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Abstract: Promoting the deployment and application of embedded systems in complex forest scenar-
ios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured
roads, which lack effective artificial traffic signs and reference objects, pose significant challenges
for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In
this research, an unstructured road parameterization construction method, “DeepLab-Road”, based
on tight coupling of multisource information is proposed, which aims to provide a new segmented
architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance
system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the complete-
ness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules
including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions
in a denser manner to improve feature resolution without significantly increasing the model size.
The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar
point cloud information. Combined with the coordinate transformation, a quasi-structured road
parameterization model in the vehicle coordinate system is established. The strategy is trained on
a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental
platform to verify its effectiveness. Experimental results show that the system can meet real-time data
processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable
road centerline, the average matching error between the image and the Lidar was 0.11 m. This study
offers valuable technical support for the rejection of satellite signals and autonomous navigation
in unstructured environments devoid of high-precision maps, such as forest product transporta-
tion, agricultural and forestry management, autonomous inspection and spraying, nursery stock
harvesting, skidding, and transportation.

Keywords: DeepLab-Road; expanded convolutional layer; inverted residuals; lightweight model for
embedded systems; unstructured road recognition in forest region

1. Introduction

Intelligent driving is dedicated to enhancing the adaptability of unmanned vehicles
in intricate and unstructured operating environments, thereby fostering the widespread
deployment of autonomous navigation robots in open-world scenarios. As a typical un-
structured road in forest areas, the effective identification of forest trails can provide
new solutions for the autonomous planning and decision-making of robots in the wild.
Consequently, in forest settings with pronounced unstructured features, the inexorable
developmental trajectory of autonomous navigation robots entails transcending the limi-
tations imposed by confined environments and extending their applications to a broader
spectrum of scenarios [1].
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The commonly used methods for identifying forest roads are aerial photography and
airborne laser scanning (ALS). Aerial photography can be used to locate and measure
roads that are clearly distinguishable from the surrounding forest canopy. The use of
ALS can facilitate road detection in such situations as well as allow road status and width
assessments over large forest areas. However, considering the resolution of aerial images
and the huge computational volume of point cloud data, the use of these methods for
forest road identification is limited [2]. While forest road identification methods based
on convolutional ceural networks (CNNs) have been well developed since 2012, two
major challenges remain regarding road image recognition: (i) deep network models focus
primarily on improving the accuracy rather than efficiency; (ii) similar to structured driving
environments in the United States or Europe, most of the current work is focused on
well-structured driving environments, and it cannot be separated from the assistance of
high-precision maps [3]. The current solution still has considerable limitations in terms
of portability and adaptability in a wider range of forest scenarios and unstructured
road conditions.

To address the uncertainty of passable areas for unstructured scenarios, Zhou et al. [4]
proposed a dual-space fusion road area extraction method based on color channel enhance-
ment and a gray factor optimization for orchard unstructured road recognition, so as to
improve the autonomous navigation ability of the farm picking system. Kausa et al. [5]
used single-step and two-step object detector methods to conduct road detection on the
unstructured road areas in the open dataset to overcome the influences caused by occlusion,
lighting changes, environmental conditions, and viewpoint changes during vehicular oper-
ations. Vasavi et al. [6] amalgamated the YOLOv3 and RCNN algorithms for the purpose
of vehicle detection and classification in the analysis of high-resolution images, specifi-
cally geared towards road target detection during nocturnal conditions. Zhang et al. [7]
utilized the multivariate Gaussian and Laplacian of Gaussian (LoG) filters and VGG 16 on
high spatial resolution multispectral imagery to extract both primary road and secondary
roads in forested areas. However, vanishing point detection is easily misled by cluttered
background and is more aptly applied to structured road scenes.

The utilization of Lidar point cloud data is also prevalent in unmanned vehicle systems
owing to its inherent benefits in providing intuitive distance measurements and effective
obstacle sensing [8,9]. Two-dimensional Lidar is widely used in unmanned vehicles’
environment perception due to its simple structure, small number of point clouds, and
fast computing speed. Palacín et al. [10] proposed a mobile robot self-localization based
on an onboard 2D push-broom Lidar using a reference 2D map previously obtained. Self-
localization with a 2D push-broom Lidar is possible by projecting the scan points in the
horizontal plane of the 2D reference map before applying a 2D self-location algorithm.
Hassan et al. [11] propose a map correction method with planar environmental constraints,
which introduces a complementary filter with moving average filtering for Lidar pose
estimation to overcome severe 2D point vibration. Zhang Bin et al. [12] proposed a novel
global feature point matching-based loop closure detection algorithm, which created a
tightly coupled front-end to mitigate front-end accumulated errors and construct globally
consistent maps. In general, high reliability and high confidence perception based on
the fusion of 2D Lidar and other sensors remains one of the exploration directions for
lightweight models [13].

