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Abstract: Methods for controlling electromagnetic fields in materials are presented that mitigate
effects such as electrostatic discharge and electromagnetic/radio frequency interference. The first
method determines the effective response of composite materials using a d-dimensional effective
medium theory. The material consists of inhomogeneous two-layer inclusions with hyperspherical
geometry. Non-integer dimensions represent fractal limits. The material medium is composed of
a low hypervolume fraction of inclusions that are randomly distributed inside it. The effective
response of the dielectric function is obtained using a virial expansion of the Maxwell–Garnett theory.
The other method uses the transformation medium theory and involves the transformation of the
material’s permittivity and permeability tensors so that the material exhibits a predefined effective
response. By selecting appropriate transformations, a homogeneous material medium is transformed
into an inhomogeneous version, forcing the electromagnetic fields to propagate along geodesic paths.
These geodesics determine the behaviour of the fields inside the material. As a result, the material can
be made to exhibit similar physical characteristics as those of a material composed of hyperspherical
inclusions. The theoretical analysis presented is further studied and validated via the use of full-wave
numerical simulations of Maxwell’s equations.

Keywords: Maxwell-Garnett theory; control of electromagnetic fields in materials; muli-dimensional
effective medium theory; transformation medium theory; dielectric function of materials

1. Introduction

Electrostatic discharge (ESD) and electromagnetic/radio frequency interference
(EMI/RFI) are two critical phenomena that can have significant impact on various materials,
particularly in the context of electronics, sensitive apparatus, and sensors. ESD is concerned
with the sudden flow of electricity between two electrically charged objects caused by
contact, an electrical short, or dielectric breakdown. EMI/RFI refers to the disturbance
generated by an external source that affects an electrical circuit through electromagnetic
induction, electrostatic coupling, or conduction. The work presented in this paper is mo-
tivated by the need to address these electromagnetic effects in space materials, but the
results are also generic and apply to materials in general. Materials used in space platforms,
in particular, have to be robust and resilient enough to cope with the harsh environment
of space. Interaction with the surrounding plasma causes the accumulation of charged
particles that induce an electric field in the materials. This results in such problems as
electrostatic discharge (ESD) and electromagnetic/radio frequency interference (EMI/RFI)
to occur. Electromagnetic discharge, in particular, can easily destroy the operation of
electronic components within and around material structures [1,2]. In particular, ESD
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accounts for more than 50% of space platform anomalies and malfunctions [3]. Issues
arising from EMI/RFI can come about via ESD, arcing, and other transient EM fields [4].
Studies into ESD and EMI/RFI have been conducted by many so that such processes are
better understood and mitigated [5–27].

Section 2 of the paper introduces some of the basic ideas that are explored in or-
der to mitigate ESD and EM/RF interference. In Section 3, the effective medium theory
(EMT) [28–34] is modified to a general d-dimensional form consisting of hyperinclusion
geometries. In fact, a particular hypergeometry will be studied, which is that of hyper-
spheres because of their geometric symmetry [35]. The geometry of the hyperspheres is
inhomogeneous because it is composed of two layers as depicted in Figure 1. It is shown,
among other things, that parameters such as the dielectric function of a material can be
controlled and mathematically determined via a virial expansion of the Maxwell–Garnett
two-phase effective medium theory [36]. The EMT approach is written in d dimensions
and to the first order in the hypervolume fraction of inclusions c.

Figure 1. The constitutive parameters of an inhomogeneous (two-layer) hyperspherical inclusion. A
homogeneous hypersphere corresponds to the case where a1 = a2, hence ϵ1 = ϵ2 and µ1 = µ2. The
surrounding material has parameters ϵ0 and µ0.

In Section 4, an alternative method is used based on the transformation medium
theory (TMT) [37–44]. The method allows the control of electromagnetic fields inside
materials via a predefined form for the tensor parameters ϵij and µij representing the
permittivity and permeability, respectively. These describe how a material geometry
can be designed with inhomogeneous regions inside it for controlling the path of fields.
These field paths are in fact geodesics according to Fermat’s principle. The two alternative
approaches complement each other, and they produce similar control of the electromagnetic
fields so that problems such as ESD and other effects can be mitigated. Finally, Section 5
presents conclusions.

The theory developed and presented in the paper is examined via a full-wave numerical
simulation of Maxwell’s equations using the Comsol Multiphysics [45] and FEKO [46] software.

2. Electrostatic Discharge and EM/RF Interference in Materials

One of the problems that has to be addressed in space material design is the control of
electromagnetic (static) fields in order to mitigate electrostatic discharge (ESD) that causes
arcing currents to form. By addressing ESD, the associated problem of electromagnetic
and radio frequency interference (EMI/RFI) can be dealt with as well. In particular, arcing,
caused by a charge buildup on space materials, can be understood using a relatively simple
model. Suppose a negative charge builds up on a surface due to electrons. Consider another
surface which now has a positive charge to counter the negative charge on the first surface.
In simplistic terms, this is just a capacitor. If the region between the two surfaces is empty
space, an electric field is induced between the surfaces, Eapp, due to the charges. The field
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direction is from the positive charges towards the negative charges. The empty space or
vacuum between the surfaces has a dielectric constant or permittivity equal to that of free
space, namely ϵ0. The surfaces are separated by a distance d. The electric field is related to
the charge density or charge per unit area σ and the voltage V between the two surfaces
as follows:

E =
σ

ϵ0
=

V
d

(1)

In addition, the force between any two charges is given by

F = − 1
4πϵ0

q1q2

r2 (2)

since q1 = −q2. Furthermore, the capacitance between the surfaces takes the form:

C =
ϵ0 A

d
(3)

The electric field, according to (1), builds up due to the charges, and if it passes a certain
threshold it will cause arcing that may destroy electric/electronic components inside a
structure. The requirement is to avoid this scenario or to radically reduce the electric field
between the surfaces in order to eliminate or vastly reduce the risk of this happening. One
approach that can facilitate this is to introduce a material between the two charged surfaces
that has a very high dielectric constant ϵ. A material that has a high dielectric constant
reduces the electric field since:

Ee f f = Eapp − Epol =
σ

ϵϵ0
(4)

Hence, the higher the value for ϵ, the smaller the effective electric field becomes. Such
a material medium between two charged surfaces is made up of ‘particles’ which are
polarised by the applied field Eapp created between the two surfaces. The polarised particles
then induce an opposing field Epol so that the overall effective field is given by (4). As a
result there is a reduction in the probability of arcing. In addition, it means that the force
between the charges is reduced by a factor of 1/ϵ as well, i.e.,

F = − 1
4πϵϵ0

q1q2

r2 (5)

Other material parameters are affected too. For example, the dielectric constant also
depends on the temperature of a surface in an inverse way:

ϵ ∝
1
T

(6)

where T is the temperature. When the temperature is high in a space material (facing the
sun), the dielectric constant of the material goes down, and conversely, if the temperature
is low (facing away from the sun), the dielectric of the material goes up. One problem that
is addressed in this paper is the control and elimination of electromagnetic interference
(EMI) and radio frequency interference (EFI). Transient fields in a material can interfere
with other electronic components or instruments. It is necessary to mitigate these and many
other effects via the manipulation of the permittivity/permeability parameters or effective
material parameters such as the dielectric constant.

For example, to maximise the dielectric constant of a material in order to reduce or
eliminate electrostatic discharge (ESD) effects, it is a matter of using a material that has
high dielectric behaviour, but unfortunately, that is not so simple. Such a material may not
be strong or robust enough to survive the space environment and other physical effects.
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An alternative would be required that has a high dielectric constant and at the same time
has the ability to withstand the rigours of the space environment.

Two methods for achieving this are presented in this paper. The first is via the use of
composite materials that contain very low concentrations of inhomogeneous hyperinclusion
geometries. This means that the host material in which they are embedded in can be very
strong and robust in order to cope with the space environment. A small concentration
of the hyperinclusions is sufficient to prevent ESD amongst other things, while there is
no compromise on the type of material that can be used for a particular structure. The
d-dimensional framework is useful for examining the behaviour of fractal geometries which
can be used in very narrow regions of a material structure such as corners where there is a
larger concentration of charges. A d = 3 hyperinclusion, i.e., a spherical inclusion, may not
be a practical geometry for eliminating the electric field but a geometry that is in between
a disc and a sphere might prove more useful, e.g., d = 2.5. The second approach consists
of a method that allows the design of materials such that their effective response is able
to control the fields that exist inside them in some predefined way. This approach can be
described as the transformation medium theory (TMT).

3. Effective Medium Theory

The effective medium theory (EMT) is a theoretical framework used in physics and
materials science to describe the macroscopic properties of composite materials. These com-
posite materials are heterogeneous materials composed of multiple phases or components,
such as a mixture of different substances or materials. The primary idea behind the effective
medium theory is to simplify the complex interactions between the individual components
of a composite material by treating the material as a homogeneous medium with effective
macroscopic properties. In other words, the EMT allows an approximation of the behaviour
of a heterogeneous material as if it were a uniform medium with certain effective properties.
The EMT is particularly useful when the microscopic details of the composite material
are either unknown or too complicated to model accurately. By considering the average
properties of the constituent materials and the geometry of the composite, the effective
medium theory enables the prediction of various macroscopic physical properties, such as
electrical conductivity, thermal conductivity, or optical properties of the composite material.

