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Abstract: Precise forest inventory is the key to sustainable forest management. LiDAR
technology is widely applied to tree attribute extraction. Therefore, this study compared
DBH and tree height derived from Handheld Mobile Laser Scanning (HMLS), Airborne
Laser Scanning (ALS), and Integrated ALS and HMLS and determined the applicability of
integrating HMLS and ALS scanning methods to estimate individual tree attributes such as
diameter at breast height (DBH) and tree height in pine forests of South Korea. There were
strong correlations for DBH at the individual tree level (r > 0.95; p < 0.001). HMLS and
Integrated ALS-HMLS achieved high accuracy for DBH estimations, showing Root Mean
Squared Error (RMSE) of 1.46 cm (rRMSE 3.7%) and 1.38 cm (rRMSE 3.5%), respectively. In
contrast, tree height obtained from HMLS was lower than expected, showing an RMSE of
2.85 m (12.74%) along with a bias of −2.34 m. ALS data enhanced the precision of tree height
estimations, achieving a RMSE of 1.81 m and a bias of −1.24 m. However, integrating ALS
and HMLS data resulted in the most precise tree height estimations resulted in a reduced
RMSE to 1.43 m and biases to −0.3 m. Integrated ALS and HMLS and its advantages are a
beneficial solution for accurate forest inventory, which in turn supports forest management
and planning.

Keywords: airborne laser scanning; handheld mobile laser scanning; point cloud density;
point cloud registration; forest inventory

1. Introduction
Forest inventories play a critical role in sustainable forest management and various

ecosystem services [1,2]. Traditional field surveys measure tree location, species, DBH, and
tree height [3–8]; however, parameters such as crown diameter and crown length are not
often considered [9]. Moreover, the introduction of Light Detection and Ranging (LiDAR)
technology has opened a new era in the forestry field and has been applied to forestry
investigation since the early 1980s [3,10–12]. Its distinctive features provide potential to
enhance productivity in forest inventory by substituting traditional manual methods of
measuring tree attributes with more automated processes through 3D point clouds with
high accuracy even at individual tree levels [4,13,14]. In addition, LiDAR mapping proves
to be particularly advantageous when a project necessitates precise elevation information
for densely vegetated regions, expansive terrains, or locations that are hard to reach or
pose safety hazards for ground access [15]. LiDAR technology can be categorized into three
main types: (1) space-borne LiDAR, encompassing systems like Unmanned Aerial Vehicle
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(UAV) LiDAR and airborne laser scanning (ALS); (2) ground-based LiDAR, which includes
terrestrial laser scanning (TLS); and (3) mobile LiDAR, featuring options such as handheld
mobile laser scanning (HMLS) and backpack mobile laser scanning (BMLS) [16].

Airborne laser scanning (ALS) is a technology that combines a laser scanning device
with a global navigation satellite system (GNSS) or an inertial measurement unit (IMU) to
achieve accurate positioning and orientation [17]. A significant benefit of ALS is its ability
to assess the height of tree canopies and the tops of trees from an aerial perspective on a
broad scale [17–19]. On the other hand, numerous studies have stated that a significant
limitation of using ALS in operations is its inability to capture complicated structures
beneath the canopy [20–22]. After collecting data using ALS, one of the most common
methods for estimating tree height is through the creation of a Canopy Height Model
(CHM) that yields a raster dataset where each pixel value corresponds to the height of the
vegetation at that location [23,24]. The CHM is calculated by taking the difference between
the ground elevation, represented by the Digital Elevation Model (DEM), and the elevation
of the vegetation canopy, indicated by the Digital Surface Model (DSM) [25,26]. Algorithms
like watershed segmentation based on CHM or local maxima detection are used to identify
individual trees [22]. Therefore, the CHM method is considered a feasible approach for
estimating tree heights [1].

Over the past several decades, terrestrial laser scanning (TLS) has been utilized in the
field of forestry [27]. TLS includes ground-based laser scanning and handheld mobile laser
scanning (HMLS) conducted by an operator to gather a highly detailed point cloud in a
dynamic way [17]. Since HMLS can capture the finer detail beneath the canopy, besides
DBH and height, it also permits the estimation of additional inventory parameters (e.g.,
crown diameter, stem straightness, and foliage biomass) [4,28]. However, HMLS also
has challenges when identifying treetops in high and thick canopies or dense understory
vegetation [1,9,17]. The heights of trees obtained from HMLS point cloud data are frequently
lower than those measured in the field, primarily because of the overlapping canopies of
the individual trees [4,10,14,29,30].

Handheld and airborne LiDAR technologies both characterize stand structure through
point cloud data. However, while handheld LiDAR examines the canopy from a bottom-up
approach, airborne LiDAR systems capture a top-down view of the canopy [2,5]. Be-
cause items that are closer to the device usually produce a recognizable return, point
clouds collected through airborne laser scanning reveal the upper sections of the canopy,
whereas those gathered via handheld laser scanning highlight the lower portions of the
tree crowns [2,21]. Therefore, the integration of HMLS and ALS is described as the best
approach to simulate the structure beneath the canopy as well as the upper canopy [21,31].
In this paper, we aimed to compare DHB and tree height obtained using HMLS, ALS, and
Integrated ALS-HMLS using field surveys as a benchmark in the pine forest of Pocheon-si,
Republic of Korea. Specifically, we highlight the advantages of combining ALS and HMLS
in forest attribute extraction compared to applying a single approach.

