combined soil and microtopography scales compared to the
full stand scale. Percent difference was used to normalize the information across the [39]
different aged stands.
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2.4.3. Site Index

To assess the impacts of incorporating scale into stand-level site index estimates, a
weighted site index was calculated for each scale and compared to the full stand estimate
for the site index. The site index was calculated using the equation for loblolly pine by
Dieguez-Aranda et al. [39]:

SI = 26.14 + X0
1 + 1455

X0t−1.107
(1)

where t is a base age value of 25 and X0 is as follows:

X0 =
Y0 − 26.14 +

√
(Y 0 − 26.14)2 + 4 ∗ 1455Y0t0

−1.107

2
(2)

where t0 is the stand age and Y0 is the dominant height. Site index values were computed
for each class within a scale and a weighted average was determined for each stand.
Weights were based on the area for each class within a scale:

Weighted SI =
n
∑

i=1

SIi Ai
n
∑

i=1
Ai

(3)

The Wilcoxon test [40] was conducted to determine if there was a difference among
weighted site index estimations across all stands for each scale. For each test, an alpha level
of 0.05 was used to determine statistical significance.

3. Results

The number of population trees detected from the LiDAR point cloud varied from 294
to 938 per hectare, with North Carolina having the lowest-density stands and Alabama
having the highest (Table 5). Mean tree height was consistent at around 17 m for the
majority of the stands, except for two, NCSouth1 and TXSouth2, which were 21.2 and 22.0,
respectively. These two stands are also the oldest in the study. The standard deviation of
mean tree height varied from 1.2 m to 2.0 m across all stands, while the total number of
trees varied from 5260 to 35,527 per stand.

3.1. Dominant Height Definition

The dominant height definitions impact the dominant height value and its correspond-
ing variability (Figure 3). As expected, when dominant height is defined by a given number
of trees per unit area, the mean value increases when the given number of trees per unit
area decreases. This trend is seen across all stands when comparing the forty trees per
hectare to the hundred trees per hectare definition. Also as expected, the spread in the data
increases with an increasing number of trees. Across all stands, the forty trees per hectare
definition provided the largest mean dominant height value. When the definition is based
upon the 85th percentile, the mean dominant height value fluctuates to either higher or
lower than the 100 trees per hectare value. Across the study sites, tree density varies from
365 to 938 trees per hectare, allowing for the percentile method to be adjusted based on
density changes, unlike the other two definitions. Because a percentile definition better
reflects the relative differences across stands with large fluctuations in tree density, the 85th
percentile definition will be used to investigate the impacts of soil and microtopography on
dominant height and site index.
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Figure 3. Dominant height values were computed at the stand scale using the following three
definitions: (1) one hundred trees per hectare, (2) forty trees per hectare, and (3) the eighty-fifth
percentile. The error bars represent the 95% confidence interval for the mean value from the simulated
plot inventory data. The numbers listed inside the bars represent the number of trees used to calculate
the dominant height per definition within a stand.

3.2. Scale
3.2.1. Soils

The number of soil types and their impact on dominant height varies by stand
(Figure 4). The range of height for trees within the 85th percentile varied by state, with
North Carolina having the widest range and Alabama having the narrowest range. In stand
ALSouth1, two soil types were found to be statistically different from the full stand estimate
for mean dominant height and two soil types were not: C2WextScPD and B1WeaoBgPD
(p-values of 0.94 and 0.64). Soil type C2WextScPD, found in stand ALNorth1, was not sig-
nificantly different from the full stand (p-value 0.94) but B4SyxfSrPD was (p-value < 0.01).
Across the four stands within North Carolina, there was one soil type that was not statisti-
cally significant for one stand but was significant for another, B2WexvAuPD (p-values < 0.01
and 0.93). Stand NCNorth2 had only one soil type and was not included in the analysis.
The boxplots show that two of the soil classes in North Carolina have greater variability
when compared to the others, E2WykoAuPD and B2WexvAuPD. The greatest differences in
soil types can be seen in the state of Texas. Three soil types were found to not be statistically
significant when compared to the full stand in Texas: C3WeioLbGF (p-value of 0.08) in
stand TXSouth1, and C6MyioLbGF and C3PyaoLbGF (p-values of 0.61 and 0.17) in stand
TXSouth2. Soil type C3PyaoLbGF was statistically significant for TXSouth1, but not for
another stand (p-value < 0.01).
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3.2.2. Microtopography