The effective medium theory is essentially the averaging of the interaction between
each inclusion with the surrounding material they are embedded in. It takes into account
all the interactions between the inclusions and the host material for a given concentration
of inclusions c. Several models and approaches are employed in the EMT, each making
different assumptions about the microstructural details of the composite material. Some
widely used models include the Maxwell–Garnett model, the Bruggeman model, and the
self-consistent approximation. These models provide valuable insights into the effective
properties of composite materials, allowing researchers to make informed decisions about
material design and optimisation for various applications. Before extending the Maxwell–
Garnett (M-G) theory to a d-dimensional form for hyperspherical inclusions in a material, it
is worth deriving the conventional M-G approach for a homogeneous dielectric sphere as a
starting point.

Consider a homogeneous spherical inclusion inside a material experiencing an electric
field E(r). The electrostatic potential and the polarisability for such a configuration can be
calculated using spherical polar coordinates (r, θ, ϕ) because of the rotational symmetry.
The electrostatic potential ϕ is solved using the Laplace equation with no charges present:

∆ϕ(r) = 0 (7)

Using spherical coordinates means that Legendre polynomials Pl(cos θ) are required. The
assumption is that there is no field excitation in the angular direction, so the ϕ dependence
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is left out of the solutions. The overall potential is a superposition of the ‘excited’ potential
and the potential of the spherical inclusion. The following ansatz for the potentials is made:

ϕin(r, θ) =
∞

∑
l=0

Alrl Pl(cos θ) (8)

and

ϕout(r, θ) = −E0rP1(cos θ) +
∞

∑
l=0

Cl Pl(cos θ)

rl+1 (9)

Here, Al and Cl are constants that have to be found by the boundary conditions at the
surface of the sphere. Set z = r cos(θ) ≡ rP1(cos θ), and because E(r) = E0êz = −∇ϕ(r), it
leads to the form of the excited potential. The regions that are in and outside of the spherical
inclusion are denoted ‘in’ and ‘out’, respectively. Since ∇× E(r) = 0, the tangential part
of the electric field is continuous, whereas ∇ · D(r) = 0 implies that the normal part of
D(r) is continuous. Here, D(r) = ϵ(r)E(r) is the constitutive relation which results in the
continuity of ϵ(r)E(r). Using E(r)=−∇ϕ(r) gives:

−1
r

∂θϕin(r = rs, θ) = −1
r

∂θϕout(r = rs, θ)

−ϵi∂rϕin(r = rs, θ) = −ϵ0∂rϕout(r = rs, θ) (10)

where rs = a is the radius of the homogeneous sphere. Note also that ∂x ≡ ∂/∂x. Using the
fact that

P1
l (cos θ) =

d
dθ

Pl(cos θ) (11)

gives

∂θϕin(r = rs, θ) =
∞

∑
l=1

Alrl
sP1

l (cos θ)

= −E0rsP1
1 (cos θ) +

∞

∑
l=1

Cl P1
l (cos θ)

rl+1
s

(12)

The summation starts at l = 1 because P1
0 (x) = 0. From the orthogonality of the Legendre

polynomials Pm
l , the following holds:

A1rs = −E0rs +
C1

r2
s

Anr2n+1
s = Cn (13)

for n ≥ 2. Then, from the boundary conditions,

ϵin∂rϕin(r = rs, θ) = ϵin

∞

∑
l=1

lAlrl−1
s Pl(cos θ)

= −ϵout

[
E0P1(cos θ) +

∞

∑
l=0

(l + 1)Cl Pl(cos θ)

rl+2
s

]
(14)

This implies that
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C0 = 0

ϵin A1 = −ϵout

(
E0 + 2

C1

r3
s

)
ϵinnAnr2n+1

s = −ϵout(n + 1)Cn (15)

for n ≥ 2. The above system of equations can only hold if An = Cn = 0 ∀ n ̸= 1. Finally,
setting

(
r3

s −1
ϵin
ϵout

r3
s 2

)(
A1
C1

)
=

(
−E0r3

s
−E0r3

s

)
(16)

allows A1 and C1 to be solved so that

A1 = − 3E0

2 + ϵin
ϵout

(17)

and

C1 = r3
s E0

ϵin − ϵout

ϵin + 2ϵout
(18)

The potential can now be written as:

ϕin(r, θ) = − 3E0

2 + ϵin
ϵout

rP1(cos θ) (19)

and

ϕout(r, θ) = −E0rP1(cos θ) + E0

(
ϵin − ϵout

ϵin + 2ϵout

)
r3

s P1(cos θ)

r2 (20)

The polarisability of the spherical inclusion α is related to the dipole moment p = αD. The
electrostatic potential of a dipole is given by

ϕdip(r) =
1

4πϵ0ϵout

p · r
r3 (21)

Comparing the dipole potential to the potential of the sphere ϕout(r, θ), and since
p · r = prP1(cos θ′) with the angle θ′ being the angle between p and r,

E0

(
ϵin − ϵout

ϵin + 2ϵout

)
r3

s P1(cos θ)

r2 =
1

4πϵ0ϵout

prP1(cos θ′)

r3 (22)

if θ = θ′ and p = pêz, this implies that

p = 4πr3
s ϵ0ϵoutE0

(
ϵin − ϵout

ϵin + 2ϵout

)
(23)

where

α = 4πr3
s

(
ϵin − ϵout

ϵin + 2ϵout

)
(24)

is the polarisability of the spherical inclusion. Finally, from the Clausius–Mossotti equation
that relates the effective medium permittivity or dielectric to the polarisability, namely,
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ϵ − ϵout

ϵ + 2ϵout
=

α

3V
(25)

where V is the volume of the medium (material) and using (24) gives:

ϵ − ϵout

ϵ + 2ϵout
=

Vs

V

(
ϵin − ϵout

ϵin + 2ϵout

)
(26)

Let c = Vs/V be the volume fraction of inclusions, ϵout ≡ ϵ0 and ϵin ≡ ϵ1, then the final
form becomes:

ϵ − ϵ0

ϵ + 2ϵ0
= c
(

ϵ1 − ϵ0

ϵ1 + 2ϵ0

)
(27)

Equation (27) is the Maxwell–Garnett effective medium model describing the interaction
between spherical inclusions and the host material medium they are embedded in.

3.1. Effective Medium Theory of Inhomogeneous Hyperspheres

The EMT approach considered is based on extending the Maxwell–Garnett formulation
to a d-dimensional framework for spherical inclusions; see (27). The non-integer dimensions
of d can also be thought of as being fractal dimensions. The Maxwell–Garnett theory for a
two-phase medium can now be written in d-dimensional form as:

ϵ − ϵ0

ϵ + (d − 1)ϵ0
= c
(

ϵ1 − ϵ0

ϵ1 + (d − 1)ϵ0

)
(28)

Here, ϵ is the dielectric function of the material that contains homogeneous hyperspheres of
permittivity ϵ1, and ϵ0 is the permittivity of the surrounding material. See Figure 1 where
the radii are equal, i.e., a1 = a2 for the homogeneous case. Solving (28) for the case where
the hypersphere hypervolume fraction of inclusions c is small yields:

ϵ

ϵ0
= 1 + d

(
ϵ1 − ϵ0

ϵ1 + (d − 1)ϵ0

)
c + d

(
ϵ1 − ϵ0

ϵ1 + (d − 1)ϵ0

)2
c2 + O(c3) (29)

Effective medium theory or mean-field approximations are one-body interaction theories
that account for the interaction of inclusions with the surrounding medium (material). This
is represented by the linear term to order O(c) quite accurately, provided that the random
distribution of the inclusions inside the medium is sparse. This typically means values of
c = 0.0 − 0.4. As a consequence, any interactions between the hyperinclusions themselves
is negligible and can be ignored. For greater values of c, the hyperinclusions are relatively
close and higher-order interactions between them do matter. The coefficient of O(c2)
represents two-body interactions, while O(c3) represents three-body interactions, and so
on. The two-body interaction term in (29) for homogeneous hyperspherical inclusions is
invalid, and more complicated theories that incorporate the correct interactions are required.
However, for low concentrations of hyperspheres, mean-field approximations like the EMT
are considerably accurate, and evaluating the linear term in (29) is sufficient for obtaining
the material parameters such as the dielectric function, for example. According to (29), the
following virial expansion for the dielectric function can be considered:

ϵ = ϵ0(1 + dγ0c + O(c2)) (30)

For a random distribution of hyperspheres in a material medium, the total dipole moment
induced by an electric field E0 is given by:

ptot = γ0E0 (31)



Foundations 2024, 4 383

where γ0 is the effective polarisability that has the dimensional form:

γ0 =
ϵ1 − ϵ0

ϵ1 + (d − 1)ϵ0
(32)

For example, when d = 3, the effective polarisability corresponding to spherical inclusions
is given by:

γ0 =
ϵ1 − ϵ0

ϵ1 + 2ϵ0
(33)

For the general case of inhomogeneous hyperspheres, the total d-dimensional dipole
moment has a more complicated form compared to (32). It is derived to be:

γ =

χ1 + χ2βd
[

1 + (d − 2)χ1

]
1 + (d − 1)χ1χ2βd (34)

where the parameter β is defined as the ratio of the inner over the outer radius of the
inhomogeneous hyperinclusion, i.e., β = a1/a2. In addition, let γ1 = ϵ2/ϵ0 and γ2 = ϵ1/ϵ2;
refer to Figure 1. The parameters χ1 and χ2 are then defined to be:

χ1 =
γ1 − 1

γ1 + d − 1
(35)

and

χ2 =
γ2 − 1

γ2 + d − 1
(36)

respectively. The dielectric function of the medium in now obtained via a virial expansion
similar to (30):

ϵ

ϵ0
= 1 +

dχ1 + dχ2βd
[

1 + (d − 2)χ1

]
1 + (d − 1)χ1χ2βd c + O(c2) (37)

The ability to control the behaviour of electromagnetic fields inside a material can be
achieved via the randomly distributed inhomogeneous hyperspheres and their constitutive
parameters. On the basis of (37), a general equation for predicting these parameters is
given by:

Ωij = λij

[
1 + (d − 1)χ1χ2βd

]
− χ1

[
1 + (d − 2)χ2βd

]
− χ2βd (38)

Equation (38) can be solved for particular limits as given by the pseudo-polarisation matrix
λij with the condition that

Ωij = 0 (39)

The limits of (38) are given by the matrix:

λij =

 1 − 1
d−1

∞ − 1
dc

0 p

 (40)

Here, λ11 = 1 is the perfect conducting limit, λ12 = − 1
d−1 is the ‘holes’ limit, λ21 = ∞ max-

imises the dielectric function, also known as the Frohlich condition, λ22 = − 1
dc minimises
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the dielectric function, λ31 = 0 eliminates the scattering of the hyperspheres or cloaks them
from the fields, and λ32 = p is any general value for the polarisation other than the limits
that are already contained in the polarisation matrix. In what follows, three important
limits are examined because of their importance in mitigating such things as electrostatic
discharge (ESD), electromagnetic interference (EMI), and other effects in space materials.