2. Materials and Methods
2.1. Study Area

The study area, which has a coverage of 1.6 ha, is a coniferous planted Pinus koraiensis
forest in Pocheon-si, Gyeonggi-do, Republic of Korea (latitude 37◦45′58.58′′ N; longitude
127◦10′36.01′′ E) (Figure 1). The annual precipitation is about 1272.4 mm with a mean
temperature of 11.2 ◦C, the highest temperature is 17.6 ◦C, and lowest temperature is
5.5 ◦C (2011~2020) (Meteorological Data Open Portal, Korea (kma.go.kr)). Its topography
is relatively gentle, with elevation varying from 154 m to 190 m above sea level.
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Tree DBH was measured at 1.20 m above ground using a fiberglass diameter tape 
(SL05001, Shinil Science Co., Ltd., Paju-si, Republic of Korea). Tree height was calculated 
using Vertex IV (Haglöf Sweden AB, Långsele, Sweden). All measured trees were marked 
with labels. Then, collected data, including tree locations, were recorded in inventory 
form presented by the NIFS. 

  

Figure 1. General view of the study area and plot locations.

2.2. Data Collection
2.2.1. Field Measurement (FM)

Field measurements were conducted from 28 to 29 May 2024, primarily following
the forest sampling methodology outlined in Practical Forest Measurement and Survey by
the National Institute of Forest Science, South Korea [32]. First, three plots (20 m × 20 m)
were established in the upper, central, and lower sections of the research area. Within these
plots, only Pinus koraiensis was selected as the dominant species for measurement purposes
(Table 1). The herbaceous and shrub areas were regarded as the understory layer. Tree
DBH was measured at 1.20 m above ground using a fiberglass diameter tape (SL05001,
Shinil Science Co., Ltd., Paju-si, Republic of Korea). Tree height was calculated using Vertex
IV (Haglöf Sweden AB, Långsele, Sweden). All measured trees were marked with labels.
Then, collected data, including tree locations, were recorded in inventory form presented
by the NIFS.
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Table 1. Description of tree attributes from field measurement in three plots. The standard deviation
for the sample is indicated within parentheses.

Attributes Plot 1 Plot 2 Plot 3

Min DBH (cm) 29.2 23.1 36.5

Max DBH (cm) 46.8 57.9 62.8

Mean DBH (cm) 36.88 (4.63) 39.14 (8.03) 43.01 (7.37)

Min tree height (m) 16.2 20.3 18.0

Max tree height (m) 23.8 25.4 25.9

Mean tree height (m) 21.15 (2.35) 22.66 (2.31) 22.09 (1.89)

Plot size (m2) 400 400 400

No. of trees (#) 14 17 11

Tree density (tree/ha) 350 425 275

Basal area (m2) 0.61 0.83 0.65

2.2.2. Handheld Mobile Laser Scanning (HMLS)

Point cloud data scanning was conducted from 28 to 29 May 2024 in the field using
a handheld ZEB Horizon scanner (GeoSLAM Ltd., Nottingham, UK) (Table 2) carried by
a forest surveyor (Figure 2A). The sensor emits continuous laser beams that scatter as
near-infrared rays with a wavelength of 905 nm [33]. The surrounding objects respond
to this by reflecting the emitted pulses. Then, the sensor calculates the distance between
objects and captures their angles in a two-dimensional (2D) format. Simultaneously, a
SLAM algorithm integrates the 2D profiles with data from the IMU to create 3D point
clouds without using a GNSS receiver [27,33].

Table 2. Specification of ZEB Horizon.

Features Description

Range 100 m

Laser Class 1/λ 903 nm

FOV 360◦ × 270◦

Scanner points per second 300,000

No. of sensors 16

Vertical angular resolution 2◦

Horizontal angular resolution 0.2◦

Raw data file size 25–50 MB/min

Relative accuracy Up to 6 mm

Range sensor Velodyne VLP-16

Range rating Class 1 Eye-Safe

POS system Integrated SLAM system

Operating time 3 h

RGB camera CAM
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Figure 2. ALS and HMLS data collection: (A) handheld mobile laser scanning; (B) pole at 4 corners of
the plots; (C) airborne laser scanner mounted on a drone; (D) static base station on the ground.

Before HMLS data acquisition, the plot center and four corners of the plots were
marked by four poles (0.7 m length; Figure 2B) to help the data analyst quickly identify
the plot position and plot boundary when clipping the sample plot on a 3D point cloud).
In addition, two cars were placed on the border of the study area under an open-spaced
area to use as identified objects for data registration of handheld and airborne LiDAR point
clouds. A parallel walking cross plot at a consistent distance was performed to achieve the
maximum number of loops, and the loop was completed by returning to the initial position.
Plots were scanned slowly at a speed of 1 m/s with stable movement to guarantee both
point cloud quality data and its coverage [33].

2.2.3. Airborne Laser Scanning (ALS)

Airborne point cloud data were acquired on 29 May using a LiDAR scanner (Yel-
lowScan, Saint-Clément-de-Rivière, France) mounted on a Matrice 300 RTK drone (DJI
Enterprise, Shenzhen, China) (Figure 2C). The UAV flight measurement covers about
1.5 ha. The flight was conducted two times at different altitudes (100 m and 70 m above
ground level) with side overlaps of 80%. A base station and seven Ground Control Points
(GCPs) were distributed within the area to receive satellite positioning data and send
them to a GNSS receiver (Figure 2D). Precise coordinates were added to point cloud data
using POSPAC, and then a complete point cloud was created using CloudStation software
v.2403.0.1 (YellowScan, Saint-Clément-de-Rivière, France). For reference use purposes, an
RGB image was also acquired using a DJI Phantom 4 Pro quadcopter UAV (DJI Enterprise,
Shenzhen, China), and then an orthophoto of the study site was obtained using UAS
Applications Master v13.2.3 (Trimble, Stuttgart, Germany).