The results for microtopography indicate that Alabama has the smallest range of
height values for the 85th percentile trees within the microtopography scale (Figure 5). The
p-values indicate that all microtopography class estimates for mean dominant height are
statistically different from the full stand estimates in North Carolina. In stand ALSouth1,
the mean dominant height for those trees found on a flat is not statistically different from
the full stand estimate (p-value of 0.37), while those on mounds or in valleys show statistical
differences in height. All microtopography class estimates are statistically different from
the full stand estimates in stand ALNorth1. A different trend is seen in Texas, where the
mean dominant height for those trees found in valleys and on a flat is not different from the
full stand estimate in the stand TXSouth1 (p-values of 0.22 and 0.07). For stand TXSouth2,
the mean dominant height for trees found on a flat is not statistically different from the
full stand estimate (p-value of 0.39), while those on mounds or in valleys show statistical
differences in height. In all states, the mean dominant height for trees in a valley is greater
than the full stand estimate, with a very large difference found for Texas.
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3.2.3. Soils and Microtopography

The heat maps below provide a visual representation of how soils, microtopography,
and the interaction of soils and microtopography impact dominant height within the same
region. For stand ALNorth1 in Alabama (Table 6), the percent change in average dominant
height differs by 11 percent, while stand ALSouth1’s percent change is 8 percent. Soil
type C2WextScPD appears in both stands and shows no difference from the full stand
estimate in either stand. Soil type B4SyxfSrPD shows the largest departure from the full
stand estimate at −11%. Microtopography differences are consistent across both stands
for estimates obtained for trees on a mound or in a valley, but the percent change for those
trees in a flat area is different between the two stands. The mean dominant height for those
trees in a valley is 3 percent greater than the full stand estimate, compared to the mean
height of those in a mound, which is 3 percent less than the full stand estimate. The mean
dominant height for those trees found on soil type B4SyxfBgPD in a valley is less than the
full stand estimate, which is different from trees found in a valley on any other soil type.
Dominant trees on a mound in the B4SyxfBgPD soil type are, on average, the shortest, and
those in flat areas in the B4SyxfBgPD soil type are the tallest on average.

Table 6. Heat map for the stands in Alabama with each cell value representing the percent difference
in average dominant height. The average dominant height for each scale was compared to the overall
average for the full stand (labeled in grey). Green indicates a percent difference less than 3, red
indicates a percent difference between 3 and 5 percent, and blue indicates a percent difference greater
than 5 percent. Black indicates no trees in that combination of soil and microtopography.

State Stand Soil Flat Mound Valley Sub Total

AL

ALNorth1
B4SyxfSrPD −9% −11%
C2WextScPD 1% −3% 3% 0%

Sub Total 3% −3% 3% 20.2 m

ALSouth1

B1WeaoBgPD 0% −3% 3% 0%
B4SyxfBgPD 4% −12% −2% 3%
C2WextBgPD −7% −7% −5%
C2WextScPD −1% −8% 2% 0%

Sub Total 0% −3% 3% 19.6 m

A greater range in percent difference is seen across the soil types from North Car-
olina as compared to Alabama. Two soil types show large positive percent differences:
E2WykoAuPD (13 percent) and B2WexvAuPD in stand NCSouth2 (11 percent); however,
B2WexvAuPD shows a slightly smaller percent difference in NCSouth1 (3 percent). Soil
type E2WyxvAuPD shows a large negative percent difference at −7 percent. Trees located
in a valley show a percent increase in average dominant height when compared to the full
stand estimate; those in a mound have a negative percent difference; and those on a flat
show little percent difference. Dominant trees on a mound in the E2WykoAuPD soil type
show a large increase in the percent difference while across all other soil types, dominant
trees located on a mound are shorter on average when compared to the full stand (Table 7).

The stands in Texas show the least amount of variability (Table 8). Percent differences
are more pronounced across different soil types than microtopography. The stands in
Texas have the smallest elevation range. Dominant trees located on flat surfaces within the
C3MeioLbGF soil type are the shortest on average when compared to the full stand and
those within the C3MeioLbGF soil type are the tallest.

3.3. Site Index

The Wilcoxon test indicates that when compared to the full stand estimate for site index,
the weighted estimates using the soils and the interaction of soils and microtopography
are statistically different for an alpha level of 0.05. In addition, the interaction of soils and
microtopography is statistically different from all other scales but not when compared to
the plot simulation values (Figure 6 and Table 9).
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Table 7. Heat map for the stands in North Carolina with each cell value representing the percent
difference in average dominant height. The average dominant height for each scale was compared to
the overall average for the full stand (labeled in grey). Green indicates a percent difference less than
3, red indicates a percent difference between 3 and 5 percent, and blue indicates a percent difference
greater than 5 percent. Black indicates no trees in that combination of soil and microtopography.