3.2. The Limit λ21 → ∞: Maximising the Dielectric Function

A material with hyperspherical inclusions can facilitate a large dielectric function
which can help reduce electrostatic discharge (ESD) and arcing in materials. The dielectric
of a material, also known as the relative permittivity, determines its ability to store electrical
energy in an electric field. A material with a high dielectric function can effectively dissipate
charges by creating an electric field that allows the charges to redistribute and neutralise.
This helps prevent the buildup of static charges on the material’s surface, reducing the
likelihood of ESD events. A dielectric function can confine and concentrate electric fields
within a material. This confinement prevents field intensification at sharp edges or points,
where arcing is more likely to occur. By confining the electric fields, the material can
mitigate the risk of arcing and subsequent damage. A material with a high dielectric
function can reduce the surface potential, which is the voltage difference between the
material’s surface and its surroundings. Lower surface potentials minimise the likelihood
of electrostatic discharge, as the potential difference required to initiate a discharge event is
reduced. In addition, a material possessing a large dielectric function can act as an insulator,
preventing the flow of electric current and reducing the risk of arcing. By effectively
insulating conductive components or surfaces, the material can help maintain electrical
isolation and prevent unintended electrical paths. When impedance matching is crucial, a
material with a high dielectric function can facilitate the matching of impedance between
different components or interfaces. This can help minimise reflections and ensure an
efficient transfer of electrical energy, reducing the potential for ESD events.

On this basis, there is a need to obtain material structures that contain inclusions with
a very high dielectric response. Using hyperspherical inclusions in a material, this effect
can be studied by considering the limit λ21 → ∞ given by (40). The idea is to increase the
effective dielectric function or dielectric constant of the material via the manipulation of
the polarisation, which is governed by the interactions between the hyperinclusions and
the material they are embedded in. Taking the limit λ21 → ∞ in (38) gives:

Ω21 ≡ 0 (41)

Hence, (38) now becomes,

− 1
(d − 1)χ1χ2

=

(
a1

a2

)d
(42)

Setting the definitions

β =
a1

a2
, χ1 =

γ1 − 1
γ1 + d − 1

, γ1 =
ϵ2

ϵ0
, χ2 =

γ2 − 1
γ2 + d − 1

, γ2 =
ϵ1

ϵ2
(43)

gives the following expression:

γ2 − 1
γ2 + d − 1

= − γ1 + d − 1
(d − 1)(γ1 − 1)βd (44)

The requirement is to find a permittivity ϵ1 or ϵ2 (µ1 or µ2) for a hyperinclusion as shown
in Figure 1 that makes the polarisability, and hence the dielectric function as given by (37),
approach infinity for a given hypervolume fraction of inclusions c. Suppose that ϵ1 is the



Foundations 2024, 4 385

required constitutive parameter required in order to achieve this condition for any arbitrary
value ϵ2. Then, from (44):

ϵ1 = (d − 1)ϵ2

[
(ϵ2 − ϵ0)βd − (ϵ2 + (d − 1)ϵ0)

(d − 1)(ϵ2 − ϵ0)βd + ϵ2 + (d − 1)ϵ0

]
− δϵ (45)

For any given value of ϵ2 the corresponding constitutive parameter ϵ1 that gives a polar-
isation and hence a dielectric function that tends to infinity is given by (45). Since the
expression for ϵ1 as given by (45) makes the dielectric function of the material go to infinity
very quickly, it means that it is a mathematical singularity. By subtracting a small value
of choice δϵ from the singular value, one can tune the value of ϵ1 so that it can take large
or small values. When δϵ = 0 the dielectric function of the material is infinite and for
other values, for example δϵ = 0.001 the dielectric function of the material is very large but
otherwise not infinite. For parameters as given in Figure 1, the variation in the constitutive
permittivity ϵ1 as a function of ϵ2 is shown in Figure 2a for integer dimensional hyperinclu-
sions that achieve very large values for the dielectric constant. Even larger values can be
obtained when δϵ << 0.001.
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Figure 2. The dielectric function when ϵ1 is given by (45) as a function of ϵ2 and hyperinclusion
dimension. Here, the offset from the singularity is taken to be δϵ = 0.001 and β = 0.9. (a): the
variation in the dielectric constant for some hyperspherical inclusion dimensions; (b): the relation
between the constitutive parameters ϵ1 and ϵ2 for a spherical inclusion.

However, the values required for ϵ1 to achieve very large effective dielectric constants
for materials must be negative. This is shown in Figure 2b for the case where the inclusions
are spheres (d = 3). As ϵ2 increases in positive values, the corresponding ϵ1 values are
negative. Negative values imply the need to use a resonating material or structure that
gives a negative permittivity ϵ1. One way to produce negative values is through the use
of metamaterials. In order to test the validity of the theory presented in this section, full-
wave simulations were performed using the Comsol Multiphysics and FEKO software,
which solve Maxwell’s equations numerically. The idea was to see what happened to a
hyperinclusion inside a material experiencing an electromagnetic field. The effect on one
inclusion can explain the effective response of the entire material consisting of multiple
inclusions. The large effective dielectric response of the material was achieved via the
elimination of the field inside the inclusions. An electromagnetic ‘hole’ was created within
the inclusions where the field was zero or close to zero.

A composite material was modelled as shown in Figure 3. At a frequency of f = 0.8 GHz,
an electromagnetic wave was considered that propagated from left to right as shown in
Figure 3a. In both Figure 3a,b an electromagnetic ‘hole’ was obtained where the field did
not penetrate inside a spherical inclusion (2D cross section) but left the inside unaffected
by the EM waves. This validates the notion that regions can be made to reduce large fields
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to zero or close to zero via the use of hyperinclusions inside the material. As a result, in
such regions, the probability of electrostatic discharge is minimised, amongst other things.

(a) (b)

Figure 3. (a) Elimination of the electromagnetic field in a inhomogeneous spherical inclusion (d = 3)
with a thin outer region β → 1 in a material with ϵ0 = 1 at a frequency of f = 0.8 GHz. (b) A closer
look at the same inclusion when the outer region is thicker, β → 0. In both cases, the field inside the
inclusions has been cancelled and is zero, while the field outside has a maximum value.

3.3. The Limit λ11 → 1: The Perfect Conducting Limit

Perfect conduction should be understood to mean in the limit as there is no material
that possesses such a unique property. The properties of a material with perfect conducting
hyperspherical inclusions are studied in this section. It is shown that such a material
can reduce electrostatic discharge and arcing effects as well. The presence of perfectly
conducting hyperspherical inclusions in a material can provide a path for the dissipation of
electric charges. When an electrostatic charge builds up on the surface of the material, the
conducting hyperinclusions can effectively distribute and dissipate the charge throughout
the material, reducing the likelihood of a sudden discharge or arcing. By allowing the
charges to spread out and reach equilibrium, the conducting inclusions help prevent the
buildup of high potential differences that can lead to ESD or arcing. The conductivity of
the hyperinclusions plays a crucial role in determining the effectiveness of the material
in reducing ESD and arcing. For optimal performance, the inclusions should have a high
electrical conductivity to efficiently distribute and dissipate the electric charges.

The distribution of conducting hyperinclusions within the composite material is im-
portant. A uniform dispersion throughout the material helps ensure a more consistent
conductivity and charge dissipation in the material. Clustering or agglomeration of hy-
perinclusions should be minimised to maintain the desired electrical properties. This is
another reason why in this paper, the hypervolume fraction of hyperinclusions c was taken
to be c = 0.1 or 10% of the entire volume of a material. The material, which surrounds the
conducting hyperinclusions, also plays a role in the overall performance of the material.
The requirement is to affect its properties so that the material exhibits perfect conduc-
tion in order to mitigate ESD and other unwanted effects. This can be achieved by using
hyperinclusions inside the material without needing a major alteration to its mechanical
strength, chemical stability, and many other properties in order to maintain the integrity
and functionality it was designed for.