Direct 3D point cloud semantic segmentation is directly processed by neural network
models, such as the MVCNN and SnapNet algorithms [14]. Indirect 3D point cloud
semantic segmentation methods include the multi-view-based method and voxel-based
method [15,16]. Their essence lies in employing a shared multi-layer perceptron to learn
the relevant features of point clouds; solve the problems of non-homogeneity, sparsity, and
permutation of point clouds; and improve the efficiency of semantic segmentation of point
clouds. While 3D point clouds adeptly capture object shape, size, attitude, and positional
information, they exhibit irregularity, disorder, and inconsistent density [17,18]. These
methods exhibit relatively high computational complexity [19].
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With the swift advancement of multi-sensor fusion technology, the effective integra-
tion of 2D images into point clouds remains a difficult problem [20,21]. In view of the
development of visual SLAM (simultaneous localization and mapping) algorithms, it is
important to integrate the features of Lidar point cloud depth information to improve
the stability of attitude estimation and local map construction in unmanned navigation
systems [22,23]. However, reconstructing the objective function and calculating residual
and iterative optimization based on image features and depth information increase the
complexity of the problem [24].

In unstructured forest scenes, intelligent roadside extension structures exhibit im-
perfections that render them incapable of achieving global positioning. It suffers from
an absence of effective reference objects and artificial marks, which are characterized
by pronounced nonlinearity and uncertainty. This paper introduces “DeepLab-Road”, a
lightweight and portable nonstructural road identification strategy. The primary contribu-
tions of our study are threefold:

• Aiming at unstructured forest road detection and recognition tasks, a lightweight
DeepLab-Road algorithm is proposed. To ensure image segmentation accuracy, the
number of parameters in the algorithm was considered, and the portability and real-
time operation of the algorithm on a flexible and lightweight forest autonomous
navigation platform were fully guaranteed.

• By combining image recognition and 2D Lidar data, a quasi-structured road was
rapidly constructed based on unstructured road image recognition. Parametric con-
struction of unstructured roads presents a framework for autonomous navigation
vehicles to develop local map coordinates and conduct independent terrain explo-
ration, particularly in environments where satellite signal rejection is prevalent.

• A high-quality unstructured road dataset, the Unstructured Road Scene Dataset (URSD),
compensates for the extreme lack of unstructured road open datasets in the field of
autonomous navigation and provides a new communication and learning platform for
scholars and artists of autonomous navigation and visual inspection research.

2. Materials and Methods

This section introduces the preliminary experimental preparation and the DeepLab-
Road model, detailing the network backbone and optimization strategy. This model strives to
balance the accuracy and real-time performance of unstructured semantic road recognition.

2.1. Dataset Construction

In the realm of vision-based autonomous navigation architectures, the creation of
extensive and comprehensive datasets encompassing various physical conditions such as
lighting, weather, temperature, and environmental noise poses a formidable challenge.
Over the past decade, the most illustrious vehicle datasets and benchmarks have emerged,
including the BIT Vehicle Dataset [25], Comprehensive Vehicle Dataset [26], KITTI Bench-
mark Dataset [27], MotorBike7500 [28], CamVid [29], and Cityscape [30], among oth-
ers. These datasets are meticulously crafted to expedite the development of Intelligent
Transportation Systems (ITSs) and enhance the precision of Vehicle Type Classification
(VTC) [31,32]. However, their acquisition predominantly focuses on urban structured road
scenes with robust infrastructures [33–36], revealing a conspicuous gap in the distribution
of sample data for unstructured forest scenes.

Therefore, since the project’s inception, we have been consistently engaged in data
collection and database construction. The focus of the experimental data collection was
primarily on unstructured outdoor scenes. In the dataset construction process, it is crucial
to ensure mutual independence between the data and eliminate multiple similar images in
the same scene to maximize the inter-class variance of the dataset. We compiled comprises
than 8000 images capturing diverse unstructured scenes. These include landscapes such as
forests, grasslands, farmlands, parks, and rural roads in different seasons. It establishes
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an essential database and platform support for subsequent image processing algorithm
development and outdoor experiments using an autonomous navigation platform.

It is worth noting that during the dataset construction process outlined in this article,
we received significant inspiration and assistance from a fellow scholar in the construction
of the RUGD dataset [37]. Therefore, approximately 783 sample images that met the
requirements of the RUGD were selected for URSD construction.

