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Abstract: In the present study, two new compositions of convergence order six are presented for
solving nonlinear equations. The first method is obtained from the third-order one given by Home-
ier using linear interpolation, and the second one is obtained from the third-order method given
by Traub using divided differences. The first method requires three evaluations of the function
and one evaluation of the first derivative, thereby enhancing the efficiency index. In the second
method, the computation of a derivative is reduced by approximating it using divided differences.
Various numerical experiments are performed which demonstrate the accuracy and efficacy of the
proposed methods.
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1. Introduction

The design and conceptualization of higher order iterative methods for solving nonlinear
equations is of great importance in numerical analysis and many scientific branches [1-6].
A plethora of iterative methods [7-14] have been developed by various researchers to solve
nonlinear equations of the form

f(x) =0, @

where f : D C R — R s a continuously differentiable nonlinear function defined on
an open interval D. One of the widely used iterative methods is Newton’s method with
quadratic convergence, which is given as

f(x)

Xg+1 = Xk — P

k=0,1,2,.... )

Many other applications such as transportation, electron theory, the geometric theory
of relativistic string, chemical speciation, chemical engineering, and queuing models also
generate numerous such equations [15-17]. In most cases, the problems transformed
into nonlinear equations can not be solved analytically. In order to approximate them
numerically, adequate iterative methods are taken into consideration. The recent trend
is to develop higher order iterative methods to solve nonlinear equations of the form
(1) as they provide an efficient approximation and more accuracy in finding the solution.
Higher-order iterative methods are important because many applications require faster
convergence. But at the same time, it is very important to maintain an equilibrium between
the convergence rate and the operational cost. Newton’s method has been modified in a
number of ways at the additional cost of evaluation of a function, derivative and changes
in the points of iteration in order to increase its efficiency index and order of convergence.
Many researchers have proposed numerous higher order methods in order to improve the
convergence of Newton’s method.
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Neta [18] has developed sixth order iterative method (NEM). Itis givenfork = 0,1, 2, ... as

Wy =xp — f(xx)
f(x)
2 —wy — fxx) +2f (wr) f(wg)

fxx) (xx)’
Xy =z, — J ) = f(00) + f(z1) f(z0)
i f(xk) - 3f(wk) —|—f(Zk) f’(xk)’

This method requires three evaluations of f and one evaluation of its first derivative
f' per iteration.

A variant of the Jarratt method (KLM) has been developed by Kou and Li [19] of order
six. Itis given for k = 0,1,2,... as

®)

2 f(x)
HEH TR )’
zp =x — Jp(x )]J:,(( >)
Xk+1 =2k — fz) @)

315 () £/ (yie) + (1= 3T (x)) f (xx)”
where J¢(x) = %‘m. This method requires evaluations of two f and two f’ per
iteration.

Singh [20] has developed two sixth-order iterative methods for k = 0,1,2,.... They
are given as follows.

The first sixth-order Singh Method (SM1) is:

Yk =Xk — J]:,(<xk)>,
_ S = (i) | f(xe)
=4 =3 (T o) oy
2 (zi) (f (i) + (%))

Xky1 =Zk — . (5)
T 2 () () + 4 () () = (F (a0)? = (F ()2
This method also requires two evaluations of f and f each per iteration.
The second sixth-order Singh Method (SM2) is:
f(xe)
=X + —
T )
S Qi) = f ()
Zp =Xp — ",
N
f(z) ©)

X =Zr — .
ST Tz v + flze a0 xd (25 — ve)

This method utilizes 3 f and 1 f/ evaluations per iteartion.
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Sharma et al. [21] proposed a sixth order iterative method (SSM). It is given for
k=0,1,2,... as

Y = — S
F(x)’
(3_1f’ )>f( Xi)

2 (v ) )
o (7 (g 3N S ) f(z)
Tr1 =% (2 ( 4+2ﬂww)ﬁuw)ﬂum' @)

This method utilizes two evaluations of the function f and two evaluations of the first
order derivative f’ per step.

Motivated by the ongoing research in this direction, we develop and analyze two
higher order iterative methods to solve nonlinear equations using the techniques of linear
interpolation and divided differences [5,22-27]. The first sixth order method is obtained
by introducing a third step and approximating its derivative by linear interpolation. In a
similar manner, a third step is added in a second third-order method but its derivative is
approximated by divided differences up to second order leading it also to a sixth-order
method. Convergence analysis of both the methods is established. The efficiency of the first
proposed method is enhanced from 1.43097 to 1.56508 and the second method involves
one less computation of derivative. This is the novelty behind the present work. Various
nonlinear equations are solved and comparison results indicate better performance of the
first presented scheme over the existing ones [18-21].