In the limit λ11 → 1, the hyperinclusions can be used inside a material medium to
cancel the electric field. Using (38), the following equation needs to be solved by equating
it to zero:

Ω11 = λ11

[
1 + (d − 1)χ1χ2βd

]
− χ1

[
1 + (d − 2)χ2βd

]
− χ2βd (46)

Solving (46) gives the following expression:

χ2 = β−d (47)
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From the definition of χ2, γ2, and so on, the perfect conducting case is achieved when the
constitutive parameter ϵ1 is related to ϵ2 (see Figure 1) via

ϵ1 = ϵ2

[
βd + d − 1

βd − 1

]
(48)

for some ratio of the radii β = a1/a2. Thus, for a material to possess effective perfect
conducting properties, the inhomogeneous ‘core’ of the hyperinclusions varies with β
for some fixed value of ϵ2. An interesting limit is obtained when a1 → a2 or β → 1.
This corresponds to the case where the hyperinclusions become homogeneous and the
permittivity ϵ1 corresponds to the entire hyperinclusion. It also means that ϵ2 ≡ ϵ0 of the
surrounding material. Then, ϵ1 tends to infinity:

ϵ1 = lim
β→1

ϵ0

[
βd + d − 1

βd − 1

]
= ∞ (49)

For perfect conducting hyperinclusions, substitute (47) in (34), and after cancelling terms, it
can be shown that the polarisation becomes γ = 1. Substituting (47) in (37) also gives the
effective dielectric constant for a perfect conducting material containing hyperinclusions as:

ϵ = ϵ0 + dϵ0c + O(c2) (50)

For a material that has a perfect conducting response via its inclusions, the accumulation
of charge in a region is suppressed and the electric field is zero. Numerical computa-
tions were performed to obtain the potential and electric field of a positive charge in a
medium using

E = −∇ϕ (51)

In essence it is a matter of computing the equipotential hypersurfaces or in 2D, curves,
which the electric field lines intersect perpendicularly. In curvilinear coordinates, the
potential field ϕ has to be obtained from the equation:

∇2ϕ = gij ∂2ϕ

∂ξ i∂ξ j − gijΓk
ij

∂ϕ

∂ξk

= 0 (52)

The coordinates (i, j) can take on values beyond d = 3 dimensions. Thus, (52) can be
written in the compact form:

∆ϕ =
1√
|g|

∂

∂ξ i

(√
|g|gij ∂ϕ

∂ξ j

)
= 0 (53)

Here, g = det(gij), gij is the Euclidean metric tensor relative to the new coordinates, and
Γk

ij are its Christoffel symbols. Figures 4 and 5 show d = 2 homogeneous inclusions in
a material with a charge. The inclusions are able to affect the electric field and potential
induced by the charge. As the number of inclusions increases, a larger region is formed
where both the potential and electric field are zero. Such configurations would be useful
for reducing or eliminating ESD and other effects from regions inside a material.
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Figure 4. Homogeneous d = 2 perfect conducting inclusions are shown, i.e., in the limit β → 1. The
electric field lines (not shown) are perpendicular to the potential surfaces caused by a positive charge.
(a) No inclusions, (b) 2 inclusions, (c) 4 inclusions, (d) 10 inclusions.
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Figure 5. Using 30 perfect conducting inclusions, both the potential and electric field are eliminated
in the oval region shown.

3.4. The Limit λ31 → 0: EMI/RFI Cancellation

In this section, the limit where scattering cancellation is achieved via the hyperspheri-
cal inclusions is considered. The aim is to shield against electromagnetic interference (EMI)
and radio frequency interference (RFI) propagating inside a material. It is necessary to at-
tenuate and absorb electromagnetic waves, reducing the impact of external electromagnetic
fields on sensitive electronic components, e.g., magnetometers. This dual functionality of
ESD protection and EMI/RFI shielding is critical for space materials. The limit correspond-
ing to scattering cancellation is examined using hyperspherical inclusions in a material. In
addition to the electromagnetic properties studied here, the same approach is valid for the
manipulation of the thermal properties of materials. The idea is to enhance or eliminate
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the thermal conductivity of a material, facilitating the efficient control of heat distribution.
This is particularly beneficial in applications where heat generation is a concern. Effective
thermal management helps maintain the material’s performance and reliability, further
enhancing its suitability for ESD and arcing prevention as well.

Using (38), the equation required for such a case is obtained from:

Ω31 = λ31

[
1 + (d − 1)χ1χ2βd

]
− χ1

[
1 + (d − 2)χ2βd

]
− χ2βd (54)

for the limit λ31 → 0 and Ω31 = 0. From (54),

χ2 = − χ1β−d

1 + (d − 2)χ1
(55)

Using the definition for χ1 and χ2, respectively, a relation between the permittivity ϵ1 (or
permeability µ1) of the inner layer of a hyperinclusion with respect to the permittivity
ϵ2 (or permeability µ2) of the outer layer can be determined that cancel transient fields.
Using (55):

ϵ1 = ϵ2

(
[ϵ0 + (d − 1)ϵ2]β

d − (d − 1)(ϵ2 − ϵ0)

[ϵ0 + (d − 1)ϵ2]βd + ϵ2 − ϵ0

)
(56)

A plot of (56) is shown in Figure 6 for different integer inclusion dimensions as a function
of ϵ2. Observe that for EM/RF interference cancellation, the constitutive parameters
(ϵ1, ϵ2) are always positive. Figure 7 shows a full-wave numerical simulation using the
FEKO software of a d = 3 spherical inclusion surrounded by vacuum or air with relative
permittivity of ϵ0 = 1 and ϵ0 ≈ 1, respectively. In vacuum or air, the value of ϵ1 is negative;
however, when the surrounding medium is ϵ0 > 1, the values for ϵ1 are always positive (see
Figure 6). The perturbed transient field propagating from the left towards a homogeneous
spherical inclusion in vacuum, shown in Figure 7a, is ‘smoothed-out’ when the inclusion
is an inhomogeneous two-layer sphere, see Figure 7b. In fact, a more realistic scenario
consists of transient fields inside a material medium. The fields can be eliminated by an
array of two-layer inhomogeneous spherical inclusions as shown in Figure 8. Normal
spherical inclusions fail to eliminate the transient fields, as they travel from left to right
and contribute to their perturbation, see Figure 8a, but using inhomogeneous spherical
inclusions with parameters as predicted via (56), the perturbed transient fields propagating
to the right are eliminated; see Figure 8b.
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Figure 6. The variation in the hyperspherical inclusion constitutive parameters ϵ1 and ϵ2 for different
dimensions that cancel EM/RF interference. Notice that both (ϵ1, ϵ2) are always positive.
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(a) (b)

Figure 7. (a) Scattering of a homogeneous spherical inclusion (d = 3) by a transient EM field at
a frequency of f = 2 GHz for a = 5 cm and ϵ1 = 5, while the material it is embedded in has
a permittivity value of ϵ0 = 1 (vacuum or air). (b) Scattering of the same inclusion when it is
inhomogeneous for a1 = 2.5 cm, a2 = 5 cm, ϵ1 = −6.163, and ϵ2 = 5, respectively.

(a) (b)

Figure 8. (a) Scattering of a transient electromagnetic field of frequency f = 2 GHz travelling from
the left by homogeneous d = 3 inclusions in an array inside a material medium with ϵ0 = 2.5. The
inclusions have a radius of a2 = a = 5 cm and ϵ1 = 5.0. (b) Elimination of the forward scattered
EMI/RFI to the right by the inclusion array where a1 = 4.409 cm, a2 = 5 cm, ϵ1 = 2, and ϵ2 = 5 for
each of the inclusions in the array. Note that all the constitutive parameters are positive.

4. Transformation Medium Theory

Previously, it was shown that the electromagnetic properties of a material could be
manipulated by embedding inhomogeneous-layered hyperinclusions inside it. The effective
properties of the material were then studied using the effective medium theory (EMT).
In this section, a second approach is considered for controlling fields inside a material.
It consists of ‘bending’ or ‘curving’ the electromagnetic fields in a region of interest so
that they are made to behave in certain ways or even vanish. Instead of achieving this by
inserting hyperinclusions in a material as before, the material itself is ‘designed’ to act as the
control mechanism that changes electromagnetic behaviour inside it. This can only occur
if the material contains regions that are inhomogeneous with respect to its permittivity
and permeability. The mathematical properties of differential manifolds can be used to
model these effects since the material can be thought of as being a three-dimensional
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manifold. In such materials (manifolds), the electromagnetic fields travel in paths that are
not straight lines, but rather, the paths are curved due to the inhomogeneities inside the
material. According to Fermat’s principle, these paths are the shortest distances between
any two or more points in the material and are referred to as geodesics. In essence, material
properties must be transformed from those of a homogeneous or flat material to those of an
inhomogeneous one. This process can be referred to as the transformation medium theory
(TMT) and can be used to calculate the physical properties of the material precisely.

The process involves the transformation of Maxwell’s equations from Cartesian coor-
dinates, representing a flat or homogeneous material, to other coordinate systems of choice
that represent the non-homogeneous version of the same material. Indeed, Maxwell’s
equations are almost always invariant under coordinate transformations which means that
the electromagnetic field parameters are generally the same, regardless of the coordinate
system. However, two of the parameters appearing in Maxwell’s equations in materials do
not remain invariant and must be transformed accordingly because of their strong depen-
dence on the spatial variation in the material. These two parameters are the second-rank
contravariant tensors for the permittivity ϵij and permeability µij, respectively. They are
both directly connected to the refractive index of the material medium. These second-rank
tensors, which describe how a material’s permittivity and permeability must transform
in order to manipulate electromagnetic fields, rely on the metric tensor. The paths that
fields travel along inside the inhomogeneous material must be optimal in the sense that
they are the shortest paths or geodesics. The equations that describe the motion of the
fields along these geodesics must be determined using Riemann differential geometry and
tensor calculus. These equations can then be used to describe the bulk properties of the
material. The mathematical equations that allow the permittivity/permeability tensors to
be calculated, which control or manipulate electromagnetic fields inside materials, are now
discussed and derived. In principle, one is then able to design and engineer a material to
control EM fields as desired for practical applications.