2.2. Experimental Platform Construction

The data collection and algorithm validation are integral components of the exper-
imental platform’s construction. To meet the experimental requirements, a self-made
Ackermann chassis unmanned ground vehicle (UGV) test platform (simulate the structure
of forestry skidders) was designed. Additionally, a test environment meeting the specified
conditions was configured. The epigynous machine was implemented on a PC with an
Intel Core i7-10875H CPU @ 2.5 GHz and 8 GB of RAM with Linux 16.04 and ROS-kinetic.
Two-dimensional Lidar (HOKUYO UST_10LX) was selected to obtain point cloud data. The
effective detection distance was 10 m. The scanning angle was 270◦. The image collected
by the CCD vision camera (LRCP10230_1080P from Zhongweiaoke corporation, Shenzhen,
China) was 640 (pixels) × 480 (pixels). Shown in Figure 1 is the self-built UGV for this re-
search. The experimental platform adopted the design structure of wood transport vehicles,
with a tractor using the Ackermann chassis structure and the trailer using an unpowered
four-wheel trailer. The dimensions of the tractor and trailer were consistent: the length of a
single vehicle body was 970 mm; the width was 680 mm.
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Figure 1. The self-built field UGV platform equipped with a CCD monocular vision camera and a
2D Lidar. (1) CCD monocular vision camera; (2) 2D Lidar; (3) sensor bracket; (4) gyro; (5) Ackerman
chassis; (6) epigynous machine.

In order to ensure the accuracy and efficiency of multi-sensor information fusion, a
joint calibration method using a visual camera and 2D Lidar was developed and verified
in the experiment (including the calibration of spatial dimension and the calibration of
time dimension). Detailed information about the calibration method can be found in our
previous research [38,39].

The Lidar and the visual camera were 1.00 (m) and 1.10 (m) away from the ground,
respectively. The experiments involved in this research are based on this UGV platform.
The external parameters of the 2D Lidar and the camera were calibrated, and the result was
as follows:

R =

 0.0042155 −0.84729 −0.0080126
−0.062474 0.0033087 −0.84730

0.87894 0.0016213 −0.047311

 (1)

T =
[
−0.015349 0.031108 −0.25579

]T (2)

2.3. DeepLab-Road Model Architecture

This section introduces the DeepLab-Road model, detailing the network backbone and
optimization strategy. This model strives to balance the accuracy and real-time performance
of unstructured semantic road recognition.
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Unlike structured roads, unstructured road images collected in the forest scenarios
exhibit varied textural features, inconspicuous feature clutter, and irregular road shapes
and boundaries. It is challenging to extract and identify unstructured road areas because
of these nonstructural features. Preliminary experiments revealed that common network
models could not be directly applied to unstructured road image segmentation tasks.
The existing challenges are primarily reflected in three aspects: (i) traditional networks
have complex backbone feature extraction networks and a deeper network structure,
leading to potential difficulties in training and deployment; (ii) the long-range contextual
information in the image has not been fully utilized, which has been proven highly effective
in unstructured road segmentation; (iii) the multi-scale features generated by atrous spatial
pyramid pooling in traditional networks have limited feature resolution in the scale axis
and are not dense enough for the unstructured road segmentation scenario.

In response to these issues, a DeepLab-Road Model was designed in this study. As
shown in Figure 2, the model utilizes MobileNetV2 as the backbone network and incorpo-
rates stripe pooling and DenseASPP into the encoder. The first layer within these bottleneck
blocks employs a pointwise convolution with a convolutional kernel size of 1 × 1, thereby
enabling dimensionality expansion. The second layer involves a separable deep convolu-
tion with a spatial extent of 3 × 3. Finally, the concluding layer consists of a convolution
with a spatial extent of 1 × 1. Additionally, the inverted residual structure can facilitate
comprehensive feature extraction and mitigate the risk of gradient loss.
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Figure 2. DeepLab-Road network framework structure.

Then, a DenseASPP structure was incorporated into the backbone network. It com-
bines void convolution and void space pyramid pooling to create a denser feature pyramid
and a larger receptive field. DenseASPP achieves richer feature proportional sampling
and information sharing by cascading and densely connecting cavity convolutional layers
with different expansion rates. So, it can improve the recognition accuracy of the network,
and it is particularly suitable for processing high-resolution images and tasks that require
capturing a large range of contextual information.

