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Abstract: Bioimpedance, or the electrical impedance of biological tissues, describes the passive
electrical properties of these materials. To simplify bioimpedance datasets, fractional-order equivalent
circuit presentations are often used, with the Cole-impedance model being one of the most widely
used fractional-order circuits for this purpose. In this work, bioimpedance measurements from
10 kHz to 100 kHz were collected from participants biceps tissues immediately prior and immediately
post completion of a fatiguing exercise protocol. The Cole-impedance parameters that best fit
these datasets were determined using numerical optimization procedures, with relative errors of
within approximately ±0.5% and ±2% for the simulated resistance and reactance compared to the
experimental data. Comparison between the pre and post fatigue Cole-impedance parameters shows
that the R∞, R1, and fp components exhibited statistically significant mean differences as a result of
the fatigue induced changes in the study participants.
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1. Introduction

Bioimpedance, or the electrical impedance of biological tissues, describes the passive electrical
properties of these materials. The aim of collecting these measurements is to provide details regarding
the electrochemical structures and processes within a tissue or material under study [1]. These
measurements are being used in a wide range of applications including: As a method to monitor
hydration during hemodialysis [2], to detect changes resulting from muscle injury [3], assessing
lympoedema [4], and to assess neuromuscular disorders [5]. There is also a small set of studies that
have investigated the bioimpedance of skeletal muscle for changes that result from fatigue [6–8].

Regardless of the application, after collecting an impedance dataset (which may contain hundreds
of data points at different frequencies) the data needs to be analyzed using either discrete frequencies
or electrical equivalent circuit representations. Using equivalent electrical circuits can reduce a dataset
from the potentially hundreds of datapoints to a smaller set (dependent on the number of circuit
components in the model). This reduction is aimed at decreasing the complexity of tracking changes
in the measured tissues. While there are many equivalent circuits that have been used to represent
bioimpedance datasets [9], one of the most widely used is referred to as the Cole-impedance model [10],
given in Figure 1. This model is composed of three hypothetical circuit elements. A high-frequency
resistor R∞, a resistor R1, and a Constant Phase Element (CPE). The impedance of a CPE is ZCPE =

1/Csα where sα = (jω)α = ωα [cos(απ/2) + j sin(απ/2)]. The value C is often referred to as a
pseudo-capacitance with units Farad sec(α−1). The impedance of the Cole-model is given by:

Z(s) = R∞ +
R1

1 + sαR1C
(1)
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Recent studies have utilized the Cole-impedance model in biologic applications including:
Characterizing the electrical impedance of blood for potential monitoring of thrombus formation [11],
predicting myofiber size in mice [12], modeling the electrical impedance of botanical elements [13].
While this is not an exhaustive list, it does highlight the varied applications of the Cole-impedance
model in biology. It is important to note that using a CPE (with the sα term) implies a fractional
derivative of order 0 < α < 1, with the current-voltage relationship for this component defined as:

i(t) = C
dαv(t)

dtα
(2)

where i(t) and v(t) are the time-dependent current and voltage, respectively. This therefore places the
Cole-impedance model within the domain of fractional-order systems. This field incorporates concepts
from fractional calculus [14,15], the branch of mathematics concerning non-integer differentiation and
integration, and is being widely explored to model biological phenomena [9,16–18]. One definition of
a fractional derivative of order α is given by the Grünwald-Letnikov definition [19] as

aDα f (x) = lim
h→0

1
hα

[ x−a
h ]

∑
m=0

(−1)m Γ (α + 1)
m!Γ (α−m + 1)

f (x−mh) (3)

where Γ(·) is the gamma function and n− 1 ≤ α ≤ n. Applying the Laplace transform to the fractional
derivative of (3) with zero initial conditions yields

L {Dα
t f (t)} = sαF(s) (4)

though other definitions, such as the Riemann-Liouville and Caputo definitions, are also available.
While the fractional derivative given by (3) is not often referenced in studies of bioimpedance using the
Cole-impedance model, it is still important to understand the underlying fractional-theory behind it.

1

sαC

Figure 1. Fractional-order equivalent circuit model, also known as the Cole-impedance model,
to represent the frequency-dependent impedance of biological tissues.

When calculating (2) using sinusoidal voltages, for it to yield sinusoids requires the fractional
derivative to be defined on the whole real line, as is typical of many bioimpedance applications.
Therefore, the Grünwald-Letnikov, Riemann-Liouville, and Caputo on R definitions of fractional
derivatives must be used [20]. This is important for impedance applications that are collected in
experimental setups that apply a sinusoidal excitation signal and measure the corresponding sinusoidal
output. For these cases, the correct definition must be used or else the fractional-order impedance
model and experimental results will contradict each other. Fractional derivatives, upon which the
Cole-impedance model is built, capture phenomena across multiple time scales overcoming the need
to define tissue properties at the cellular level. Instead, these models assume that the behaviour is
captured in the fractal structure of the tissue [16,17]. Recent research has shown the relationship
between fractals and fractional calculus, based on physical and geometric considerations [21]. It was
noted in [17] that muscle fibers, tendon, and nerve fibers exhibit patterns that support the dynamics of
these multiscale structures expressed by fractional-order models. While these fractional-models fail
to describe the underlying physiological mechanisms at the unit or cellular level that contribute
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to the impedance behavior of a tissue, recent works using fractional-order models to represent
three-dimensional resistor-capacitor (RC) networks [22] support their application to model biological
tissues; which are complex 3D structures of cells with both resistive and capacitive behaviour. Often,
the bioimpedance of a tissue is described as being related to the extracellular fluid and intracellular
fluid, with measurements at low frequency dependent on the extracellular fluids (attributed to low
excitation frequencies failing to penetrate the cellular membranes of cells in the tissue) and high
frequency measurements dependent on both intracellular and extracellular fluids (at frequencies
where the excitation is able to penetrate the cellular membranes). Based on this interpretation, the
model parameters R∞ and R1 of the Cole-impedance model are associated with the tissue fluids and C,
α are associated with the cellular membranes of the tissues.