4.1. Determining the Equations and Geodesics of Electromagnetic Fields in a Material

A process that determines the geodesics in a material medium is derived via the calcu-
lus of variations. From this, the equations of motion of the fields inside the material can also
be obtained. These equations turn out to be complicated higher-order non-homogeneous
differential equations which cannot be solved in closed form. Their solution usually re-
quires a numerical computation. The equations of motion are derived first, and then, the
geodesics that the fields propagate along inside the material are calculated. Consider the
action A for which an extremum must be found with respect to the material coordinates
ξm′

= (ξ1′ , ξ2′ , ..., ξM′
) = (x, y, z, ...) and their gradients ξ̇m′

. Usually a ‘dot’ above the
coordinate means differentiation with respect to time but here, it means differentiation as a
function of an arbitrary parameter λ, i.e., ξ̇m′ ≡ dξm′

/dλ, which could also be time. Then,
the action that must be an extremum has the form:

A =
∫ λ2

λ1

L(ξm′
(λ), ξ̇m′

(λ))dλ (57)

The coordinates in (57) represent many possible field paths that can be minimised, but there
is always, in principle, one such path between the coordinate boundaries or beginning and
end points of all paths such that ξm′

(λ1) = 0 and ξm′
(λ2) = 0. The extremum has to be the

minimum if the shortest electromagnetic path between coordinates is required. To find this
minimum path, the coordinates are perturbed from the non-optimised original path to that
of an arbitrary one ηm(λ) by an amount ϵ. That is, the action coordinates are perturbed
by the transformations ξm′

= ξm + ϵηm and ξ̇m′
= ξ̇m + ϵη̇m, respectively, representing
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nearby paths. The minimum path is determined when the limit ϵ → 0 is taken. The action
then becomes:

A =
∫ λ2

λ1

L(ξm + ϵηm, ξ̇m + ϵη̇m)dλ (58)

where the dependence of ξm and ξ̇m on λ has been dropped for brevity. In other words, the
differentiation of the arguments of the integrand in (57) also depends on the perturbations
(transformations) as shown in (58). Note that the coordinates ηm and η̇m are also functions
of the arbitrary parameter λ. The perturbed paths also obey the conditions ηm(λ1) = 0 and
ηm(λ2) = 0. Differentiating (57) with respect to ϵ gives the extrema of the paths taken by
electromagnetic fields inside a material medium,

dA
dϵ

= lim
ϵ→0

d
dϵ

∫ λ2

λ1

L(ξm′
, ξ̇m′

)dλ

= 0 (59)

Thus, (59) becomes, as ϵ → 0:

lim
ϵ→0

∫ λ2

λ1

[
∂L

∂ξm′
∂ξm′

∂ϵ
+

∂L
∂ξ̇m′

∂ξ̇m′

∂ϵ

]
dλ = 0 →

lim
ϵ→0

∫ λ2

λ1

[
∂L

∂ξm′ ηm +
∂L

∂ξ̇m′ η̇m
]

dλ = 0 (60)

Equation (60) is called the weak form in the calculus of variations. Unfortunately, this form
is not very useful for obtaining the minimum geodesic. However, the second term on the
right can be integrated by parts to obtain:

∫ λ2

λ1

∂L
∂ξ̇m′ η̇mdλ =

∂L
∂ξ̇m′ ηm(λ)

∣∣∣∣λ2

λ1

−
∫ λ2

λ1

ηm d
dλ

[
∂L

∂ξ̇m′

]
dλ (61)

The first term on the right of (61) vanishes due to the boundary conditions ηm(λ1) = 0 ≡
ηm(λ2) = 0 mentioned above. A substitution of (61) into (60) gives

lim
ϵ→0

∫ λ2

λ1

ηm(λ)

[
∂L

∂ξm′ −
d

dλ

[
∂L

∂ξ̇m′

]]
dλ = 0 (62)

Here, the arbitrary function ηm(λ) has been factored out. In fact, because ηm(λ) is arbitrary,
it can be chosen to be non-zero. Then, the only alternative that makes the integrand in (62)
vanish to zero is

∂L
∂ξm − d

dλ

[
∂L

∂ξ̇m

]
= 0 (63)

where the limit ϵ → 0 has been taken in the coordinate expressions ξm′
and ξ̇m′

. Equation (63)
is the equation that must be used in order to obtain the optimal field path corresponding to
a minimum separation between coordinates inside an inhomogeneous material medium.
This equation is known as the Euler–Lagrange equation.

It is now possible to use the Euler–Lagrange equation to find the equations of motion
and geodesics of the fields in the material. The geodesic distance S between coordinates
inside the material is obtained on the basis of the covariant metric tensor gij which is
discussed more later. Then, S is given by

S =
∫ s2

s1

ds (64)
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where the infinitesimal distance along the geodesic, ds, is obtained by

ds2 = gij(ξ
m)dξ idξ j (65)

Here, repeated upper and lower indices are summed according to the Einstein convention.
The distance element (65) can be parametrised using an arbitrary coordinate λ. Then,(

ds
dλ

)2
= gij(ξ

m)
dξ i

dλ

dξ j

dλ
(66)

Substituting (66) into (64) results in the expression:

S =
∫ s2

s1

√
gij(ξm)

dξ i

dλ

dξ j

dλ
dλ (67)

Equation (67) gives the EM field geodesics inside a material. However, there are numerous
such paths, and what is required is a specific path that optimises (shortens) the distance
between coordinates inside the material. To find the minimum path, the integrand of (67)
must be treated as an extremum. This requires the use of the Euler–Lagrange equation
derived above with

L(ξm(λ), ˙ξm(λ)) =

√
gij(ξm)

dξ i

dλ

dξ j

dλ
(68)

Using (68) and the second term in brackets of the Euler–Lagrange equation (63) gives the
following:

∂L
∂ξ̇k

=
∂

∂ξ̇k

√
gij ξ̇ i ξ̇ j

=
1

2
√

gij ξ̇ i ξ̇ j

∂

∂ξ̇k

[
gij ξ̇

i ξ̇ j
]

=
1

2L

(
gij ξ̇

j ∂ξ̇ i

∂ξ̇k
+ gij ξ̇

i ∂ξ̇ j

∂ξ̇k

)
=

1
2L

(
gijδ

i
k ξ̇ j + gijδ

j
k ξ̇ i
)

(69)

where the argument of the metric tensor gij(ξ
m) has been dropped for convenience. From

the Kronecker delta tensors above, it can be seen that the non-zero entries occur only
whenever j = k and i = k, respectively, so that δ

j
k → δk

k and δi
k → δk

k :

∂L
∂ξ̇k

=
1

2L

[
gkj ξ̇

j + gik ξ̇ i
]

(70)

Since the summed indices in (70) are dummy variables, setting j = i in the first term gives
the symmetric component form:

gki ξ̇
i =

1
2
[gki + gik]ξ̇

i (71)

then, this gives
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∂L
∂ξ̇k

=
1

2L

[
gki ξ̇

i + gik ξ̇ i
]

=
1

2L

[
2gki ξ̇

i
]

=
1
L

gki
dξ i

dλ
(72)

In order to eliminate L from (72), use is made of (66) where ds/dλ = L. More specifically, if
a function is given as f = f (s(λ)), then it holds that:

d f
dλ

=
d f
ds

ds
dλ

≡ L
d f
ds

(73)

In operator form, this can be written as:

d
dλ

= L
d
ds

(74)

Substitution into (72) gives the final form for the second term in the Euler–Lagrange
equation:

d
dλ

[
∂L
∂ξ̇k

]
=

d
dλ

[
gki

dξ i

ds

]
(75)

The next step is to evaluate the first term in the Euler–Lagrange equation, which becomes

∂L
∂ξk =

∂

∂ξk

√
gij ξ̇ i ξ̇ j

=
1

2L

[
∂

∂ξk gij
dξ i

dλ

dξ j

dλ

]
(76)

Substituting both (75) and (76) into the Euler–Lagrange equation gives

d
dλ

[
gki

dξ i

ds

]
− 1

2L
∂gij

∂ξk
dξ i

dλ

dξ j

dλ
= 0 (77)

The arbitrary parametrisation dλ and L can be eliminated by choosing λ to be along the
geodesic path S so that λ = s. Hence, from (74)

L
d
ds

[
gki

dξ i

ds

]
− L

2
∂gij

∂ξk
dξ i

ds
dξ j

ds
= 0 (78)

where it is important to remember that the argument of the metric tensor is dependent
on the coordinates ξm, i.e., gij(ξ

m). The geodesic Equation (78) gives the equations for
the minimum path between coordinates in a material medium and the parameter s is a
parametrisation along the path itself. Alternatively, (78) can be expanded as follows:

gki
d2ξ i

ds2 +
∂gki
∂ξm

dξm

ds
dξ i

ds
− 1

2
∂gij

∂ξk
dξ i

ds
dξ j

ds
= 0 (79)

Equation (79) can be represented in a more compact form involving the Christoffel symbols
of the second kind. To transform it, let the index in the metric tensor be i = j and m = i in
the second term, since there is an implied summation for both these indices and they can
be changed arbitrarily. At the same time, the partial derivative in the second term can now
be written in terms of its symmetric component form
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∂gkj

∂ξ i =
1
2

(
∂gkj

∂ξ i +
∂gik

∂ξ j

)
(80)

to obtain:

gki
d2ξ i

ds2 +
1
2

[
∂gkj

∂ξ i +
∂gik

∂ξ j −
∂gij

∂ξk

]
dξ i

ds
dξ j

ds
= 0 (81)