On this basis, the strip pooling strategy is further introduced to reconsider the formula
of spatial pooling, so as to enable the backbone network to model the remote dependency
effectively. It collects rich contextual information by utilizing pool operations with different
kernel shapes to explore images with complex scenes. For each spatial position in the
pooled feature map, it encodes its global horizontal and vertical information, and then uses
these encodings to balance its own weights for feature optimization. It can be used as an
effective plug-and-play module in existing scene analysis networks.
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2.3.1. MobileNetV2 Backbone Network

To enhance the speed of unstructured road recognition and reduce the model size,
the lightweight network MobileNetV2 is selected as the backbone for DeepLab-Road. The
MobileNetV2 model integrates the benefits of deep separable convolution and the inverted
residual structure. Specifically, depth separable convolution offers significant advantages
in reducing model parameters. The inverted residual structure is advantageous due to the
inclusion of a “skip connection” linking the input of the convolutional layer to the output
layer, facilitating comprehensive feature extraction and mitigating the risk of gradient loss.
Figure 3 illustrates a MobileNetV2 network tailored for unstructured road detection and
recognition tasks in forest scenarios.
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Figure 3. MobileNetV2 backbone network.

The MobileNetV2 model predominantly comprises convolutional, bottleneck, and
pooling layers. The bottleneck blocks in their cores consist of three integral layers. The first
layer within these bottleneck blocks employs a pointwise convolution with a convolutional
kernel size of 1 × 1, thereby enabling dimensionality expansion. The second layer involves
a separable deep convolution with a spatial extent of 3 × 3. Finally, the concluding layer
consists of a convolution with a spatial extent of 1 × 1, which plays a pivotal role in
the dimensionality.

The fundamental concept of the algorithm revolves around substituting the complete
convolution operator with a decomposed convolution operator and partitioning the singu-
lar convolution into two distinct layers. The empirical findings suggest that these layers
exhibit comparable performance to traditional convolution, albeit at a discernible cost:

C = hi × wi × di

(
k2 + dj

)
(3)

where hi × wi × di is standard convolution input tensor; hj × wj × dj is the output tensor;
k ∈ Rk×k×di×dj is the convolutional kernel. Depthwise separable convolution effectively
reduces computation compared to traditional layers by a factor of k2.

The network architecture comprised an initial convolutional layer with 32 output
channels, followed by 19 residual bottleneck layers. The selection of ReLU6 as the nonlinear
activation function stems from its robustness in low-precision computations. Except for
the first layer, a uniform expansion rate is maintained throughout the network, empirically



Forests 2024, 15, 1559 7 of 17

falling within the range r ∈ [5, 10]. Given the specific focus on unstructured road area
delineation in the context of this study, which excludes the complexities of multi-objective
segmentation tasks, a judicious balance between curve performance and computational
efficiency guided the selection of an expansion rate r = 5.

In the course of model training, adjustable hyperparameters, such as the input image
resolution and width multiplier, play a pivotal role in tailoring the architecture to distinct per-
formance criteria. The dataset maintained an image resolution of 640 (pixels) × 480 (pixels),
with width multipliers spanning from 0.3 to 1.5. This configuration results in network
models ranging in size from 5.7 (MB) to 30.9 (MB).

2.3.2. DenseASPP Module Design

In the context of the MobileNetV2 backbone network experiment, the model employed
in this study ingested high-resolution images within the autonomous driving domain. To
augment the receptive field of the convolutional kernel, an expansion rate is required. In
addition, forest unstructured road regions in open scenarios exhibit significant uncertainties
and variances, posing a formidable challenge to high-dimensional feature representations
where accurate encoding of scale information is crucial. To address the issue of generat-
ing features with large receptive fields without compromising the spatial resolution, the
DenseASPP structure (Figure 4) was incorporated into DeepLab-Road. This integration
enhanced the classification robustness of the model.
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DenseASPP can be expressed as follows:

yl = Tk,ql
({yl−1, yl−2, · · · , y0}) (4)

where ql represents the l layer expansion rate and T denotes the cascade operation, rep-
resenting the connection of the output features from the previous layers. As shown in
Figure 4, DenseASPP stacks all extended convolutions and creates a dense joint. Informa-
tion from the previous layer is shared between atrous convolution layers in the form of step
connections. Therefore, the neurons that generate intermediate features can encode seman-
tic information at different scales. In this study, DenseASPP used dilation convolutions
with dilation rates of 3, 6, 12, and 18.

R = (d − 1)× (k − 1) + k (5)

where R represents the actual receptive field and k represents the convolutional kernel
size. At the same time, in order to control the model size and prevent the convolution
layers after fusion from being too wide, 1 × 1 convolution operation is added before each
convolution layer. This allows for the depth of the feature map to be compressed to half the
original, and continue to participate in the output size control later on. The parameter size
of DenseASPP can be calculated by the following formula:

S =
L

∑
l=1

[
cl ×

c0

2
+

c0

2
× K2 × n

]
(6)
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where c0 is the initial input feature number; cl is the number of input features before the
first void convolution; K is the size of the convolution kernel; L is the number of atrous
convolution in DenseASPP and n = c0/8.