State Stand Soil Flat Mound Valley Sub Total

NC

NCNorth1
B2WekoAuPD −1% 0% 1% −1%
E2WykoAuPD 8% 16% 0% 13%

Sub Total −1% −1% 2% 19.7 m

NCNorth2
B2WekoAuPD 0% −2% 3% 0%

Sub Total 0% −2% 3% 19.8 m

NCSouth1

B2WexvAuPD 1% −5% −3% 0%
B3WekoAuPD 0% −3% 3% 0%
E2WykoAmPD 3% 2% 5% 3%
E2WyxvAuPD −7% −7% −7% −7%

Sub Total 0% −3% 3% 23.8 m

NCSouth2

B2WexvAuPD 1% −2% 18% 11%
B3WekoAuPD −2% −5% 0% −3%
E2WyxvAuPD −1% −4% 6% −1%

Sub Total −1% −4% 10% 19.1 m

Table 8. Heat map for the stands in Texas with each cell value representing the percent difference in
average dominant height. The average dominant height for each scale was compared to the overall
average for the full stand (labeled in grey). Green indicates a percent difference less than 3, red
indicates a percent difference between 3 and 5 percent, and blue indicates a percent difference greater
than 5 percent. Black indicates no trees in that combination of soil and microtopography.

State Stand Soil Flat Mound Valley Sub Total

TX

TXSouth1

B3WeioLbGF −1% 1% −3% −2%
C3MeioLbGF −6% −2% 0% −3%
C3PyaoLbGF −1% 0% 1% −1%
C3WeioLbGF 0% 0% −1% 0%

Sub Total 0% 0% 0% 19.3 m

TXSouth2

C2MeioLbGF −2% −2% 2% −1%
C3MeioLbGF 4% 3% 2% 3%
C3PyaoLbGF #NAME? 0% 0% 2%
C4WoioLbGF −4% −5% 0% −4%
C6MyioLbGF −1% 0% 2% 0%
C6PyanLbGF 0% −1% 0% 0%

Sub Total 0% 0% 2% 24.4 m

Table 9. Comparison of weighted site index estimations across all stands for each scale with the
Wilcoxon test. p-values listed in bold indicating statistical significance.

Stand Scale Soils Microtopography Soils and
Microtopography

Plot
Simulation

Full Stand 0.0225 0.0547 0.0078 0.2500

Soils 0.6406 0.0078 0.3828

Microtopography 0.0225 0.3125

Soils and
Microtopography 0.6406
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Figure 6. Weighted dominant height values computed using stand-scale level (i.e., full stand, soil
classification, microtopography classification, and combined soil and microtopography classification)
within three definitions (i.e., forty trees per hectare, the eighty-fifth percentile, and a hundred trees
per hectare).

4. Discussion
4.1. Productivity Definition

Measures of site quality provide land managers with information that is critical to
forestland decision-making processes. Improvements in the accuracy and resolution of site
quality offer the potential to make better decisions regarding tree density choices, potential
localized growth rates, and nutrient availability or response potential from additives such
as fertilizer or herbicide treatments. An increased understanding of these conditions within
a forest stand provides opportunities to minimize costs and increase profitability, as well
as influence additional landowner objectives such as forest health and aesthetics, wildlife
preservation, and/or hydrologic function. Profitability is often assessed as the amount of
current or future merchantable volume available within a stand at a given point in time.
Traditionally, site index has been used as a measure of site quality and has been defined
and spatially confined to within stand boundaries within the southeastern U.S. Burkhart
and Tomé [5] define a stand as a contiguous group of trees, sufficiently uniform in age–class
distribution, species composition, and structure, growing on a site of sufficiently uniform
quality to be a distinguishable unit. Stand boundaries in the southern U.S. typically reflect
localized geographic features such as roads, land ownership, fire breaks, water bodies,
and other physical land features, rather than uniform productivity. The use of remote
sensing data such as satellite imagery, PhoDAR point clouds, and LiDAR point clouds
creates a unique opportunity to assess information at a scale finer than the stand level. The
use of LiDAR point clouds to create tree maps and assess microtopography moves the
metrics available to forestland management decisions closer to those available in precision
agriculture, thus providing the ability to assess conditions and apply management activities
at finer resolutions. This creates the need to understand how traditional metrics such as
dominant height and site index perform at scales other than the stand scale.