The contents of the paper are summarized as follows. Section 2 contains preliminaries,
definitions and auxiliary results. Section 3 includes the establishment of the first sixth-order
method along with convergence analysis using linear interpolation. The development
and analysis of the second sixth-order method using divided differences are presented
in Section 4. In Section 5, numerical examples are figured out to ascertain the theoretical
postulates for comparing the proposed methods with the current methods. Section 6
contains the concluding remarks.

2. Preliminaries

In order to make the study as self contained as possible, we included some standard
definitions and results.

Definition 1. Let {v}} be a sequence convergent to some parameter . Then, the convergence
is called:

(i)  Linear, if there exists a parameter | and a natural number ko such that
|vk1 — | <Ilop — 9| foreach k> k.

(ii) Of convergence order q, q > 2 if there exist a parameter L, L > 0 and a natural number ko
such that
|og1 — | < log — 9|7 foreach k> k.

Definition 2. Let ¢ be root of the function f. Suppose that vy_q, Vg, Ux11, Uk are consecutive
iterations close to . Then, the convergence order (computational) p is defined by the formula

n(|og1 — 9l /|ok — 9l)

P Tn(jox — 91/ o1 — )

A second type of convergence order (Approximate Computational) w is defined by the formula

if ¢ isknown.

~ ([vks2 = Oga [/ 01 — Ok])

i is unknown.
In(|og1 — vk |/ ok — vk—1]) foy
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The efficiency index q'/°, where q is the convergence order and & is the total number of new
function evaluations is often utilized to compute different methods.
Next, we restate Taylor’s expansion formula on realfunctions .

Lemma 1. Let f : R — R be m—times differentiable in an interval S. Then, the following
expression holds for each x,d € S

flx+d) = f(x)+ f(x)d + % F(x)d? + % Fd 4+ *(17—11)1 FOV(x)dTt 4 ry,

where ,
|rql < 71 5P £ (x + 0d),

foreach 6 € [0,1].

3. Development of First Sixth Order Iterative Method

In this section, we propose a three-step iterative method for solving the nonlinear
equation of the form (1) from third-order Newton-type composition given by Homeier [28].
This method is given as follows:

o fw)
Y =X — foI;)/
1 1 1
it =% 3 (f’(xk) - f’(yk))f (xi)- ®)

Extension of third order method (8) to obtain a sixth-order iterative method is done by
adding a Newton-like step in the following manner:

Ve = — f (xx)
(xk
3 (e * 7 ) F O
Xk+1 =2k — f/((ZZI;()) (9)

where, k = 0,1,2,... and the initial approximation x( is chosen suitably. The efficiency

index of this method is 65 = 1.43097. The foremost aim of our study is to develop a novel
sixth-order iterative method with a higher efficiency index. For this, we try to reduce
the number of evaluations using the following linear interpolation formula on points

(xx, f'(xx)) and (v, f'(yx)) for approximating f’(zx) as follows:

Fzi) = KTk g () 4 ke, (10)

Yk — Xk Xk — Yk

This simplification gives

<2f’(xk)f’(1/k) +(f'(ye)* = (f/(xk))z) (11)

1
flad =3 7w



Foundations 2023, 3 29

Substituting (11) in (9), the new three-step sixth-order method is given as:

f(xx)
=X; — ,
T )
1 1 1
Zk =Xk — 5|\ 77—~ t 75— Xk),
=53 (e * )
2f (2e) f' (yx)
Xkl =2k — . (12)
20 1) + ()7 = (F/ ()2
This method utilizes two evaluations of the function f and two evaluations of the first

order derivative f’ at each step. The convergence analysis of the sixth-order method (12) is
established in the next theorem.

Theorem 1. Let f : D C R — R be a sufficiently differentiable function in an open interval D
and xg be a close approximation to its simple root 1 € D. Then, the iterative method (12) satisfies
the following error equation:

-5
i1 = (4a2a§> e,f + O(e,Z), (13)

where a, = <k{;/(z’b¢))>,fork =2,3,....