In the DenseASPP of the DeepLab-Road model, only convolutions with expansion
rates of (3, 6, 12, 18) are used. Previous empirical observations suggest that as the expansion
rate of atrous convolutions increases, especially when d > 18, the efficacy of feature extrac-
tion experiences a gradual decline. Prudent management of the expansion rate proves
advantageous in achieving an equilibrium between receptive field dimensions and feature
extraction efficiency. DenseASPP amalgamates the merits of both parallel and serial atrous
convolution layers, thereby effectively mitigating the issue of vanishing gradients and
constraining parameter proliferation.

2.3.3. Stripe Pooling

In the field of autonomous driving, continuously capturing the strong correlation of
contextual information in video images provides a means of improving the generalization of
the model. The continuous acquisition of contextual information and its strong correlations
within video frames constitute a promising avenue for augmenting model generalization.
Given the intricacies of unstructured road recognition tasks, it is imperative to capture
long-range contextual information. Stripe pooling has emerged as a crucial strategy for
acquiring extensive contextual information in pixelwise prediction tasks, as substantiated
by its demonstrated efficacy in empowering backbone networks to effectively model long-
range dependencies. Accordingly, the stripe pooling strategy was integrated into the
DeepLab-Road (Figure 5).
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brightness values).

The introduced module functions as a plug-and-play component, demonstrating its
effectiveness in existing scenario resolution networks. Each position within the output
tensor was permitted to establish relationships with multiple positions, both vertically
and horizontally, in the input tensor. Through the iterative application of the aggregation
process, comprehensive remote dependencies across the entire scenario can be established.
Additionally, owing to its fundamental multiplication operation, the proposed spatial
position multiplexer (SPM) can be construed as an attention mechanism, facilitating its
direct application to any pretrained backbone network without requiring retraining. The
expression is as follows:

yh
i =

1
W ∑0≤j≤W xi,j,yw

j =
1
H ∑0≤j≤H xi,j (7)

y = yh
i + yw

j (8)
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z = Ew(x, σ( f (y))) (9)

where y ∈ RC×H is the two-dimensional tensor of the output; x ∈ RC×H×W is the two-
dimensional tensor of the input; H and W are the dimension of stripe pooling windows.
z ∈ RC×H×W is output feature map. f represents the convolution with size of 1 × 1, σ
represents the function of sigmoid, and Ew represents element-wise multiplication.

3. Results

This section introduces the experimental results of image recognition based on DeepLab-
Road and the preliminary construction of pseudo-structured roads.

3.1. Experimental Environment Configuration

The unstructured road recognition experiment was conducted on a deep learning
server running Ubuntu 16.04 as the operation system. The deep learning servers were
equipped with an Intel (R) Core (R) i7-10875H CPU @ 2.5 GHz processor, an NVIDIA
GeForce RTX 2060 graphics card with 24 GB memory, 32 GB RAM, and 4 TB hard disk.
Pytorch 1.7.1 was used to construct the unstructured road recognition model. Python 3.8.10
was used as the programming language, Pytorch as the framework, CUDA 11.1 as the
GPU computing platform, and cuDNN v8.0.4 as the GPU acceleration library. Mini-Batch
size was 8. Learning rate was 0.0002. Weight decay Was 0.00001. To ensure algorithmic
effectiveness and generalizability, a comprehensive collection of unstructured road data
from diverse field scenes was actively pursued.

Figure 6a–d were sourced from the RUGD public dataset, and the remaining figures
were derived from our self-constructed URSD dataset. The experimental results show
that both subjective and objective considerations indicate significant influence of seasonal
variations on the image features within the scene’s target regions. Therefore, in the URSD
set, the unstructured scene includes three different seasons: spring, summer, autumn, and
winter. From another perspective, the URSD dataset also includes pavements with differ-
ent surface structures: vegetated pavements (Figure 6a), gravel pavements (Figure 6b,c),
pavement covered by fallen leaves (Figure 6d,e), dirt roads (Figure 6f–i), flagstone roads
(Figure 6j–m), road surface overexposed by camera (Figure 6n,o), some partially melted
snow (Figure 6o), and a snow-covered road surface (Figure 6p).
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3.2. Parameterized Construction of Quasi-Structured Roads

Owing to the complexity of the unstructured scene backgrounds and real-time re-
quirements of the algorithm, the experiment specifically focused on unstructured road
areas. It employs a single road label without making specific distinctions or recognizing
the semantics of nonroad parts. The road area was considered the foreground, and the
nonroad area was considered the background. Therefore, this experiment can be viewed
as a single-classification experiment. Figure 6 corresponds directly to Figure 7, where the
unstructured road area is highlighted with a red mask.