2.3. Point Cloud Data Analyses
2.3.1. HMLS

HMLS point clouds were filtered using the Statistical Outlier Removal (SOR) algorithm
in LiDAR360 to remove noise points caused by wind and multipath effects. Smooth points
based on moving least squares were used to make the point cloud look more consistent.
Normalization was performed to eliminate the effect of terrain elevation on LiDAR height.
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Then, the point cloud was sliced at 1.2 m from the ground using the Filter by Elevation
function. Tree DBH was manually selected using a least-squares circular fitting algorithm
to fit the circle from x-y coordinates in 2D environments (Figure 3A) and can be seen
in 3D environments (Figure 3B). Seed points were then used as input for point cloud
segmentation, which adopted individual tree segmentation algorithms from the study
of Li et al. (2012) [34]. Visual inspection was subsequently conducted to correct the
possible segmentation mistakes found in the point cloud of individual trees (Figure 3C).
All analyses were conducted in LiDAR360 software version 5.4 (GreenValley International,
Berkeley, CA, USA).
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Figure 3. Tree DBH measurement in 2D (A) and 3D (B) and visual inspection of tree height from
HMLS (C).

2.3.2. ALS

For the ALS point cloud, Remove Outliers and Smooth Points were also applied. First,
a classification algorithm that operates automatically was utilized to separate the point
cloud into ground points and vegetation points. Ground points were interpolated into
the DEM using an Inverse Distance Weighting (IDW) interpolation method (Figure 4A).
For the DSM, a similar grid-based interpolation approach was applied to generate the
surface capturing the vegetation canopy (Figure 4B). A Canopy Height Model (CHM)
was created by subtracting the DSM from the DEM according to the method of Douss
et al. (2022) [25]. Then, CHM segmentation based on the basic principle of the watershed
segmentation algorithm was performed to provide insights into vegetation height and
structure (Figure 4C). The pixel size was 10 cm × 10 cm for all raster data.
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2.3.3. ALS and HMLS Registration

ALS and HMLS point clouds were registered in Trimble RealWorks Advanced-Plant®

11.0 version (Trimble, Stuttgart, Germany) with the cloud-based registration function using
artificial objects (e.g., cars) to register two-point clouds. First, coarse registration that
roughly registered two point clouds, including the point cloud from ALS containing local
coordinate systems (Korea 2002/ Central Belt 2010, EPSG: 5186), served as references, and
the point cloud from HMLS was a moving cloud. Then, fine registration was conducted
through supervised visual selection of three point pairs extracted from artificial objects (car)
and tree. As a result, the achieved accuracy of point cloud registration was 2 cm (Figure 5).
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Figure 5. Result of ALS and HMLS registration (C,F,I,L). Forest point cloud acquired from HMLS (A),
ALS (B), and Integrated ALS-HMLS (C); individual tree in Plot 1 acquired from HMLS (D), ALS (E),
and Integrated ALS-HMLS (F); individual tree in Plot 2 acquired from HMLS (G), ALS (H), and
Integrated ALS-HMLS (I); individual tree in Plot 3 acquired from HMLS (J), ALS (K), and Inte-
grated ALS-HMLS (L). The green color represents the HMLS approach; the red color represents the
ALS approach.

2.3.4. Density Assessment

To calculate the point density of ground and vegetation subsets from a point cloud,
the following methodology was employed. First, the LiDAR point cloud data were prepro-
cessed to ensure accuracy and uniformity, including noise removal and coordinate system
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verification. Next, the data were classified into ground and vegetation points using an
automated classification algorithm in LiDAR360, which assigns points to specific categories
based on their height and spatial characteristics. Once the classification was complete,
the dataset was divided into two subsets: ground points and vegetation points. Each
subset was processed independently to compute point density. A grid-based approach was
utilized, wherein the region of interest was divided into uniform grid cells of a predefined
size (1 m × 1 m). For each subset, the total number of points falling within each grid
cell was counted, and the density was calculated as the number of points per unit area
(points/m2).

2.4. Accuracy Assessment

The Shapiro–Wilk test was used to determine the normal distribution of DBH and
tree height. Then, Pearson’s correlation analysis was applied to normally distributed
data while data without normality were subjected to Spearman’s correlation analyses.
Moreover, a paired samples t-test was utilized to assess whether there were any notable
differences in tree diameter at breast height (DBH) and tree height as measured using
three different methods. The accuracy assessment was additionally conducted using Root
Mean Squared Error (RMSE), relative RMSE (rRMSE), bias, relative bias (rBias), and Mean
Absolute Error (MAE), with the field measurements used as the reference data, represented
by Equations (1) to (5) [6]. Consequently, any potential linear relationships were examined
visually. All statistical analyses were conducted using SPSS software, v.29 adhering to a
significance level of less than 5%.

RMSE =

√
∑n

i=1(ŷi−yi)
2

n
(1)

rRMSE =
RMSE

ym
× 100 (2)

Bias =
(

∑n
i=1 ei

n

)
(3)

rBias =
Bias
ym

× 100 (4)

MAE =
1
n∑n

i=1|ŷi − yi| (5)

where ŷi is the DBH value extracted from HMLS, yi is the DBH measured in the field, n is
the number of trees in each plot, ei is the error term, ym is the mean of the field survey, and
i is the sample index.

The workflow presented in Figure 6 shows the methodology used in this study.
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3. Results
3.1. Point Cloud Density Analyses

Point cloud density (points/m2) for both ground and vegetation across the three plots,
measured through ALS, HMLS, and Integrated ALS-HMLS, are shown in Table 3.

Table 3. Point cloud density of ground and vegetation point clouds classified from ALS, HMLS, and
Integrated ALS-HMLS.