Proof. Lete, = x; — ¢ be the error iteration in the k! iterate. Applying Taylor expansion
of f(x) and f’(xx) about ¢, we obtain

), (14)
)- (15)

f(xx) = f(9) (ex + aze? + aze; + agey + ased + aged + O(e
F'(xx) = f/(¥)(1 + 2a0e; + 3azef + 4age; + Sase; + 6age; + O(e

o =N

Substituting (14) and (15) in first substep of (12), we obtain

Y =9+ azei +2(as — a%)ef + (3ay — 7azaz + 4ag)eﬁ —2(4a5 + 3a§ —10a3a3 + 5aza4 — 2a5)e£
+ (1645 + 33aya3 — 52a3a3 + 28a3a, — 13aza5 — 17a3a4 + 5a6)eg + O(eZ).
Then, the Taylor expansion about ¢ gives,
Fye) =f' () [a3e; — (243 + a3)e} + (5a3 + 3ay — 7azaz)e; — (12a3 — 24a5a3 + 10a5a4
+ 6a§ + 4a5)e£ + (28{13 + 37a2u§ — 7311%&13 + 34a3a, — 13aza5 — 17a3a4
+5a6)e$ +O(el)], (16)

and

(i) =f' () [1 + Za%e% — 4{12((1% - a3)e,§ + az(Sag + 6ay — 11112[13)6% — 4112(4{1%
— 7a%a3 + 5aya4 — 2a5)e£ + 2(16012 — 3461%013 + 30u§a4 + 6a§ — 8arazay
— 13a3a5 + 5apa6)ef + O(e])]. (17)

Substituting (14), (15) and (17) in the second substep of (12) renders

1
2=y +5 [ase; + (2a3 — 3apa3 + 2a4)ef + (—8a3 + 15a3a;5 — 6a3 — 4azay + 3as)e;
+ (2043 — 55a3a3 + 37a2a% + 16a3a4 — 17a3a4 — 5azas + 4ag)el + O(e,Z)}. (18)
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Expanding f(zx) about ¢ and using Taylor expansion, we obtain
Lo 3 33 4 415, 2 3 15
f(z) =f'(9) [50136]( + (a5 — 27203 + ag)ey + (4a; — 303 + 303 + 2204 — §a5)ek
55 75 17 5
+ (10ag — ?agag, + Zazag + 811%114 — 5 3y — S0 + 2a6)e,§ + O(e,Z)], (19)
In view of (11), we obtain
9
F(zx) ~f' () [1 — 2aza3€} + (2a3 + 3a3a3 — Ea% — 2apa4)e; + (—8a3 + 6a3a3 — 12a3a4
+12a9a3 — 2aas)e} + (20a5 — 40a3a; — 8a3a} + 1243
+20a3ay + 18apa3a5 — 8a3 — 2aza6 — 15a3a5)ef + O(ef)]. (20)

By substituting (19) and (20) in last substep of (12), we obtain

-5
Cpi1 = Xpy1 — P = <4a2a§> e,f + O(e,Z).
O

The efficiency index of the method (12) is enhanced to 61 = 1.56508, which is better
than that of method (9).

4. Development of Second Sixth Order Iterative Method

This section describes another sixth-order iterative method for solving nonlinear
equations and its convergence analysis. Traub [29] proposed a third-order iterative method
fork=0,1,2,...,givenas:

Vo= 1 — f(xe)
f'(xx)’
(311 S
Tkl = (2 2f'<xk>>f'<xk>' @D

The new sixth-order iterative method obtained by extending (21) in a similar manner
as done in the previous section is as follows:

Vo= 1 — f(xe)

f(x)’
o (3 L5 Sl
N2 2000 ) F)’

f(z) 22)

Xk+1 = Zk — f’(Zk)'

where k =0,1,2,... and xg is suitably chosen initial approximation close to the root. This
technique requires three evaluations of the function and two evaluations of the derivative
per iteration. Here, the number of evaluations of the derivative is reduced by approximating
f'(zx) using the technique of divided differences up to the second order. Expanding f(z;)
by using Taylor expansion about y; up to second order, we obtain

Flzk) = F(e) + /() e — ) + 5 (0) (2~ ) 3)

Thus, )
F'(yi) = flzio ] - Ef//(]/k)(zk = Yk),
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— fE)=fl)
Zk— Yk
the approximation of f”(yy) is given as:

flzi xi] = flx ]