It is evident from the figure that the unstructured road areas were accurately identified
and segmented. Even in relatively challenging environments (Figure 7), the overall seg-
mentation was satisfactory. In Figure 7a–d, there is a large amount of weeds or gravel in the
road area, and In Figure 7e, even if approximately two-thirds of the areas on both sides of
the road are covered with fallen leaves, the unstructured road areas can still be accurately
segmented, and the masked area represents the road area. In Figure 7f–h, there is minimal
difference in color space dimensions and visual perception between the masked area and
the adjacent region; in Figure 7i,j, the road boundaries are very irregular; in Figure 7k,l, the
UGV is placed at the boundary of the road, and the road area is not in the visual center;
in Figure 7m, the interplay of sunlight casts shadows from the tree canopy onto the road
surface; in Figure 7n,o, obviously, the effectiveness of road boundary planning needs to be
improved. Overexposed road surfaces and forest roads covered with snow lost some of
their original color and texture features, resulting in a consistent color and texture across
the entire ground, which may be fatal to our model.

The pseudo-structured road is generated to solve the problem of an irregular road
boundary under image segmentation. The boundary of the mask area is irregular and
tortuous, which can cause frequent and drastic changes in the direction control commands
during the control process, making it impossible to ensure the stability and comfort of
the vehicle tracking system. Such road boundaries directly guiding the navigation of
autonomous driving systems may lead to catastrophic consequences. Therefore, it is
necessary to perform smooth fitting for pseudo-structured roads. The binary image was
derived from the mask image, and the boundary delineation of irregular unstructured roads
was expeditiously accomplished using the Sobel edge detection algorithm. Subsequently,
the furthest point was employed as the pivotal boundary point for the segregation of
the left and right borders. Cubic Bessel curve fitting was performed based on the image
coordinates of the sampled points. The green curve represents the fitted road boundary
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line, whereas the black curve represents the road centerline calculated based on the road
boundary line.
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Figure 7. Unstructured road region segmentation and preliminary construction of quasi-
structured roads.

The DeepLab-Road model demonstrates noteworthy segmentation efficacy in such
scenarios. From a quantitative analytical standpoint, the delineation of boundaries for these
roads is more explicit compared with their unstructured counterparts, yielding a superior
and more precise segmentation outcome. Thus, preliminary construction can be achieved
by moving from image segmentation to quasi-structured roads.

It should be noted that the images of forest trails in Figures 6 and 7 correspond
one-to-one, meaning that the image in Figure 6 is the original image captured by the
vehicle-mounted camera, and Figure 7 shows the corresponding algorithm processing result
proposed in this study. The collected images were uniformly 640 (pixels) × 480 (pixels).

3.3. Reprojection of Images and 2D Point Clouds

The semantic segmentation results of the image lack distance information, so com-
bining point cloud information is necessary to construct complete road information in the
vehicle coordinate system. Therefore, quasi-structured road construction is considered to
provide local coordinate information for the tracking control of UGV in forest scenarios.
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Building upon the joint calibration outcomes of the CCD camera and 2D Lidar, a
reprojection of the point cloud onto the image was executed. The distance information of
the point cloud is assigned to the corresponding pixel along the fitted boundary line, leading
to an extension of the pixel coordinate vectors. Subsequently, the positional information of
the road boundary is transformed into the actual local scene coordinate system through a
continuous sequence of coordinate transformations involving image, camera, vehicle, and
world coordinates.

In Figure 8, the green dashed line represents the road boundary fitted to the image.
The set of white points is the horizontal line scanned by Lidar. d2 is the reference distance
for camera and Lidar calibration. d1 is the width of the road boundary in the image. p1 is
the number of pixels corresponding to d1. p2 is the number of pixels corresponding to d2.
The mathematical description is as follows:

d1

d2
=

p1

p2
(10)

According to the proportional equation, d2 can be obtained as follows: Despite the
utilization of 2D Lidar in the proposed scheme, the dynamic movement of the vehicle
ensures that the area covered by the point cloud signal encompasses the entire road surface.
The unstructured road boundary was parameterized within the local coordinate system,
and a smoothed road centerline was fitted using this parameterization. By leveraging a
coordinate conversion algorithm, the parameterized road centerline is directly applied
to guide the UGV (details of the quantitative evaluation of quasi-structured roads are
presented in the next section).
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segmented images.

4. Discussion

In this section, a quantitative evaluation of unstructured road segmentation and the
precision of quasi-structured road fitting is presented to thoroughly assess the effectiveness
and feasibility of the research.

4.1. Evaluation and Comparison of Image Segmentation Effect

To comprehensively evaluate the open-scene semantic recognition proposed in this
study, six widely used image segmentation algorithms were selected for training and
testing on the Unstructured Road Scene Dataset.