Point Clouds Plot ALS HMLS Integrated ALS-HMLS

Ground
(points/m2)

Plot 1 16 3389 3393

Plot 2 13 2468 2470

Plot 3 15 1157 1167

Vegetation
(points/m2)

Plot 1 2398 21,315 23,710

Plot 2 2683 26,727 29,129

Plot 3 2793 23,594 26,356

Ground points extracted from point clouds are important for DEM generation and
other analyses. Regarding ground point density, the data indicated that ALS consistently
recorded the lowest density (between 13 and 16 points/m2) among all plots compared to
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HMLS. On the other hand, HMLS revealed a significant increase in ground point density,
with measurements between 1157 and 3389 points/m2. The combination of ALS and HMLS
resulted in a minor enhancement, producing values ranging from 1167 to 3393 points/m2.
However, a very low ground point density was shown in ALS (avg. 11 points/m2), which
demonstrates the limited capability of ALS in capturing ground-level details. Compared to
ALS, HMLS exhibits a much higher resolution of ground surfaces (avg. 2338 points/m2).
This underscores its superior capability in resolving vegetation structures. This integration
offers moderate improvements compared to HMLS, suggesting a complementary effect of
ALS in refining the results.

In terms of vegetation, ALS presents the lowest point densities, which lie between 2398
and 2793 points/m2, reflecting its limited capacity to capture intricate details of vegetation.
HMLS, however, experiences a notable escalation, with densities recorded between 21,315
and 26,727 points/m2. The Integrated ALS-HMLS approach further boosts vegetation point
densities, reaching the highest values across all plots, between 23,710 and 29,129 points/m2.
HMLS significantly outperforms ALS in capturing both ground and vegetation densities,
demonstrating its efficacy for detailed point cloud generation. The Integrated ALS-HMLS
method provides incremental improvements over HMLS, emphasizing the advantage of
combining the strengths of both ALS and HMLS methods.

3.2. Diameter at Breast Height (DBH)

Table 4 indicates average DBH values estimated using the HMLS and Integrated ALS-
HMLS approaches and their test results. As seen in Table 4, the two approaches (HMLS
and Integrated ALS-HMLS) showed highly positive correlated DBH measurements, with
statistically significant correlations in all cases (r > 0.93, p < 0.001). The normality test
showed that the DBH values were normally distributed (p > 0.05) in Plot 1 and Plot 2 but
not in Plot 3 and the overall dataset (p < 0.05).

Table 4. Test results and mean DBH measured using the two approaches. The number in parentheses
represents the standard deviation.

Plot Approaches Mean DBH p-Value
(Normality Test) r Coefficient p-Value

(Correlation)

1
HMLS 36.22 (4.85) 0.809 0.954 <0.001

Integrated ALS-HMLS 35.97 (4.44) 0.452 0.982 <0.001

2
HMLS 37.85 (7.76) 0.474 0.993 <0.001

Integrated ALS-HMLS 37.98 (8.11) 0.542 0.991 <0.001

3
HMLS 42.34 (7.02) 0.002 0.952 <0.001

Integrated ALS-HMLS 42.52 (7.1) 0.007 0.936 <0.001

All
HMLS 38.48 (6.99) 0.013 0.975 <0.001

Integrated ALS-HMLS 38.5 (7.13) 0.015 0.977 <0.001

Figure 7 displays scatterplots comparing the diameter at breast height (DBH) mea-
surements obtained from field measurements (FM) with HMLS and Integrated ALS-HMLS
remote sensing approaches. Figure 7 demonstrates that both HMLS and Integrated ALS-
HMLS approaches yield DBH measurements strongly correlated with field measurements.
Regression equations indicate that both remote sensing methods provide accurate and reli-
able estimations of DBH, with minor differences in slope and intercept adjustments. These
results validate the effectiveness of the remote sensing approaches for DBH measurement.
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Table 5 presents an evaluation of the accuracies of the two methods. Plot 3 achieved
the most precise estimation of DBH, utilizing the HMLS method, with the lowest values
for RMSE (1.10 cm) and MAE (0.91 cm). In contrast, Plot 1 reflects a moderate level of
accuracy; however, it reports a slightly elevated RMSE of 1.54 cm and a bias of −0.66 cm.
Plot 2 exhibits a higher RMSE of 1.59 cm and a bias of −1.28 cm, suggesting that it has less
alignment with field measurements. All estimations displayed a negative bias, indicating
that the HMLS method’s DBH measurements were smaller than those obtained through
manual field measurements.

Table 5. Accuracies of DBH estimation using HMLS.

Plot Approaches RMSE (cm) rRMSE (%) Bias (cm) rBias (%) MAE (cm)

1 HMLS 1.54 4.18 −0.66 −1.79 1.23

Integrated ALS-HMLS 1.54 4.18 −0.66 −1.79 1.23

2 HMLS 1.59 4.05 −1.28 −3.28 1.40

Integrated ALS-HMLS 1.59 4.06 −1.16 −2.98 1.27

3 HMLS 1.10 2.55 −0.68 −1.58 0.91

Integrated ALS-HMLS 1.18 2.74 −0.48 −1.13 1.04

All
HMLS 1.46 3.70 −0.92 −2.33 1.21

Integrated ALS-HMLS 1.38 3.50 −0.90 −2.29 1.21

3.3. Height

Table 6 reveals that the Integrated ALS-HMLS method consistently yields the highest
average tree height estimates across all plots, reaching an overall mean of 23.03 m, followed
by ALS at 21.09 m and HMLS at 19.99 m. Although ALS and Integrated ALS-HMLS
demonstrate moderate correlations with field measurements, particularly noticeable in
Plots 2 and 3, the correlations observed for HMLS are generally weaker. The results of the
normality test indicate that the HMLS approach in Plot 1 and the complete dataset do not
conform to normal distribution. These results imply that Integrated ALS-HMLS and ALS
are more dependable and consistent in estimating tree heights when compared to HMLS.
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Table 6. Test results and mean tree height measured using the three approaches. The numbers in
parentheses represent the standard deviation.