4.2. Dominant Height

Dominant height performance is linked directly to the definition used for the calcula-
tion. Sharma et al. [41] investigated seven definitions for dominant height across thinned
and unthinned loblolly pine stands and determined that, in most cases, all seven definitions
produced different results. This study indicates that for stands with sharp differences in
density (e.g., trees per hectare), a more consistent result is achieved using a definition for
dominant height that is based on a percentile of the trees than when using a dominance
selection based on trees per hectare counts [42].

Traditionally, dominant height was determined by measuring dominant trees within a
stand. In some cases, dominant-height trees were selected by placing field plots within the
stand. Determining the correct plot size can be challenging, and bias can be introduced
if the plot size does not appropriately capture the distribution of dominant height within
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the stand [10,41]. This study found that the dominant height was shorter for the simulated
plots when compared to using the full stand tree list developed from the LiDAR point
cloud. This difference in dominant height estimate is likely due to selection bias as the
grid of plots was spaced evenly throughout the stand, capturing a measure of within-stand
height heterogeneity. García and Batho [43] define this selection effect as the phenomenon
of when larger trees within the stand are not located on the plot.

4.3. Influence of Site Variability on Dominant Height

Tree height in the southern U.S. is often influenced by microtopography and soil varia-
tions, which are foundational to defining microsite conditions. Microtopography is defined
as influential topographic variability for individual trees, and it has been described as
small-scale (<2 m) surface variation within an elevation range [44]. Additionally, variations
in soil type (texture, structure, etc.) are often present within traditionally defined stand
boundaries. Between soil types, different soil properties affect vegetation. For example,
soil depth has been found to be an indicator of effective rooting volume [45]. Similarly,
Koirala et al. [46] found strong associations between tree height and water-holding capacity
in surface soil conditions related to soil permeability and aeration in northeastern Texas.
Studies from other geographic regions, such as those by Zhao, Y. et al. [47], have observed
that relative bulk density can limit total tree height for Douglas-fir and lodge pole pine in
British Columbia. The influences of soil type and condition suggest that a combination of
shallow soil depth, low rainfall, and less fertile horizons may slow tree growth [48]. Thus,
understanding the soil attributes across a landscape would lead to improved site index
predictions [49]. Even in relatively homogenous sites, when other resources are limited,
small variations in soil nutrients or water availability can positively influence microsite
productivity [49].

In addition to soils, microtopographic conditions impact dominant height at a finer
scale. Small variations in soil drainage within pine plantations located within the south-
eastern U.S, Western Gulf Coast, are not always caused by broad changes in slope but
rather small topographic changes associated with randomly distributed “pimple mounds”,
circular to elliptical soil mounds ranging from 0.5 to 1.5 m in height and 10 to 30 m in
diameter [50]. Additionally, the presence of a floodplain can lead to an accumulation of
soil organic carbon (SOC) and an increased cation exchange capacity (CEC), providing
vegetation with additional nutrient uptake abilities. This contrasts with higher elevation,
ridge, and spur positions, where a lower CEC may exist due to rainwater leaching, ero-
sion, and past land-use practices that further impact the availability of nutrients such as
potassium (K), which is critical to tree growth [51,52]. Tree growth for some species has
been shown to increase in relation to sediment deposition areas and the presence of more
neutral pH levels [53], which can positively affect CEC. Additionally, during seasonal or
extreme droughts, microtopographic conditions can influence water availability to trees in
lowland areas, where alluvial or erosive soil deposition has increased soil depth and texture,
thereby influencing the water-holding capacity of some areas and supporting the recovery
and resilience of soil health [54]. These microtopographic changes and local topography
influences influence tree growth, soil fertility, and water availability at multiple scales, even
within individual inventory field plots [55,56]. Site index maps have been used to improve
dominant tree height estimates for growth and yield modeling [49,57–60]. Therefore, the
inclusion of high-resolution ALS data for tree height, tree density, and microtopography
could help to predict soil features, like water availability and texture, since soil nutrition
partly depends on the topographical position. The influence of soil and microtopography
on tree height has been acknowledged throughout many forested regions, and thus the het-
erogeneity within a forester-drawn stand is also an aspect of forest management that needs
to be considered. If dominant-height trees are not found evenly throughout a stand, there
may be LiDAR-derived values that can be used to delineate stands to more biologically
representative areas. Similarly, Liu and Burkhart [61] found that increments of total height
were spatially autocorrelated.
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Using ancillary data to map soil types and define dominant trees at a different scale
can lead to better dominant height estimates. We found that soil type influenced dominant
height estimates. For example, the C2WextScPD soil type in Alabama produced a higher
dominant height than the B4SyxfSrPD soil type. The C2WextScPD soil type has a stronger
nutrient availability of C, Fe, K, and Mg, a well-drained soil profile characterized by a
coarse loamy texture, and a shallower depth due to the argillic horizon. In contrast, the
B4SyxfSrPD soil type has good nutrient availability for K, drains poorly, and possesses a
deeper depth due to the increase in clay. Kelting et al. [62] found that for young loblolly pine,
site preparation treatments, and soil productivity indicators explain 87% of the variation
in tree height; and Kelting et al. [63] found that surface soil depth had a weak positive
effect on tree growth. At the study site in Texas, the lowest dominant height values were
found in well-drained soil with a coarse loamy texture, while the soils with wetter drainage
conditions had higher dominant height values. Pangle and Seiler [64] found that soil
moisture limitations in coarse loamy soils can limit microbial activity in loblolly pine. These
results were somewhat anticipated given the body of literature defining the influences of
soil texture, structure, CEC, and water-holding capacity on vegetation development within
both commercial forest and agricultural systems.