As shown in the Figure 9, the first column is the original data sample. The image
segmentation methods corresponding to the second to eighth columns are as follows:
(a) Original image, (b) SegNet, (c) FCN, (d) U-Net, (e) PSPNet, (f) UperNet, (g) DeepLab
V3+, and (h) DeepLab-Road. The last column shows the segmentation result of the proposed
algorithm DeepLab-Road. The segmentation outcomes are visually presented in the form
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of binary images. The red area is the road area recognized by each algorithm, and the black
area is the background area.
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The SegNet model was the first model to be compared because it was first used on
mobile devices such as FPGA, and scholars have also made lightweight optimizations.
It exhibits relatively good performance in structured scenes with clean environments,
regular target areas, and consistent background textures. However, in a forest scene and
unstructured road environment, the image segmentation effect must be improved.

Compared with the SegNet model, U-Net and DeepLab V3+ significantly improved
the segmentation of unstructured road areas. The segmentation results of these two
algorithms have fragmented patch areas that are scattered over the entire image. Although
this method can improve the accuracy index of image segmentation to a certain extent,
it causes disastrous problems in subsequent road boundary extraction, quasi-structured
road construction, and autonomous navigation system tracking control. Subjectively,
the segmentation results of the other algorithms satisfied the preliminary requirements.
Therefore, we will further quantitatively evaluate the image segmentation results according
to multiple image segmentation indicators.

The results of the algorithm were compared with those of manual calibration to
evaluate the image segmentation effect of the algorithm. Owing to the tedious and time-
consuming task of manually labeling the dataset, 800 images were randomly selected
from the test set constructed in this study. These images are manually segmented and
calibrated at pixel level using the annotation tool “LableMe” for unstructured road areas.
The calibration results were compared with the algorithm fitting results. The comparison
results are presented in Table 1.

Table 1. Quantitative evaluation results of comparative studies on URSD.

Model MPA (%) MIoU (%) FWIoU (%) Parameters (M) MS (MB) Ave Time (ms)

SegNet 90.26 85.66 88.25 16.31 124.55 95
FCN 92.13 86.05 88.36 134.27 1095.68 701

U-Net 92.14 87.99 90.12 26.36 201.19 167
PSPNet 92.85 88.74 90.71 51.43 392.76 255

UperNet 93.20 89.08 90.98 126.07 962.62 582
DeepLab V3+ 93.49 89.27 91.12 59.34 453.47 247

DeepLab-Road 94.86 89.48 91.18 15.13 58.03 83

The three most representative image accuracy indicators—MPA (mean pixel accuracy),
MioU (mean intersection over union), and FWIoU (frequency-weighted intersection over
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union)—are listed in Table 1. In the statistical sample, the performance of these three
indicators for the SegNet model in this dataset was inferior to that of the other algorithms,
which is consistent with the intuitive perception shown in Figure 9b. The indices of the
other algorithms exceed 91%. Compared with the segmentation results of the DeepLab
V3+ algorithm, the algorithm proposed in this study is also slightly superior in the image
segmentation task of unstructured road scenes.

To comprehensively assess the real-time performance and portability of the algorithm,
we introduce metrics such as the number of model parameters (Parameters) and memory
occupancy indexes (MS) in Table 1. Notably, there exist substantial disparities in these
two parameters among various models, as delineated in the table. Under comparable
image accuracy conditions, the proposed model in this study exhibits a parameter count
approximately one-fourth that of DeepLab V3+, with memory consumption amounting to
merely 12.79% of DeepLab V3+’s memory footprint.

For embedded system models, a delicate balance between the model segmentation
performance and parameter efficiency has critical practical significance. The average pro-
cessing time per frame (Ave Time in Table 1) for the proposed algorithm was 83 (ms),
thereby satisfying the minimum requirement of 12 (frames/s) for continuous video im-
age processing.

4.2. Quasi-Structured Road Parameterization and Error Evaluation

Based on image segmentation, matching between the pixel points and point cloud
provides an important guarantee for the parameterization of the road model.

Therefore, it is necessary to further analyze the road detection error under the remap-
ping relationship based on the experimental results. An analysis of the reprojection errors
is shown in Table 2.

Table 2. Remapping error analysis.