Plot Approaches Mean Height p-Value
(Normality Test) r Coefficient p-Value

(Correlation)

1

HMLS 19.76 (1.74) 0.039 −0.191 0.514

Integrated ALS-HMLS 21.69 (1.36) 0.245 0.186 0.524

ALS 20.71 (1.01) 1.000 0.217 0.456

2

HMLS 20.27 (0.9) 0.984 0.684 0.003

Integrated ALS-HMLS 22.47 (1.01) 0.135 0.586 0.014

ALS 21.78 (1.36) 0.333 0.511 0.036

3

HMLS 19.86 (1.01) 0.228 0.757 0.007

Integrated ALS-HMLS 21.8 (1.37) 0.086 0.650 0.030

ALS 20.52 (1.08) 0.263 0.860 0.001

All

HMLS 19.99 (1.26) 0.009 0.339 0.028

Integrated ALS-HMLS 22.03 (1.28) 0.190 0.518 0.000

ALS 21.09 (1.29) 0.187 0.573 <0.001

The tree height estimation from HMLS and Integrated HMLS and ALS are compared
to reference field measurement data in Figure 8. The chart displays the precision metrics for
tree height estimation across three different plots utilizing HMLS, Integrated ALS-HMLS,
and ALS in comparison with the reference data.
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ALS, and Integrated ALS-HMLS.

Under the HMLS methodology, tree height was significantly underestimated, resulting
in an RMSE of 5.13 m and an MAE of 4.75 m, as displayed in Table 7. Conversely, when
HMLS was integrated with ALS, there was an enhancement in bias and other precision
indicators, including an RMSE of 1.56 m and an MAE of 1.25 m. At the level of individual
plots, HMLS exhibited the highest RMSE, varying from 2.55 to 3.13 cm, with a bias range of
2.14 to 2.57 cm and MAE values lying between 2.26 and 2.57 cm, closely followed by ALS.
In stark contrast, the combined ALS-HMLS approach produced the most advantageous
outcomes, achieving the lowest RMSE of 1.66 cm for both bias and MAE. Overall, the
Integrated ALS-HMLS method achieved the best accuracy, marked by a minimum RMSE
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of 1.43 cm, a relative root mean square error of 6.41%, a bias of −0.30 cm, and an MAE
of 1.10 cm. While ALS demonstrated moderate performance, it recorded higher error levels
with an RMSE of 1.81 cm and a bias of −1.24 cm compared to the Integrated ALS-HMLS
approach. Meanwhile, HMLS showed the highest levels of error and an underestimation,
reaching a peak RMSE of 2.85 cm, accompanied by a bias of −2.30 cm. The negative
bias implies that the estimates provided by all three methods fell short of the actual
reference values.

Table 7. Accuracy assessment of tree height estimation from HMLS, ALS, and Integrated ALS-HMLS.

Plot Approaches RMSE
(cm)

rRMSE
(%) Bias (cm) rBias (%) MAE (cm)

1

HMLS 3.13 14.31 −2.14 −9.78 2.41

Integrated ALS-HMLS 1.66 7.57 −0.21 −0.98 1.04

ALS 1.85 8.46 −1.18 −5.41 1.49

2

HMLS 2.78 12.15 −2.57 −11.25 2.57

Integrated ALS-HMLS 1.23 5.37 −0.36 −1.60 1.08

ALS 1.73 7.57 −1.06 −4.66 1.45

3

HMLS 2.55 11.55 −2.23 −10.08 2.26

Integrated ALS-HMLS 1.40 6.36 −0.29 −1.33 1.19

ALS 1.89 8.58 −1.57 −7.12 1.70

All

HMLS 2.85 12.74 −2.34 −10.47 2.44

Integrated ALS-HMLS 1.43 6.41 −0.30 −1.33 1.10

ALS 1.81 8.13 −1.24 −5.54 1.53

4. Discussion
4.1. Point Cloud Density

Point cloud density is one of the most important parameters in LiDAR data
analyses [35]. In this study, the differences in point cloud densities among ALS, HMLS,
and integration of ALS and HMLS were determined to demonstrate the strengths and
limitations of each approach. According to Balsa et al. (2012), ALS consistently records
the lowest point densities, particularly for ground points, due to its airborne scanning
characteristics [35]. With a larger footprint and lower resolution at ground level, ALS
struggles to capture fine-scale details, leading to sparse point distributions [36,37]. In
addition, this limitation impacts its ability to extract precise terrain features, which are
essential for applications such as digital elevation model (DEM) generation and forest
structure analysis [38].

In contrast, HMLS exhibits significantly higher densities for both ground and vege-
tation points because of the close range and high-resolution scanning capabilities of the
technology [27]. By capturing a higher level of detail, HMLS enhances the accuracy of point
cloud-based analyses, particularly in complex forest environments where high-density
data is crucial for structural assessments [39]. The substantial increase in ground point
density compared to ALS indicates that HMLS is more effective in capturing detailed
terrain features, making it a valuable tool for applications requiring fine-resolution point
clouds [40]. Similarly, for vegetation, the higher density from HMLS provides a more
comprehensive representation of tree trunks, which is critical for biomass estimation and
ecological modelling [41].
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The integration of ALS and HMLS in this study offers an optimal balance between
broad coverage and high detail capture, resulting in improved overall point densities. Pana-
giotidis et al. (2022) recorded similar results in that the fusion of an airborne laser scanning
and static terrestrial laser scanning maximized the accumulation of point clouds [42]. By
leveraging ALS’s capability to cover large areas efficiently and HMLS’s ability to provide
detailed local measurements, the integrated approach enhances data completeness, espe-
cially in tree height estimation in this study. This approach makes ALS-HMLS integration
the most effective method for capturing both ground and vegetation features, as it mit-
igates the individual limitations of each technique while maximizing their advantages,
as validated in a study by Lee et al. (2022) [43]. Consequently, the combined approach
holds significant potential for improving forest inventory accuracy, terrain modelling, and
vegetation characterization [4,6,10].