Incorporating microtopography metrics resulted in an improvement in the overall
location accuracy of trees exhibiting a dominant height. We found that across all three states,
dominant-height trees located in a valley or lowland positions showed greater total height-
by-age than those found on a mound or in a flat area of similar age. These results are similar
to those described by Borders et al. [52], who found that for loblolly pine sites located near
each other in the Dixon State Forest near Waycross, Georgia, USA, slight elevation changes
create distinct site characteristics. Lorio et al. [65] observed that for loblolly pine located on
wet sites, variations in mycorrhizal surface area were dependent upon localized differences
in microtopography (pimple mounds up to 2 m). The heat maps developed in this study
highlight differences in combinations of soil type and microtopography impact in terms of
measured total height. Changes in total height are observed within and between stands
when either the soil type or the microtopography are held constant. Additionally, the
weighted site index Wilcoxon tests indicate significant differences in weighted site index
when the interaction of soil and microtopography are considered together from location
to location. Care should be taken when considering estimates of tree dominance, and
ultimately site index, at any scale to ensure that the area sampled for each class is large
enough to provide a representative sample and considers the heterogeneity of soil type and
microtopography throughout [66].

4.4. Precision Forestry Using Remote Sensing Data

Conventionally, forest management has focused on using sampled, mean, and stand-
level estimates of forest attributes for planning and management activities within growth
and yield models of projected performance. The research here suggests LiDAR data
can enable a total stand population to be assessed and identify differences in valuable
metrics such as dominant tree height and relative spatial positioning at scales finer than the
stand-level. This differentiation enables us to consider tailored silviculture planning and
management practices such as targeted fertilizer applications to improve forestland resource
investments. Incorporating ancillary data such as soil type maps and microtopography can
improve estimates of variables such as dominant height and site index, which are often
important drivers within growth and yield models. Future research should consider the
potential of using measured tree growth from LiDAR populations to improve soil attribute
mapping for aspects such as depth and water-holding capacity. From the results of this
research, it is suggested that, within the southeastern U.S., stands of loblolly can potentially
be managed at different scales to optimize resource allocation in scenarios of increasing
fertilizer prices and uncertainty in timber prices [4].
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5. Conclusions

ALS LiDAR data collected at or above the densities presented in this work offer a
robust opportunity to characterize total forest stand populations and provide information
at finer scales than previously available to inform forest management practices. The inter-
action of soil conditions and microtopography can play a meaningful role in the average
height of dominant trees within loblolly stands similar to those in this study. However,
the results of this work indicate that slope position and tree density also play key roles in
the height and growth within plantations similar to these. Forestland managers should
consider soil and microtopography within management decisions because, when included
in a weighted site index measure, the resulting values were statistically different from stan-
dard practices within these sites. Additionally, it may be beneficial to employ stratification
techniques when measuring site quality and productivity to prevent bias in measurements
of dominant height when employing them for determining site index, especially in stands
with a wide variety of soil types and microtopographies [67]. Publicly available LiDAR data,
regardless of their low pulse densities, can provide valuable microtopography information
(<2 m DTM), depending on the composition and density of the understory vegetation.
However, LiDAR data with an increased pulse energy and greater pulse densities has
been shown to capture more accurate tree heights and improved tree counts compared to
publicly available datasets. The cost of these mostly private collections may, however, be
prohibitive for some project scales and restrict the ability to create high-quality individual
tree segmentation maps. Lastly, while access to repeated LiDAR datasets may be limited
in many geographic regions, opportunities for using PhoDAR or surface models of tree
canopies in conjunction with LiDAR datasets may provide an option for assessing tree
height changes over time at a stand or sub-stand resolution.
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