Zp — Xk

where f|zg, yx] = denotes the divided difference of first order [30]. Similarly,

[ (y) ~2

= 2f[zx, Xk, X¢]-
To obtain f’(zy), differentiate (23)

f(ze) = f'(yi) + " (i) (2 = yi)- (24)
Upon substitution of f’(yx) and f”(yx) in (24), we obtain

f(z1) = flzi v + flzi 0 2 (26 — vi)- (25)

Then, substituting (25) in the last of (22) the new three-step sixth order method is
given as follows:

Ye = Xk — }C( %)
_ 3 lf’ f(xk)
T ( 2 F7(xy) )f’( 0’
Xk41 =2 /() (26)

T flze v + flze e ) (ze — ve)

This method utilizes three evaluations of the function f and two evaluations of the
first order derivative f’ at each step. The next theorem establishes the convergence of the
iterative method (26).

Theorem 2. Let f : D C R — R, D being an open interval, be a sufficiently differentiable

function. Let xq be a close approximation to its simple root ¢ € D. Then, for iterative method (26),
the following error equation is satisfied:

1
e = 3 (16a§ — 8adas — 3a2a§)e,§ +0(el), 27)

where a, = (k{;ffl;)),fork =2,3,....

Proof. Let ey = x; — § be the error iteration in the k" iterate. Applying Taylor expansion
of f(x) and f'(xx) about ¢, we obtain

FOxk) =f' () (ex + azef + aseg + asef + asep + agep + O(ef), (28)
F'(xx) =f'(9) (1 + 2azex + 3aze; + 4age + Sasey + 6age; + O(ef). (29)
Substituting (28) and (29) in first substep of (26), we obtain

Y = + agel +2(az — a3)ed + (3ay — 7azaz + 4a3)e} — 2(4as + 3a3 — 10a3a3 + 5aay — 2as)e}
+ (16ag + 33a2a§ - 52a§a3 + 28a3a4 — 13aya5 — 17a3a4 + 5!16)62 + O(e,Z).

Taylor expansion about ¢ gives,

flye) =f' () [a%e% (2a2 + u3)ek (5112 + 3a4 — 7a2u3)ek (12u2 24a§a3 + 10ay4a4
+ 603 + 4as)ey + (28a3 + 37a2a3 — 73a3a3 + 34a3a, — 13aza5 — 17aza4
+ 5a6)ek + O(ek)], (30)
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and

F(ye) =fF' (@) [1 +2a3ef — 4az(a3 — az)e} + a2(84a3 + 6ay — 11azas)e; — 4as(4a;
— 7a3a3 + 5aya4 — 2a5)e£ +2(16a5 — 34a3az + 30a5a4 + 6a§ — 8ayazay

— 13aas + 5aza6)ef + O(ef)]. (31)

Substituting (28), (29) and (31) in second substep of (26) renders

1
zp =9 + 3 [(4&% + a3)e,% + (—1851% + 9azasz + 2a4)eﬁ + 3(2011% — 2311%{13 —+ a% +4aray + a5)e,§
+ (—176a3 + 313a3a3 — 74aza3 — 1004304 + 7a3ay + 15a5a5 + 4ag )e§ + O(e])]. (32)

Expanding f(z;) about ¢ using Taylor expansion, we obtain

1 9 3
Flze) =f(p) [2 (4a§ + 113)6;1’ + (f9a§ + 50203 + a4)e,‘f + 5(2011% - 23a%a3 + 11% +4aray + a5)e,§

1
+ (—336a3 + 634a3a3 — 147a3a3 — 200a3a4 + 14aza, + 30aza5 + 8ag)ed + O(el)]. (33)

We obtain from (25),

1
f(zi) =f () [1+ 4(a3 — agaz)ed + (—18a3 + 18a3a3 — 3a3 — azay)e} + 5(120512 — 198a3a3

— 17a3a4 + 60a2a3 + 48a35a, — 2azas)e; + (—176a5 + 409a3a3 — 201a3a3 + %ug

157
— 142aga4 + — 20308 — 6ai + 3111%115 — 1lazas — u2a6)eﬁ + O(e,Z)} . (34)
Substituting (33) and (34) in last substep of (26), we obtain

1
k1= <16a§ — 8a3a3 — 3a2a§)eg +0(e]).

The method (26) is better than (22) as it requires one less evaluation of derivative at
each iteration than method (22).