4.2. Tree DBH

Our study results show that the combination of ALS and HMLS did not enhance
the accuracy of DBH estimation. For example, the average DBH calculated from HMLS
(38.48 cm) was very similar to that derived from the combined HMLS and ALS approach
(38.5 cm). The study further demonstrates that HMLS is a promising approach for assessing
tree DBH, achieving a notable accuracy with an RMSE of 1.46 cm (rRMSE = 3.7%) across
all study plots. Similar findings were reported in previous research that assessed DBH
within the range of 1 cm to 3.3 cm in conifer forests in Italy [4] and Japan [6] and Scots
pine forests in Finland [44]. The outcomes from this study were close to what was found in
the Yunnan pine forest (RMSE = 1.17 cm) in China [29]. Additionally, the mean absolute
error was identical for HMLS and integrating ALS and HMLS approaches (MAE = 1.21 cm),
indicating that ALS did not contribute to DBH due to its limitations in capturing detail
beneath the canopy. However, in a past study by Panagiotidis et al. (2022), airborne laser
scanning was reported to overestimate the DBH in oak and spruce forests in Italy [42].
Because the tree trunks of oaks and spruces in this study were captured well due to the
absence of an understory, the bias values for DBH measurements obtained from HMLS
and Integrated ALS-HMLS were negative and approximately equal to 1, −0.92, cm and
−0.9 cm, respectively (Table 5). This finding illustrates that the DBH estimated from LiDAR
technology in this study was unbiased and smaller than the field measurement data. This
bias aligns with earlier studies by Gianneti et al. (2018) [4], who reported a bias of −0.38 cm
using a handheld ZEB1 in Mediterranean forest stands, and Bauwens et al. (2016) [9], who
reported a very small bias of −0.08 cm. As shown in Figure 9, the random positive and
negative variances in the DBH predictions displayed a consistent trend near the zero levels,
indicating that the calculated DBHs were typically free from bias.
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4.3. Tree Height

Tree height measurements using HMLS data in this study resulted in a significant
underestimation. The study corresponds with results from Lee et al. (2022), who compared
tree height from Integrated ALS and HMLS with ground truth with an RMSE of 2 m [43].
Additionally, a similar study conducted in Taebek reported an RMSE of 3.297 m, an MAE
of 2.303 m, and a bias of −1.905 m [45]. However, the RMSE of HMLS LiDAR in the
present study was higher than the findings from Liu et al. (2018), who reported a very
small RMSE (0.54 m) in tree height using TLS [29]. Primary sources of error in the tree
height estimation using HMLS LiDAR technology include the tree crown’s top being
blocked by itself or neighboring trees, leading to the incorrect identification of the tree top
during the segmentation process. Another study pointed out that inaccuracy in tree height
measurement with handheld LiDAR arises from certain parts of a taller adjacent tree’s
crown being wrongly identified as the top of the target tree or mistakes in associating trees
during the assessment process [46]. The underestimation of tree height also came from the
limited penetration capability of HMLS, leading to missing information at the top of the
tree canopy (Figure 5A,D,G,J).

The tree height results from the combined ALS-HMLS were closer to field measure-
ment than those from the HMLS method. This result aligns with previous findings stating
that airborne LiDAR can improve the accuracy of tree height [30]. Moreover, Gyawali
et al. (2022) reported a strong correlation between field measurement and airborne LiDAR-
derived heights, with an RMSE of 1.44 m and a bias of 0.7 m [47]. Wang et al. 2019 found a
RMSE of 1.6 m and a bias of −0.96 m in easy plots of a boreal forest in Finland [7]. In past
studies, the RMSE and bias increase with tree density increase, highlighting the effect of
obstructed understory and dense canopy contributing to uncertainties in tree height esti-
mation, associated with the instability of the field measurements [1,48]. This underscores
the necessity to improve the crown delineation algorithm to provide dependable outcomes,
especially in dense forest environments and when the trees are taller than 15 m [7,26,49].
Gianettti et al. (2018) highlighted the benefits of merging ALS and HMLS, noting a reduc-
tion in RMSE from 2.14 m to 0.94 m and bias moving from −4.61 to −0.3 for both coniferous
and broadleaves in Italy [4]. In addition, Sibona et al. (2017) directly measured felled tree
height and compared it to LiDAR scanning [18]. The mean absolute difference was 1.04 m
for Scots pine, meaning that tree height estimation through LiDAR scanning was closer
to actual tree heights than traditional field-based surveys, particularly for tall trees with
conical crown shapes. Furthermore, the RMSE of tree height obtained from integrating
ALS and HMLS in this study (1.43 m) was much lower than the RMSE of 3.4 m reported in
a study by Peng et al. (2022) [50]. Figure 10 illustrates the random positive and negative
fluctuations in the estimation of tree height, suggesting that the estimated tree heights
derived from the three approaches were generally unbiased.

Overall, ALS effectively measures the height of trees, but it is not suitable for assessing
DBH and other attributes near the ground since it primarily captures tree tops and the area
above the canopy. On the other hand, HMLS can estimate both the DBH and tree height;
however, it often results in underestimations because of thick understory vegetation. In
summary, the Integration of ALS and HMLS is considered the most optimal approach for
forest inventory purposes (Table 8) as this method maximizes the advantages of each ALS
and HMLS method while reducing challenges associated with their application [4].
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Table 8. Assessment of the ability to produce accurate DBH and tree height from ALS, HMLS, and
Integrated ALS and HMLS compared to field measurement.

LiDAR Approach
Field Measurement

DBH Height

ALS NA High

HMLS High Medium

Integrated ALS and HMLS High High
NA, not available.