Multiplying both sides of (81) with the rank-two contravariant form gnk, noting that

gkignk = δn
i (82)

is the Kronecker-delta tensor, then setting the index i = n in (81), it becomes:

d2ξn

ds2 +
1
2

gnk
[

∂gkj

∂ξ i +
∂gik

∂ξ j −
∂gij

∂ξk

]
dξ i

ds
dξ j

ds
= 0 (83)

Identifying the Christoffel symbol

Γn
ij =

1
2

gnk
[

∂gkj

∂ξ i +
∂gik

∂ξ j −
∂gij

∂ξk

]
(84)

(81) can be written in the final form

d2ξn

ds2 + Γn
ij

dξ i

ds
dξ j

ds
= 0 (85)

which is a more useful form for finding the minimum field paths, i.e., the geodesics via the
equations of motion of the fields inside the material. As mentioned before, the equations
that must be solved in order to obtain the geodesics are non-linear due to the requirement
that the material must be inhomogeneous. However, when the material is homogeneous,
it is considered to be Euclidean or flat. Mathematically, the geodesic is a straight line,
as expected for such a material (manifold). This is because for a Euclidean material, the
symmetric metric tensor gij in (84) is nothing more than the Kronecker-delta tensor:

gij = δij →
δij = diag(1, 1, 1, ..., n) (86)

To see this, consider two arbitrary coordinates (u, v) in a material M: ξm = (ξ1, ξ2) = (u, v).
Then, from (85), after replacing the metric tensor gij with the Euclidean metric δij, the
derivatives with respect to this metric vanish in the Christoffel symbols, and the only term
remaining is

d2ξn

ds2 = 0 (87)

Since there are two parameters or coordinates u, v, n = 1, 2. Set n = 1 to obtain the equation
of the first parameter and n = 2 for the second. Following this process and using (87) gives
two sets of equations,

d2ξ1

ds2 = 0

d2ξ2

ds2 = 0 (88)

These correspond to the two equations
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d2u
ds2 = 0 and

d2v
ds2 = 0 (89)

where ξ1 = u and ξ2 = v. It is easy to show that the solutions of the differential equations
in (89) are

u(s) = c1s + c2 and v(s) = c3s + c4 (90)

where c1, c3 are the gradients of straight lines with intercepts at c2, c4. Hence, the solutions
(90) indicate that for a flat or Euclidean material, the field geodesic Equation (85) reduces
to solutions for straight lines, i.e., the fields travel in straight paths. The field geodesic
distance between two coordinates in a homogeneous material can be shown via (65) to be

ds2 = δijdξ idξ j

= δ11(dξ1)2 + 2δ12dξ1dξ2 + δ22(dξ2)2

= du2 + dv2 (91)

The geodesic distance becomes, after substituting ds above into (64),

S =
∫ s2

s1

√
du2 + dv2 (92)

which can be re-written as a derivative in s:

S =
∫ s2

s1

√(
du
ds

)2
+

(
dv
ds

)2
ds

=
∫ s2

s1

√
c2

1 + c2
3ds (93)

Setting the constants and the square root to m =
√

c2
1 + c2

3, the geodesic distance of a
Euclidean material becomes

S = m(s2 − s1) (94)

as expected, where m can be considered as a kind of gradient that can be set to unity
without loss of generality. Equation (94) indicates that in homogeneous (Euclidean or flat)
materials, the shortest distance the EM fields travel along is a straight path and equal
to the difference between the two points s1 and s2 inside the material. This is of course
intuitive for a Euclidean material, but this is not the case for non-Euclidean geodesics
corresponding to inhomogeneous materials. Inhomogeneity is required for manipulating
the fields inside the material. Consider the same problem as above but this time for a
non-Euclidean material. This requires the use of (85), where the coordinate or parameter
space is the same as before, ξm = (ξ1, ξ2) = (u, v). As a result, the summation of the
repeated indices goes from i, j, n = 1, 2. Setting n = 1 means that a non-linear second-order
differential equation corresponding to the first coordinate is obtained; the terms in (85) are
summed, so the equation becomes:

d2u
ds2 + Γ1

11

(
du
ds

)2
+
(

Γ1
12 + Γ1

21

)du
ds

dv
ds

+ Γ1
22

(
dv
ds

)2
= 0 (95)

The first Christoffel symbol in (95) is given by

Γ1
11 =

1
2

g11 ∂g11

∂u
+ g12 ∂g12

∂u
− 1

2
g12 ∂g11

∂v
(96)
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The next Christoffel symbol in (95) takes on the following form:

Γ1
12 =

1
2

(
g12 ∂g22

∂u
+ g11 ∂g11

∂v

)
(97)

The Christoffel symbols in the third term in (85) are symmetric, i.e., Γ1
12 ≡ Γ1

21, so that:

Γ1
12 + Γ1

21 = g12 ∂g22

∂u
+ g11 ∂g11

∂v
(98)

The final Christoffel symbol turns out to be:

Γ1
22 =

1
2

g12 ∂g22

∂v
+ g11 ∂g12

∂v
− 1

2
g11 ∂g22

∂u
(99)

Equations (95)–(99) can be substituted into (85) noting that gij is the covariant form of
the metric tensor, and its contravariant form is given by gij. Both the covariant and
contravariant forms of the metric tensor are symmetric. Equation (95) is the non-linear
higher-order partial differential equation for coordinate ξ1 = u. Similarly for coordinate
ξ2 = v and using n = 2, the following equation is obtained:

d2v
ds2 + Γ2

11

(
du
ds

)2
+
(

Γ2
12 + Γ2

21

)du
ds

dv
ds

+ Γ2
22

(
dv
ds

)2
= 0 (100)

As before, the Christoffel symbols can be obtained for (100) starting with:

Γ2
11 =

1
2

g21 ∂g11

∂u
+ g22 ∂g12

∂u
− 1

2
g22 ∂g11

∂v
(101)

The third term gives the following Christoffel symbols:

Γ2
12 + Γ2

21 = g21 ∂g11

∂v
+ g22 ∂g22

∂u
(102)

The final Christoffel symbol is determined to be:

Γ2
22 =

1
2

g22 ∂g22

∂v
+ g21 ∂g12

∂v
− 1

2
g21 ∂g22

∂u
(103)

Note that when the metric tensor is that for a material that is homogeneous and flat
(Euclidean), namely (86), all the Christoffel symbols vanish and (95) and (100) are equivalent
to (89) and hence (90), i.e., linear solutions as expected. Note also that two coordinates were
considered above for a 2D material where n = 1, 2 and i, j = 1, 2. For a three-dimensional
material, the number of coordinates increases by one, i.e., n = 1, 2, 3 and i, j = 1, 2, 3.
The contravariant metric tensor can be obtained from the covariant tensor by the cofactor
method:

gij =
(−1)i+jcdet(gji)

det(gij)
(104)

where det(·) is the normal determinant, and cdet(·) is the cofactor determinant. Here,
gji is the transpose and the jth row and ith column are crossed out before obtaining the
determinant of whatever rows and columns remain. Similarly, the covariant metric tensor
can be obtained from the contravariant version by:

gij =
(−1)i+jcdet(gji)

det(gij)
(105)
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In three dimensions and for coordinates (u, v, w), the geodesic distance between coordinates
in a material is given by the integration of the element:

ds2 = g11du2 + g22dv2 + g33dw2 + 2g12dudv + 2g13dudw + 2g23dvdw (106)

Equation (106) gives the geodesic path of electromagnetic fields through a 3D material and
requires the explicit form for the geodesic tensor. This is defined and discussed in the next
section.

4.2. Transformation of the Constitutive Parameters in Maxwell’s Equations

A material’s structure and properties can be mathematically equivalent to, and de-
scribed by, a geometrical manifold. In addition, the properties of a material also obey
Maxwell’s equations regardless of whether they are homogeneous or inhomogeneous. The
electromagnetic equations are form-invariant and independent of the coordinate system
they are used in to describe the material properties. Hence, Maxwell’s equations can be
written as:

1
√

g
(
√

gEi),i =
ρ

ϵ0
;

1
√

g
(
√

gBi),i = 0

ϵijkEk,j = −∂Bi

∂t
; ϵijkBk,j =

1
c2

∂Ei

∂t
+ µ0 ji (107)

Here, g is the determinant of the metric tensor and is discussed in detail in the following.
The alternating Levi-Civita tensor is given by ϵijk and Ek,j ≡ ∂Ek/∂ξ j. The contravariant
tensors (107) can be written in terms of covariant tensors which resemble more closely
Maxwell’s equations in dielectric media:

(
√

ggijEj),i =

√
gρ

ϵ0
; (

√
ggijBj),i = 0

[ijk]Ek,j = − ∂

∂t
(±√

ggijBj); [ijk]Bk,j =
1
c2

∂

∂t
(±√

ggijEj) + µ0
√

gji (108)

The Levi-Civita tensor is written as

ϵijk = ± [ijk]
√

g
(109)

and the positive sign corresponds to the right-handed coordinate system, while the negative
sign implies the left-handed system. The form of Maxwell’s equations given by (108) can
be further defined as

Di
,i = ρ Bi

,i = 0

[ijk]Ek,j = −∂Bi

∂t
; [ijk]Hk,j =

∂Di

∂t
+ ji (110)

If Bi is replaced by Hi/µ0 by a rescaling of the charge and current densities, then the
constitutive equations can be defined as:

Di = ϵ0ϵijEj; Bi = µ0µijHj

ϵij = µij = ±√
ggij (111)

As a consequence, the empty-space Maxwell’s equations in arbitrary coordinates and
geometries turn out to be the same as Maxwell’s equations in a right-handed Cartesian
coordinate system. Dielectric media are in fact the same as these arbitrary geometries, and
the permittivity tensor ϵij is identical to the permeability tensor µij. If a medium (material)
does not contain an inhomogeneous geometry, the Riemann tensor is zero, and the medium
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is flat or Euclidean. This means that fields are described by coordinate transformations
in Cartesian space as shown below. The form invariance of Maxwell’s equations is thus
preserved under such transformations except for the constitutive tensors ϵij and µij. It is
these tensors, which describe the effect that a transformation has on a material medium,
that govern how the electromagnetic fields propagate inside the medium in the real sense.