5. Numerical Testing

In this section, the applicability is demonstrated of the proposed methods (12) and (26),
which are now denoted by GM1 and GM2, respectively, on various nonlinear equations,
thus validating the theoretical results obtained so far. Such nonlinear equations have
implications to diverse areas of science and engineering [5,6]. The results are compared
with methods SM1, SM2, NEM, KLM and SSM given by (5), (6), (3), (4) and (7), respec-
tively. The test functions are displayed in Table 1, the root correct to 15 decimal places.
The comparisons of the number of iterations and a total number of function evaluations are
displayed in Tables 2 and 3, respectively.
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Table 1. Test Functions.

f(x) Root («)

f1(x) = x —0.9995sin(x) — 0.01 0.389977774946362
fr(x) =23 —x2 -1 1.465571231876768

f3(x) = exp(—x2+x—2) —cos(x+1) + x> +1 —1.000000000000000
fa(x) =sinx —x2 —1 1.404491648215341

f5(x) = xexp(x?) — sin?(x) + 3 cos(x) +5 —1.207647827130919
fo(x) = x3 +4x2 — 10 1.365230013414097

f7(x) = x?exp(x) —sin(x) + x —1.499393096901409
fs(x) =log(x* +x+2) —x+1 4.152590736757158
fo(x) = exp(—x) + cos(x) 1.365230013414097

fio(x) = arcsin(x? — 1) —x/2+1 0.5948109683983692

Table 2. Comparison of the number of iterations.

Functions  xg SM1 SM2 NEM KLM SSM GM1 GM2
f1(x) 2.99 4 3 3 3 4 3 3
fa(x) 2 3 3 3 2 3 2 3
f3(x) -2 2 3 3 3 3 2 3
fa(x) 3 3 3 3 3 3 3 3
f5(x) -1 2 2 2 2 4 2 3
fe(x) 4 3 3 3 3 3 3 3
f7(x) -2 2 3 2 2 3 2 2
fa(x) 3 3 2 2 2 2 2 2
fo(x) —0.5 2 4 2 2 2 2 2
fio(x) 1 2 3 2 2 2 2 2

Table 3. Comparison of the number of function evaluations.

Functions  xg SM1 SM2 NEM KLM SSM GM1 GM2
f1(x) 2.99 16 12 12 12 16 12 15
fa(x) 2 12 12 12 8 12 8 15
f3(x) -2 8 12 12 12 12 8 15
fa(x) 3 12 12 12 12 12 12 15
f5(x) -1 8 8 8 8 16 8 15
fe(x) 4 12 12 12 12 12 12 15
f7(x) -2 8 12 8 8 12 8 10
fs(x) 3 12 8 8 8 8 8 10
fo(x) —0.5 8 16 8 8 8 8 10
fio(x) 1 8 12 8 8 8 8 10