Although many previous studies utilize field-based surveys as a standard for assessing
LiDAR estimations, tree height accuracy is not strong due to equipment malfunction,
the expertise and experience of the surveyors, steep slopes, and dense understory that
complicate the identification of tree tops [18]. Additional significant sources of error in
DBH also come from measurement inaccuracies and noise, areas with insufficient point
density, and branches and trunks that are not circular [44]. The sample plot is square and
its edges can lead to inaccuracies in actual tree top identification because of the closed-
boundary configuration. Moreover, LiDAR technology often requires high operation
costs, including scanning equipment and specialized software. LiDAR’s accuracy may be
affected in steep or rocky areas and mixed or multi-layered forests due to its difficulty in
distinguishing overlapping crowns. Consequently, additional studies need to incorporate
more precise methods for measuring trees in the field to achieve optimal accuracy in tree
height calculation in conjunction with LIDAR estimations.

5. Conclusions
This study examined the accuracy of each approach by evaluating point cloud density

and found that the combination of ALS and HMLS results in the highest density point
clouds, which provide more detailed information about forest stands. High point cloud
density enabled more precise measurements of the diameter at breast height (DBH) and
tree height, thereby improving the overall accuracy and reliability of forest inventory
data obtained from the Integrated ALS and HMLS approach. The results of this study
also provide evidence that HMLS offers an accurate and non-destructive estimation of
DBH compared to field surveys. In contrast, ALS is a good approach to measure tree
height thanks to its ability to capture tree tops and canopy detail, but it is limited in
capturing detail under the canopy, specifically tree DBH. Therefore, as a forthcoming
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LiDAR application, the combined ALS and HMLS method could transform forest inventory
methods, overcoming the challenges of traditional ground-based surveys and enabling
faster and more expandable forest evaluations, which contributes to forest ecosystem
assessment and carbon stock estimation.
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ALS Airborne Laser Scanning
BMLS Backpack Mobile Laser Scanning
CHM Canopy Height Model
DBH Diameter at Breast Height
DEM Digital Elevation Model
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FM Field Measurement
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IMU Inertial Measurement Unit
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TLS Terrestrial Laser Scanning
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References
1. Hyyppä, E.; Yu, X.; Kaartinen, H.; Hakala, T.; Kukko, A.; Vastaranta, M.; Hyyppä, J. Comparison of Backpack, Handheld,

under-Canopy UAV, and above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests. Remote Sens.
2020, 12, 3327. [CrossRef]

2. White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing
Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [CrossRef]

3. Ghimire, S.; Xystrakis, F.; Koutsias, N. Using Terrestrial Laser Scanning to Measure Forest Inventory Parameters in a Mediterranean
Coniferous Stand of Western Greece. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 213–225. [CrossRef]

https://doi.org/10.3390/rs12203327
https://doi.org/10.1080/07038992.2016.1207484
https://doi.org/10.1007/s41064-017-0024-1


Forests 2025, 16, 643 18 of 19

4. Giannetti, F.; Puletti, N.; Quatrini, V.; Travaglini, D.; Bottalico, F.; Corona, P.; Chirici, G. Integrating Terrestrial and Airborne Laser
Scanning for the Assessment of Single-Tree Attributes in Mediterranean Forest Stands. Eur. J. Remote Sens. 2018, 51, 795–807.
[CrossRef]

5. Ma, K.; Xiong, Y.; Jiang, F.; Chen, S.; Sun, H. A Novel Vegetation Point Cloud Density Tree-Segmentation Model for Overlapping
Crowns Using UAV LiDAR. Remote Sens. 2021, 13, 1442. [CrossRef]

6. Shimizu, K.; Nishizono, T.; Kitahara, F.; Fukumoto, K.; Saito, H. Integrating Terrestrial Laser Scanning and Unmanned Aerial
Vehicle Photogrammetry to Estimate Individual Tree Attributes in Managed Coniferous Forests in Japan. Int. J. Appl. Earth Obs.
Geoinf. 2022, 106, 102658. [CrossRef]

7. Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J. Is Field-Measured
Tree Height as Reliable as Believed—A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser
Scanning and Terrestrial Laser Scanning in a Boreal Forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [CrossRef]

8. Xie, Y.; Zhang, J.; Chen, X.; Pang, S.; Zeng, H.; Shen, Z. Accuracy Assessment and Error Analysis for Diameter at Breast Height
Measurement of Trees Obtained Using a Novel Backpack LiDAR System. For. Ecosyst. 2020, 7, 33. [CrossRef]

9. Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P.; Hyyppä, J.; Liang, X.; Puttonen, E. Forest Inventory with Terrestrial
LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 2016, 7, 127. [CrossRef]

10. Bazezew, M.N.; Hussin, Y.A.; Kloosterman, E.H. Integrating Airborne LiDAR and Terrestrial Laser Scanner Forest Parameters for
Accurate Above-Ground Biomass/Carbon Estimation in Ayer Hitam Tropical Forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf.
2018, 73, 638–652. [CrossRef]

11. Hauglin, M.; Lien, V.; Næsset, E.; Gobakken, T. Geo-Referencing Forest Field Plots by Co-Registration of Terrestrial and Airborne
Laser Scanning Data. Int. J. Remote Sens. 2014, 35, 3135–3149. [CrossRef]

12. Yang, B.; Zang, Y.; Dong, Z.; Huang, R. An Automated Method to Register Airborne and Terrestrial Laser Scanning Point Clouds.
ISPRS J. Photogramm. Remote Sens. 2015, 109, 62–76. [CrossRef]

13. Liang, X.; Kankare, V.; Hyyppä, J.; Wang, Y.; Kukko, A.; Haggrén, H.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Guan, F.; et al. Terrestrial
Laser Scanning in Forest Inventories. ISPRS J. Photogramm. Remote Sens. 2016, 115, 63–77. [CrossRef]

14. Novotny, J.; Navratilova, B.; Albert, J.; Cienciala, E.; Fajmon, L.; Brovkina, O. Comparison of Spruce and Beech Tree Attributes
from Field Data, Airborne and Terrestrial Laser Scanning Using Manual and Automatic Methods. Remote Sens. Appl. 2021,
23, 2352–9385. [CrossRef]

15. Carson, W.W.; Andersen, H.-E.; Reutebuch, S.E.; Mcgaughey, R.J. Lidar applications in forestry-an overview. In Proceedings of
the ASPRS Annual Conference, Denver, CO, USA, 23–28 May 2004.

16. Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018,
18, 1641. [CrossRef]

17. Fekry, R.; Yao, W.; Cao, L.; Shen, X. Ground-Based/UAV-LiDAR Data Fusion for Quantitative Structure Modeling and Tree
Parameter Retrieval in Subtropical Planted Forest. For. Ecosyst. 2022, 9, 100065. [CrossRef]

18. Sibona, E.; Vitali, A.; Meloni, F.; Caffo, L.; Dotta, A.; Lingua, E.; Motta, R.; Garbarino, M. Direct Measurement of Tree Height
Provides Different Results on the Assessment of LiDAR Accuracy. Forests 2016, 8, 7. [CrossRef]

19. Chehreh, B.; Moutinho, A.; Viegas, C. Latest Trends on Tree Classification and Segmentation Using UAV Data—A Review of
Agroforestry Applications. Remote Sens. 2023, 15, 2263. [CrossRef]

20. Choi, H.; Song, Y. Comparing Tree Structures Derived among Airborne, Terrestrial and Mobile LiDAR Systems in Urban Parks.
GIsci Remote Sens. 2022, 59, 843–860. [CrossRef]

21. Hilker, T.; van Leeuwen, M.; Coops, N.C.; Wulder, M.A.; Newnham, G.J.; Jupp, D.L.B.; Culvenor, D.S. Comparing Canopy
Metrics Derived from Terrestrial and Airborne Laser Scanning in a Douglas-Fir Dominated Forest Stand. Trees Struct. Funct. 2010,
24, 819–832. [CrossRef]

22. Koch, B.; Heyder, U.; Welnacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens.
2006, 72, 357–363. [CrossRef]

23. Lindberg, E.; Holmgren, J. Individual Tree Crown Methods for 3D Data from Remote Sensing. Curr. For. Rep. 2017, 3, 19–31.
[CrossRef]

24. Zhou, X.; Ma, K.; Sun, H.; Li, C.; Wang, Y.; Zhou, X.; Ma, K.; Sun, H.; Li, C.; Wang, Y. Estimation of Forest Stand Volume in
Coniferous Plantation from Individual Tree Segmentation Aspect Using UAV-LiDAR. Remote Sens. 2024, 16, 2736. [CrossRef]

25. Douss, R.; Farah, I.R. Extraction of Individual Trees Based on Canopy Height Model to Monitor the State of the Forest. Trees For.
People 2022, 8, 100257. [CrossRef]

26. Latella, M.; Sola, F.; Camporeale, C. A Density-Based Algorithm for the Detection of Individual Trees from LiDAR Data. Remote
Sens. 2021, 13, 322. [CrossRef]

27. Del Perugia, B.; Giannetti, F.; Chirici, G.; Travaglini, D. Influence of Scan Density on the Estimation of Single-Tree Attributes by
Hand-Held Mobile Laser Scanning. Forests 2019, 10, 277. [CrossRef]

https://doi.org/10.1080/22797254.2018.1482733
https://doi.org/10.3390/rs13081442
https://doi.org/10.1016/j.jag.2021.102658
https://doi.org/10.1016/J.ISPRSJPRS.2018.11.008
https://doi.org/10.1186/s40663-020-00237-0
https://doi.org/10.3390/f7060127
https://doi.org/10.1016/J.JAG.2018.07.026
https://doi.org/10.1080/01431161.2014.903440
https://doi.org/10.1016/j.isprsjprs.2015.08.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.rsase.2021.100574
https://doi.org/10.3390/s18051641
https://doi.org/10.1016/j.fecs.2022.100065
https://doi.org/10.3390/f8010007
https://doi.org/10.3390/rs15092263
https://doi.org/10.1080/15481603.2022.2076381
https://doi.org/10.1007/s00468-010-0452-7
https://doi.org/10.14358/PERS.72.4.357
https://doi.org/10.1007/s40725-017-0051-6
https://doi.org/10.3390/rs16152736
https://doi.org/10.1016/j.tfp.2022.100257
https://doi.org/10.3390/rs13020322
https://doi.org/10.3390/f10030277


Forests 2025, 16, 643 19 of 19

28. Ryding, J.; Williams, E.; Smith, M.J.; Eichhorn, M.P. Assessing Handheld Mobile Laser Scanners for Forest Surveys. Remote Sens.
2015, 7, 1095–1111. [CrossRef]

29. Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from
Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests 2018, 9, 398. [CrossRef]

30. Ojoatre, S.; Zhang, C.; Hussin, Y.A.; Kloosterman, H.E.; Ismail, M.H. Assessing the Uncertainty of Tree Height and Aboveground
Biomass from Terrestrial Laser Scanner and Hypsometer Using Airborne LiDAR Data in Tropical Rainforests. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2019, 12, 4149–4159. [CrossRef]

31. Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014,
5, 1682–1694. [CrossRef]

32. National Institute of Forest Science (NIFS). Practical Forest Measurement and Survey; National Institute of Forest Science (NIFS):
Seoul, Republic of Korea, 2018.
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