The two constitutive tensors are second-rank contravariant tensors, and they are both
directly connected to the refractive index of the medium. They can be written as

ϵi′ j′ =
1
√

g
∂ξ i′

∂ξk
∂ξ j′

∂ξ l gklϵij (112)

and

µi′ j′ =
1
√

g
∂ξ i′

∂ξk
∂ξ j′

∂ξ l gklµij (113)

respectively, where g = det(ϵi′ j′) = det(µi′ j′). The indices (i, j) are summed over the three spa-
tial dimensions. A summation is implied if the same index appears in covariant–contravariant
form or vice versa as per the Einstein convention. The primes indicate the new coordinate
system. It should be pointed out that these equations also hold for the case where the Riemann
tensor vanishes and the medium is locally flat. For a medium (material) that has an inhomo-
geneity, the tensors become more involved. Using these tensors one can consider a coordinate
transformation by a design that transforms the permittivity and permeability tensors (ϵi′ j′ , µi′ j′)
in such a way that the fields propagate in a predefined way or completely vanish inside the
material. From either (112) or (113), the metric tensor can be identified, which is:

gi′ j′ =
∂ξ i′

∂ξk
∂ξ j′

∂ξ l gkl (114)

The contravariant permittivity and permeability tensors can be written in the compact form:

ϵi′ j′ =
1
√

g
gi′ j′ϵij (115)

and

µi′ j′ =
1
√

g
gi′ j′µij (116)

It should be understood that the coordinates chosen to transform the homogeneous Eu-
clidean material to an inhomogeneous one can be arbitrary and according to the desired
design specifications one desires. In what follows, some examples are considered in order
to highlight the approach in (x, y, z) Cartesian coordinates. However, in specific cases it
may be easier to consider other coordinate systems for simplicity such as spherical polar
coordinates, cylindrical coordinates, and so on. It is shown via the numerical solution of
the field equations and geodesics that the material medium can be made to eliminate or
change the fields inside so that electromagnetic effects such as ESD/arcing and EM/RF
interference can be minimised or even eliminated, for example.

4.3. Controlling EM Fields in Different Regions of a Material

In this section, equations and their solutions are obtained that transform a material
medium so that electromagnetic fields are manipulated in some pre-required manner. Let
the three-dimensional coordinates take values m = 1, 2, 3 inside the material structure. The
coordinates then become ξm′

= (ξ1′ , ξ2′ , ξ3′) ≡ (x′, y′, z′) and ξm = (ξ1, ξ2, ξ3) ≡ (x, y, z).
Suppose that a design feature for the material is to weaken or eliminate the field in a
given region so that the ESD/arcing probability is reduced dramatically or even eliminated.
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One way to achieve this is to ‘compress’ the internal structure of the material from a
homogeneous or flat structure to an inhomogeneous one, as shown in Figure 9. Consider
the following coordinate transformations:

x′ = x

y′ = y

1 − e
−
(

x2

σ2
x
+

y2

σ2
y

)
z′ = z (117)

Figure 9a shows a homogeneous material. In the language of differential geometry,
this is merely a flat or Euclidean manifold. Conversely, Figure 9b shows the same medium
but this time, it is ‘compressed’ so that it now exhibits an inhomogeneous behaviour from
the point of view of the fields in the material. The mathematical transformations that
achieve this are given by (117). On the other hand, it is possible to ‘expand’ the material
medium via the transformations given by (118):

x′ = x

y′ = y
[

1 − sin
(

x2

a
− y2

b

)]
z′ = z (118)

(a) (b)

Figure 9. (a) A homogeneous material can be transformed so that it exhibits compression. (b) The material
properties have been changed by the transformation of the permittivity (or permeability) according to (117).

Figure 10a,b show the effect of such a transformation for the parameters given.

(a) (b)

Figure 10. (a) A homogeneous material is represented by orthogonal Cartesian coordinates. (b) The
material properties have been changed by the transformation of the permittivity (or permeability)
tensor by a coordinate transformation as given by (118). With parameters a = 1 and b = 1, the material
now behaves differently compared to the homogeneous case. The material has undergone expansion.
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The transformations (117) and (118) can be written as a contravariant rank = 1 tensor,
i.e., a vector. For example, (118) becomes:

ξm′
= (ξ1′(ξ1, ξ2, ξ3), ξ2′(ξ1, ξ2, ξ3), ξ3′(ξ1, ξ2, ξ3))

= (x′(x, y, z), y′(x, y, z), z′(x, y, z))

= (x, y − y sin
(

x2

a
− y2

b

)
, z) (119)

In ESD/arcing effects, for example, the electric component of the fields is dominant and
the magnetic component can be ignored because it is a quasi-static limit. Either way, the
mathematical procedure considered is the same for the permeability tensor as well, which
describes the magnetic field. The permittivity tensor is now obtained using (112) for the
transformations given by (118) (the same process can be used in the case of (117)). The
components of the permittivity tensor are determined by:

ϵ1′1′ =
1
√

g
g1′1′ϵ11 (120)

and

ϵ1′2′ =
1
√

g
g1′2′ϵ12 (121)

and so on. Here, 1′1′ ≡ x′x′, 1′2′ ≡ x′y′, etc., represent the Cartesian coordinates. Therefore,
it is paramount to calculate the metric tensor using (114), which enables the full derivation
of the permittivity tensor components. Here, the unprimed contravariant metric tensor gij

represents the homogeneous medium, since the medium is Euclidean or flat to begin with
before applying the transformations. This means that gij = δij, with the latter being the
Kronecker tensor. Thus,

g1′1′ =
∂ξ1′

∂ξk
∂ξ1′

∂ξ l δkl

=

(
∂x′

∂x

)2

+

(
∂x′

∂y

)2

+

(
∂x′

∂z

)2

(122)

Using the transformation (118), the first x′x′-component of the metric tensor becomes:

gx′x′ = 1 (123)

Similarly,

g1′2′ =
∂ξ1′

∂ξk
∂ξ2′

∂ξ l δkl

=
∂x′

∂x
∂y′

∂x
+

∂x′

∂y
∂y′

∂y
+

∂x′

∂z
∂y′

∂z
(124)

The second component of the geometric tensor becomes:

gx′y′ = −2xy
a

cos
(

x2

a
− y2

b

)
(125)

It can be shown by symmetry that the following holds for the geometric tensor components:

gx′y′ = gy′x′ ; gx′z′ = gz′x′ ; gy′z′ = gz′y′ ; gz′z′ = gx′x′ ; (126)
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The only non-trivial component is gy′y′ , which is obtained from:

g2′2′ =
∂ξ2′

∂ξk
∂ξ2′

∂ξ l δkl

=

(
∂y′

∂x

)2

+

(
∂y′

∂y

)2

+

(
∂y′

∂z

)2

(127)

Hence,

gy′y′ =
4x2y2

a2 cos2
(

x2

a
− y2

b

)
+ [

1 − sin
(

x2

a
− y2

b

)
+

2y2

b
cos
(

x2

a
− y2

b

)]2

(128)

The contravariant metric tensor takes the final form:

gi′ j′ =


1 − 2xy

a cos
(

x2

a − y2

b

)
0

− 2xy
a cos

(
x2

a − y2

b

)
ω2 + 4x2y2

a2 cos2
(

x2

a − y2

b

)
0

0 0 1

 (129)

where

ω = 1 +
2y2

b
cos
(

x2

a
− y2

b

)
− sin

(
x2

a
− y2

b

)
(130)

According to (115) or (116), the tensor product of the metric tensor has to be taken with
ϵij. Define the latter as the orthogonal tensor in the Euclidean homogeneous material and
set it to ϵij = ϵ0diag(1, 1, 1) = ϵ0δij. Let ϵ0 = 1 for free space, a = 1 and b = 5, then the
permittivity tensor takes the form,

ϵi′ j′ =


1
g − 2xy

g cos
(

x2 − y2

5

)
0

− 2xy
g cos

(
x2 − y2

5

)
g + 4x2y2

g cos2
(

x2 − y2

5

)
0

0 0 1
g

 (131)

The permeability tensor has the same form as the contravariant permittivity tensor, i.e.,
ϵi′ j′ ≡ µi′ j′ and the parameter g = det(gi′ j′) ≡ ω2 is the determinant of the metric tensor
which is given by

g = 1 − sin
(

x2 − y2

5

)
+

2y2

5
cos
(

x2 − y2

5

)
(132)

The permittivity tensor as given by (131) is for an ‘expanded’ material. Figure 11 shows
how the components of this tensor vary inside the material.

Using the same mathematical analysis for the expansion of the material medium given
above, the permittivity or permeability tensors for a material experiencing compression
can be derived as well. For brevity reasons, the mathematical analysis and final form of the
tensor is not given; however, Figure 12 shows a plot of its components.
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Figure 11. The constitutive tensors of an inhomogeneous material ϵi′ j′ = µi′ j′ that undergoes
expansion; see (131).