The comparison results for |x;, 1 — xi| and |f(xx)| for all considered examples are
displayed in Tables 4 and 5, respectively, up to the third iteration. All the computations
are performed in programming package Mathematica [31] using 600 significant digits on
Intel(R) Core(TM) i5 — 8250U CPU @ 1.60 GHz 1.80 GHz with 8 GB of RAM running on
the Windows 10 Pro version 2017. It can be observed that the accuracy in numerical values
of approximations to the root by the proposed method GML1 is higher than the existing
methods in most of the examples while GM2 is competitive with other methods. Thus,
numerical experiments demonstrate the novelty and applicability of the present study.
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Table 4. Comparison of |xj, 1 — xi| for all methods.
f(x) k SM1 SM2 NEM KLM SSM GM1 GM2
1 2.04¢e — 000 1.97¢—000 2.03¢ —000 2.11e—000 2.03¢—000 2.32¢—000 2.15¢— 000
fi 2 5.08¢ — 001 5.81e — 001 5.26e — 001 5.15¢ — 001  4.83e¢ — 001 2.86e — 001 4.24e¢ — 001
3 498e — 002 4.44e—003 3.98¢ —003 294e—002 8.82e — 002 1.33¢ — 003  2.41e — 002
1 527¢ — 001 532 —001 5.32¢—001 536e—001 5.18:—001 5.35¢—001 5.30e— 001
2 2 7.30e — 003 249¢—003 2.10e —003 1.80e —003 1.67¢ —002 8.50e — 004 4.56¢ — 003
3 8.78¢ — 013  2.19¢ — 016 1.0le — 016  6.14e — 018 5.76e — 010  3.69¢ — 020 2.45e — 014
1 1.00e — 000  1.02¢ —000 1.04¢ —000 9.16e—001 9.85¢ —001 1.03¢ —000  1.02¢ — 000
f3 2 4.20e — 004 1.90e — 002 3.72e — 002  8.45e¢ — 002 1.48¢ — 002 2.57e — 002 1.68e — 002
3 396e — 023 1.83¢—011 4.69¢—011 7.62¢—009 258 —013 1.12¢—013 5.96¢ — 013
1 1.56e —000 1.52¢ —000 2.49¢ —000 1.55¢—000 1.57¢—000 1.62¢—000 1.59¢ — 000
fa 2 3.87e — 002 7.47¢ — 002 1.40e — 001 431e — 002 2.23e—002 2.15e — 002 1.04e — 002
3 739 — 009 6.24¢—008 9.97¢—008 1.92¢—010 1.10e —009 7.13¢—013 1.29¢ —012
1 2.07e — 001 2.08e — 001 2.07e — 001 2.08e — 001 3.81e — 001 2.07e — 001 2.11e — 001
f5 2 771e — 004 3.90e —006 254¢—004 1.97¢—005 1.71e—001 3.81e —005 3.00e — 003
3 2.54¢ — 018 1.32¢ — 033  7.56e — 021 7.35e — 029 1.83¢e — 003 2.30e—025 8.91e—015
1 2.36e — 000 2.51e—000 249e—000 2.80e—000 2.29¢—000 2.67e—000 2.47e— 000
fe 2 271e—001 1.21e—001 1.40e—001 1.66e—001 3.48—001 3.45¢—001 1.67¢— 001
3 5.04¢ — 005 9.44e¢ — 008 9.97e — 008 1.11e — 007 3.84e — 004 3.65e — 012 1.21e — 006
1 5.01e — 001 4.98¢—001 4.99¢—001 5.00e —001 4.94e—001 5.00e —001 4.99¢ — 001
f7 2 1.23¢ — 005 2.46e —003 1.96¢ —003 4.20e—004 6.16e —003 1.29¢ —005 1.84e¢ — 003
3 1.89¢ — 030 4.76e — 016  5.23e — 018  8.84e — 023 1.16e — 012 225 — 030 9.89¢ — 017
1 1.18¢ — 000 1.15e — 000 1.15e — 000 1.15e — 000 1.15e — 000 1.15e — 000 1.15e — 000
fs 2 3.09¢e — 002 7.81e—004 7.39¢e—005 228¢—005 4.16e—004 233¢e—005 6.16e — 005
3 2.59% — 013 1.56e — 023 1.61e — 030 6.46e—034 1.02¢ —025 5.21e—034 2.25¢ — 031
1 225¢ —000 5.93¢—000 2.25¢—000 224¢—000 2.25¢—000 2.25¢—000 2.25e¢— 000
fo 2 9.20e — 004 7.62¢ — 001 5.68¢ —004 3.41e—003 897¢e —004 8.98e — 004 1.12e — 003
3 2.78¢ — 021 2.71e — 002 1.35¢ — 022 3.81e — 018 7.12e — 022 1.34e — 021 8.31e — 022
1 4.05e — 001 4.09¢ — 001 4.06e — 001 4.05e — 001 4.04e — 001 4.06e — 001 4.05e — 001
fi0 2 2.13¢e — 004 4.10e — 003 4.47¢—004 240e—004 7.31le—004 3.46e — 004 1.94e — 004
3 2.73e — 024 1.71le — 016  5.60e — 023 1.32¢ — 024 7.11e — 021 3.45e — 025  8.60e — 025
Table 5. Comparison of |f(x)| for all methods.
£(x) k SM1 SM2 NEM KLM SSM GM1 GM2
1 1.26e — 001 1.55e — 001 1.29¢ — 001 9.82¢ — 002 1.32e — 001 4.05e — 002  8.51e — 002
f1 2 424¢ — 003 3.74¢e — 003 3.32¢ —003 2.06e —003 8.27¢—003 1.00e —004 1.93¢ — 003
3 2.08¢ — 007 3.37e—008 1.45¢—008 1.04¢e—009 1.98¢—005 8.67¢—018 3.31e — 009
1 2.58¢ — 002 8.78¢ —003 7.39¢e—003 6.32¢e—003 5.96e—002 2.98e— 003 1.61e — 002
f2 2 3.08¢ — 012 7.68¢ —016 355e—016 2.16e—017 2.02e — 009 1.30e — 019  8.62¢ — 014
3 9.83e — 072 354e—094 453¢e—09 337¢e—104 4.04de —054 8.75e—118 2.16e — 081
1 252¢ —003 1.14e —001 2.25¢—001 5.0le—001 8.88¢:—002 1.55¢—001 1.0le— 001
f3 2 2.38e — 022 1.10e — 010 2.81e—010 4.57¢ — 008 1.55¢e — 012 6.72¢ — 011 3.57e — 012
3 1.68¢ — 136  8.72e — 065 1.23¢ — 063 3.77e — 050 4.25¢ — 077 4.30e — 077  6.71e — 075
1 9.91e — 002 1.96e — 000 2.47e — 000 1.11e — 001 5.64¢ — 002 5.24e — 002  2.60e — 002
fa 2 1.83e — 008 1.55e — 007 1.65e — 006 4.76e — 010  2.73e — 009 1.77e — 012 3.19e — 012
3 1.17e — 048 6.71e —044 548e—043 431e—060 4.76e —053  2.45¢ — 075 1.22¢ — 071
1 1.56e — 002 791e—005 5.16e —003 4.00e —004 4.69¢e—000 7.73e—005 6.11e — 002
fs 2 5.16e — 017  2.68e — 032 1.53¢ — 019 1.49¢ — 027 3.73e — 002  4.68e — 029 1.81e — 013
3 6.54¢ — 104  4.05e — 197 1.06e — 118 4.05¢e —168 2.21e—013 2.29¢—197 1.27e— 082
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Table 5. Cont.