Distance Eup (pixel) Evp (pixel) Eud (m) Evd (m) Eξ (m)

1 m–2 m 23.614 3.014 0.075 0.007 0.035
2 m–3 m 27.851 3.537 0.122 0.012 0.050
3 m–4 m 31.926 4.028 0.191 0.022 0.079
4 m–5 m 34.864 4.293 0.242 0.026 0.108

In the table, Eup and Evp refer to the U-axis and V-axis pixel average errors between
the road boundary pixel sampling point and the corresponding point cloud, respectively.
Because more distant pixels in the image represent greater distances, both the horizontal
and vertical mean errors of the road boundary sampling points increased with increasing
distance. In contrast, the U-axis error of the road boundary was larger. Given the char-
acteristics of the control process, the influence of the lateral error on the vehicle heading
angle and stability is particularly evident. Eud and Evd were introduced to provide a more
direct reflection of the fitting error and denote the actual errors corresponding to Eup and
Evp, respectively.

During the control process, the road model and control parameters are dynamically
updated. The step size and gait of the first few steps in trajectory planning had the greatest
impact on the UGV posture adjustment. In addition, unmanned ground vehicles in complex
outdoor environments typically operate at a low speed (v < 1.5 m/s). Therefore, the error
analysis range remained within 5 (m) ahead of the UGV. In the experiment, errors were
measured at 1 m intervals.

Eξ refers to the lateral average error of the sampling points along the road centerline.
The road centerline is derived through the averaging of sampling points corresponding
to the left and right boundaries, akin to achieving mean filtering. This process effectively
diminishes the fitting error of the road centerline. The maximum average error of the
road centerline within a 5 m range is recorded at 0.108 (m). The average relative error is
constrained to not exceed 6%. Most of the proposed road widths are within the range of
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2 (m)–4 (m). Consequently, there is a strong alignment between image and radar data,
affirming that the road model fulfills the requirements for localization and tracking.

5. Conclusions

Forest roads are important features of the environment that have significant impacts
on forestry equipment automation and unmanned forest operation. Aiming at the issue
of the insufficient generalization ability of intelligent navigation systems in current for-
est scenarios, this study proposes a lightweight quasi-structured road recognition and
reconstruction scheme, DeepLab-Road, suitable for embedded systems. This algorithm
has good real-time performance, strong robustness, and environmental adaptability. It
can provide more accurate parameterized road models for unmanned ground vehicles
to navigate in unstructured scenes. This technology has important application value in
promoting the autonomous navigation of intelligent robots in unstructured scenarios, such
as forest scenarios, port and dock cargo handling, urban underground space exploration,
harsh battlefield environment investigation, independent picking on farms, and forest
nursery care.

This study focuses on autonomous navigation technology for unstructured road scenes
in forest scenarios and proposes a lightweight quasi-structured road recognition and re-
construction scheme DeepLab-Road suitable for embedded systems. This model uses
MobileNetV2 as the backbone network and integrates DenseASPP and the string pooling
plug-and-play module to meet the balance between real-time performance of forest engi-
neering vehicles in outdoor environments and image segmentation accuracy. Combining
reprojection technology, the detailed geometric shape and topological information of road
boundaries provide accurate and guiding directions for the optimal route for vehicles
and humans. At the same time, to some extent, it overcomes the problem of real-time
computation difficulties in practical application scenarios caused by the redundancy in 3D
point cloud data and the lack of clear and unified point cloud data structure features. The
construction of pseudo-structured roads provides a parameterized road model for local
UGV navigation lacking satellite signals and high-precision map support.

The main contributions of this study also include the self-built dataset URSD. It mainly
includes unstructured road data in open scenarios, and the data consistency of this dataset
is good. Eliminating interference from factors such as lane lines, traffic lights, people, and
vehicles in traditional unmanned driving datasets as much as possible, it enables scholars
and models to focus on unstructured road areas. All data samples come from the collected
original images, without involving image rotation, image flipping, noise addition, or other
extensions. When new samples appear, the training system can be upgraded and updated
by adding them to the training set to expand the samples, train, and update the model.
This means that the system has good plasticity, robustness, and portability. The dataset that
matches the images and point clouds will be systematically curated, disseminated, and
showcased in forthcoming research efforts.

Further improvement and optimization are needed in terms of the model architecture.
This model replaces deep neural networks with multiple small parallel networks to achieve
similar effects to deep neural networks. Multi-line parallelism requires a sufficient number
of independent processing units on the CPU or GPU to meet parallel network requirements.
Experiments show that when the number of independent CPU cores or independent GPUs
is limited, it significantly limits the computational speed of the model. This indicates that
our model has a high dependence on computer hardware performance.

It is noteworthy that the dataset explicitly excludes winter scenes with snow-covered
roads. In practice, we did capture some unstructured road scenes post-snowfall during
winter. However, the homogeneity of color and texture between the foreground and back-
ground in images depicting snow-covered roads poses a challenge for feature extraction.
This complexity misguides the trained model and introduces confusion and complications.
In subsequent endeavors, we plan to extensively augment the dataset and undertake further
research and exploration into this particular issue.
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