Figure 12. The constitutive tensors of an inhomogeneous material under compression via ϵi′ j′ = µi′ j′

under the transformation coordinates (117). The tensor components ϵx′x′
and ϵz′z′ show a localised

variation in the permittivity approaching infinity just as in the case of inclusions in a medium as
discussed in Section 3. Here, σx = σy = 0.5.
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4.4. Propagation of the Fields along Their Geodesics in Inhomogeneous Materials

Consider the propagation of an EM field in the transformed medium. The fields are
changed by the inhomogeneous medium to Ei′ from the fields in the homogeneous medium
via the Lorentz transform:

Λi′
i =

∂ξ i′

∂ξ i (133)

where i = 1, 2, 3, such that:

Ei′ = Λi′
i Ei

=
∂ξ i′

∂ξ i Ei (134)

The components of the transformed field can thus be obtained starting with i = 1 = x

Ex′ =
∂x′

∂x
Ex +

∂x′

∂y
Ey +

∂x′

∂z
Ez (135)

Similarly, for i = 2 = y, the fields become

Ey′ =
∂y′

∂x
Ex +

∂y′

∂y
Ey +

∂y′

∂z
Ez (136)

and for i = 3 = z,

Ez′ =
∂z′

∂x
Ex +

∂z′

∂y
Ey +

∂z′

∂z
Ez (137)

Assuming a TE-polarised EM field in the x-direction of a lossless medium, namely, Ey =
exp(−ikx) with k = 2π/λ where λ is the wavelength, means that all other fields are zero:
Ex = Ez = 0. That is, the only transformed field component that is non-zero becomes:

Ey′ =
∂y′

∂y
Ey

=
∂y′

∂y
e−ikx (138)

Figure 13 shows the propagation of the field in the expanded medium showing how the
field is close to or equal to zero in the central regions of the medium. On the other hand,
Figure 14 shows the field propagating in the compressed medium and it exhibits an electro-
magnetic ‘hole’ analogous to Figure 3 via the effective medium approach. Furthermore,
Figure 15 shows that the size of the electromagnetic ‘hole’ in the compressed material can
be manipulated so that a larger region with a zero EM field can be created. Changing the
transformations and parameters to

x′ = x

y′ = y4(1 − exp(−4(x2 + y2)))

z′ = z (139)

induces the ‘splitting’ of the entire electromagnetic field as shown in Figure 16. Using (105),
the covariant metric tensor is obtained from (129), and it becomes:
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gi′ j′ =


1 + 4x2y2

a2w2 cos2
(

x2

a − y2

b

)
2xy
aw2 cos

(
x2

a − y2

b

)
0

2xy
aw2 cos

(
x2

a − y2

b

)
1

w2 0
0 0 1

 (140)

where

ω = 1 +
2y2

b
cos
(

x2

a
− y2

b

)
− sin

(
x2

a
− y2

b

)
(141)

The electromagnetic fields travel along the geodesic in the material, and the path is
given by:

ds2 =

[
1 +

4x2y2

a2w2 cos2
(

x2

a
− y2

b

)]
dx2 +

4xy
aw2 cos

(
x2

a
− y2

b

)
dxdy+

1
w2 dy2 + dz2 (142)

which must be integrated in order to obtain the entire path the fields travel along in the
material medium, namely,

S =
∫

ds (143)

For example, the geodesic of the fields along the x-coordinate is determined from

S =
∫ x2

x1

[
1 +

4x2y2

a2w2 cos2
(

x2

a
− y2

b

)
+

4xy
aw2 cos

(
x2

a
− y2

b

)
dy
dx

+

1
w2

(
dy
dx

)2
+

(
dz
dx

)2] 1
2

dx (144)

and similarly for other coordinates. In order to obtain the final geodesic for the fields
along the x-direction, the derivatives appearing in (144) must be solved. This is achieved
by using (85), where this time, the indices are summed over three dimensions inside the
material medium, i.e., n, i, j = 1, 2, 3. Thus, if ξm = (ξ1, ξ2, ξ3) = (x, y, z), then for n = 1 the
equation that corresponds to the x-direction becomes

1 + Γ1
11 + Γ1

22

(
dy
dx

)2
+ Γ1

33

(
dz
dx

)2
+
(

Γ1
12 + Γ1

21

) dy
dx

)+(
Γ1

13 + Γ1
31

) dz
dx

) +
(

Γ1
23 + Γ1

32

) dy
dx

dz
dx

) = 0

The same can be performed for y and z, i.e., for n = 2 and n = 3, respectively. The set
of non-linear differential equations obtained must be solved if the path of the field in the
material is required. The solutions can then be substituted into the geodesic expression
that minimises the path of the field as a function of the coordinates such as the x-direction,
which is given by (144). The Christoffel symbols of the second kind Γn

ij are determined
via (84). Figure 17 shows a combination of compression and expansion transformations
yielding a ‘warped’ material medium that concentrates the field in a central region but
eliminates it in the surrounding regions of the material using the following transformations:

x′ = x

y′ = sinc2(x/2) sinc2(3y/2)

z′ = z (145)
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This is of use to sensors or electric components in material structures that require sensing
of external fields without the risk from such things as transient fields or ESD/arcing effects
and so on. Similarly, as shown in Figures 13–16, mathematical transformations can be
used that manipulate the fields inside materials for similar purposes. The mathematical
approach discussed in this paper for designing such materials can be engineered in the
practical sense using 3D-printing techniques for example. The printing of thin layers
or surfaces that form the material can be designed according to the field transformation
approach presented. Another manufacturing approach might utilise a combination of both
hyperinclusions and material transformation design for obtaining a material that mitigates
various unwanted electromagnetic field effects.

(a) (b)

Figure 13. (a) An electromagnetic wave propagating in a homogeneous medium at a frequency of
f = 0.1 GHz. (b) The same electromagnetic wave propagating inside the modified medium which
has undergone an expansion of its geometry via a transformation of the permittivity (or permeability)
according to (118). Notice that in this case, the field is reduced in the middle regions of the medium
close to or equal to zero. Here, a = 2 and b = 1/2.

(a) (b)

Figure 14. (a) An electromagnetic wave propagating in a homogeneous medium at a frequency of
f = 0.1 GHz. (b) The same electromagnetic wave propagating inside the modified medium which has
undergone a compression of its geometry via a transformation of the permittivity (or permeability)
according to (117) with σx = σy = 0.5.
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(a) (b)

Figure 15. (a) An electromagnetic wave propagating in a homogeneous medium at a frequency
of f = 0.1 GHz. (b) The same electromagnetic wave propagating inside the modified medium
which has undergone a transformation of the permittivity (or permeability) according to (117) where
σx = σy = 5.

(a) (b)

Figure 16. (a) An electromagnetic wave propagating in a homogeneous medium at a frequency of
f = 0.1 GHz. (b) The same electromagnetic wave propagating inside the modified medium which
has undergone an expansion of its geometry via a transformation of the permittivity (or permeability)
according to (139).

(a) (b)

Figure 17. (a) A homogeneous material can be transformed so that it exhibits compression and expan-
sion, a kind of warping effect. (b) The material properties have been changed by the transformation
of the permittivity (or permeability) according to (145).
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5. Conclusions

Two methods were presented for the manipulation of electromagnetic effects in space
materials. In particular, the problems of electrostatic discharge/arcing and EM/RF interfer-
ence were studied via the dielectric function of a material. The first method consisted in an
effective medium theory derived in a multidimensional framework. The effective behaviour
of a material with hyperspherical inclusions was studied, with non-integer dimensions
corresponding to fractal inclusion geometries. The second method consisted in ‘designing’
the material medium itself via the use of differential calculus. The fields travelled along
geodesic paths inside the material, and the constitutive parameters were derived via trans-
formations using the metric tensor and other electromagnetic field components. The theory
presented was studied and validated using full-wave numerical simulations of Maxwell’s
equations using the Comsol Multiphysics and FEKO software.

Embedding hyperspherical inclusions in host materials can achieve the desired effec-
tive response using values for the hyperinclusion material permittivities/permeabilities
that are easily found in nature. In cases requiring negative permittivity or permeability,
metamaterials or similar constructs might be necessary. In the EMT section, the paper
demonstrated how any material could be modified to exhibit a high dielectric function, use-
ful for ESD cancellation. Naturally occurring materials with such large dielectric values are
rare. Additionally, natural materials may be too heavy, weak, or lossy. Instead, using strong
and light materials that meet the intended purposes is crucial. The required high dielectric
response can be achieved by incorporating inclusions with the properties described in this
paper, enhancing the material’s effective performance without altering its bulk properties.
For designing material media using the transformation medium theory, 3D printing can
create layers with graded permittivity or permeability as mathematically described in the
paper. The 3D printer can be programmed to follow algorithms based on this paper’s
mathematical results, printing out the layer properties and thickness accordingly.

This paper focused on electromagnetic properties, but the mathematical analysis of
the dielectric function is interconnected with properties like electrical conductivity, ther-
mal conductivity, and mechanical strength. The EMT approach can determine thermal
conductivity using the Maxwell–Eucken model, which estimates the effective thermal
conductivity of a composite material based on the constituent phases’ thermal conductivi-
ties and (hyper)volume fractions. It can also determine the effective elastic moduli (e.g.,
Young’s modulus, bulk modulus, and shear modulus) of composite materials using the
Voigt, Reuss, and Hill models. The Voigt and Reuss bounds provide upper and lower
limits for the effective moduli. The EMT approach can also be used to obtain estimates
of the effective acoustic impedance of composite materials, which is useful in materials
engineering and acoustic metamaterials design among other things.

Experimental fabrication and studies are required to validate the theoretical results
and numerical simulations presented in the paper. This includes exploring and optimising
material compositions and structures to enhance electromagnetic field control methods.
Experiments with various inclusions, geometric configurations (fractal or conventional),
and host material properties will further this research.
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