f(x) SM1 SM2 NEM KLM SSM GM1 GM2

5.10e —000 2.12¢e—000 2.47e—000 2.52¢e—000 6.77e —000 5.61e —001  2.98e — 000
8.32¢ —004 1.56e—006 1.65¢e—006 1.83¢—006 6.35¢—003 6.02¢ —011 1.99¢ — 005
1.09e — 025 491e—043 548e—043 1.66e—043 556e —020 8.74e —071 4.98¢ — 036

fe

9.37¢ — 006 1.84e—003 1.50e —003 3.20e —004 4.72¢e—003 9.79¢ —005 1.41e— 003
144e —030 3.02¢ —016 3.98¢—018 6.73¢—023 880e—013 1.71e—029 7.53e—017
1.89¢ —179  215e—092 1.24e—105 5.86e—135 4.12¢—071 491e—180 1.82¢ —096

f7

1.86¢ — 001 4.70e —004 4.45¢—005 1.37¢e—005 250e—004 1.40e—005 3.71e —005
1.56e — 013 9.43¢e—024 9.63e —031 3.89¢e—034 6.13¢ —026 3.14e —034 1.36e — 031
591e — 080 6.13e —142 1.02¢e —184 1.99¢—205 1.33¢e —155 3.93e —206  3.25¢ — 190

f8

1.07¢e — 003  6.68¢ — 001 6.58¢ —004 3.95¢—003 1.04¢—003 1.04¢—003 1.29¢—003
322¢e —021 2.69e—002 1.56e —022 4.42¢—018 825e—022 1.55¢—021 9.63e — 022
242¢e —126  145¢—012 2.79¢—134 8.64e—108 2.05¢—130 1.71e—130 1.63e — 130

fo

226e —004 433e—003 4.73¢—004 254e—004 7.74e—004 3.67¢—004 2.06e — 004
2.89¢—024 18le—016 593e—023 139 —024 7.53¢e—021 3.65e —025 9.10e — 025
1.28¢ — 143  9.84e — (097 232¢—136 3.79¢—146  6.35¢—123 3.58¢ —147  6.79¢ — 147

f1o

WINRFRP|WONR|WONR,| WONR,[WONRP |

6. Conclusions

The current study includes the development of two sixth-order compositions for
solving nonlinear equations. This has been done by adding a Newton-like step and approx-
imating the derivative by linear interpolation and divided differences. The enhancement of
the efficiency index of the first iterative method from 1.43097 to 1.56508 establishes the mo-
tivation behind the presented work. The second method involves one less evaluation of the
derivative of the function thereby increasing its applicability. Numerical results corroborate
the advantage of the proposed methods over the existing ones of the same order. In the
future, we will extend these methods to Banach space-valued operators and equations.
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