While it has been previously shown that the bioimpedance at discrete frequencies (10 kHz,
50 kHz, and 100 kHz) of the biceps tissue does change due to exercise-induced fatigue [8] and that
the biceps tissue bioimpedance can be well represented by the Cole-impedance model [23]; the
changes in the Cole-impedance parameters that result from fatigue have not been deeply investigated.
This study evaluates the parameters of the Cole-model equivalent electrical circuit that can represent
bioimpedance datasets collected from the biceps tissues of participants immediately prior to and
immediately post completion of a fatiguing exercise protocol; expanding on those analyses presented
in [8,23]. In this work, the Cole-impedance parameters (R∞, R1, C, α) that represent the tissue
bioimpedance of the left and right arms of 18 participants, separated into two different exercise
intensity groups, are determined using numerical least squares optimization routines. These results
of these optimization analyses are presented with statistical tests comparing the pre and post-fatigue
measures executed to evaluate those changes that were statistically significant with discussions of
these results and their implications.

2. Methods

2.1. Study Participants

This study collected measurements from the left and right biceps of 18 participants (15 males,
3 females, with an average age of 22.2 ± 3.2 years) immediately prior to and immediately after
completing an exercise protocol to fatigue the biceps brachii muscles. This study was reviewed and
approved by the institutional review board of The University of Alabama (16-OR-234). All study
participants were recruited from The University of Alabama and were screened prior to participation
using a health questionnaire. Those participants who had any reported muscle or joint problems
or who had any recent adverse reactions to exercise were excluded. Informed written consent was
obtained from each participant prior to their inclusion in the study.

2.2. Exercise Protocol

Each participant executed a fatiguing exercise protocol using dumbbell biceps curls at either 60%
(N = 10) or 75% (N = 8) of their previously assessed one-repetition maximum (1-RM) until task failure.
The 1-RM value for each participant is the maximum weight that they were able to successfully lift
for the dumbbell biceps curl exercise. The grouping of participants by intensity relative to their 1-RM
weight was introduced to control for differences between the relative strengths of each participant,
which could have an impact on the exercise induced changes. During this protocol, participants
completed repetitions of the exercise until failure (this series of repetitions will be referred to as one
set). After a two-minute rest the participants completed an additional set. This process continued until
the participants had completed ten sets at which point the protocol was terminated.

2.3. Localized Electrical Impedance Measurements

The localized electrical impedance measurements were collected from each participant using a
tetrapolar electrode configuration in which two current injection electrodes (I+, I-) were placed on the
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lateralis side of the biceps, 14 cm apart with the voltage sensing electrodes (V+, V-) placed 4.67 cm
apart. This electrode configuration is given in Figure 2. A fixed distance electrode configuration was
used in this work over a configuration relative to each participants biceps dimensions to emulate
expected configurations if this technique is integrated into wearable systems not tailored to each
participants specific dimensions. For all collected measurements, participants were in a standing
position and asked to relax their muscles with their arms resting naturally at the sides of their body. The
impedance measures immediately prior to completed the protocol and immediately post-completion
were collected using a Keysight E4990A impedance analyzer (Keysight Technologies: Santa Rosa,
CA, USA) with a custom-interface to adapt the BNC-connectors of the E4990A to a cable-set with the
required snap connectors for the Ag/AgCl electrodes. Using this setup, which is detailed in Figure 2,
measurements were collected from 10 kHz to 100 kHz at 67 logarithmically spaced frequencies. This
frequency range was selected because it is widely employed in bioimpedance applications [6]. It should
be noted that before data collection, the Keysight E4990A was calibrated using the open/short/load
procedure with the developed interface. Further details of this interface and its accuracy evaluation are
detailed in [8]. Examples of the impedance collected from the left and right biceps of two participants
are given in Figure 3 as solid lines, with the pre-fatigue values given as black lines and the post-fatigue
values as blue lines.

I+ I-V+ V-

I+

V+

V-

I-

I+

I-

V+

V-

14 cm

I+

I-

V+

V-

4.67 cm

4.67 cm

4.67 cm

(b)
(a) Keysight E4990A

BNC-Snap Connector

Interface
Participant

Figure 2. (a) Experimental test-setup to collect measurements from study participants using Keysight
E4990A impedance analyzer using (b) tetrapolar electrode configuration.

2.4. Nonlinear Least Squares Fitting

The Cole-impedance parameters (R∞, R1, C, α) that best fit the model given by (1) for each
collected dataset in this study were determined using a nonlinear least squares fitting (NLSF) procedure.
This procedure iteratively attempts to numerically solve the problem

min
x

f0(x) =
n

∑
j=1

(
Z(x, ωj)− yj

)2

s.t. x > 0 (5)

where x is the set of impedance parameters (R∞, R1, C, α) to minimize fo(x) (the objective function),
Z(x, ωj) is the impedance of (1) at frequency ωj, yj is the collected impedance at frequency ωj, and n
is the total number of data points in the collected response. A constraint is added to the problem to
limit the possible solutions to real values; because negative resistance and capacitance values are not
physically possible. However, because the impedance is a complex value, many numerical solvers
are not able to solve this problem and it requires that the objective function given in (5) be revised
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to separate and fit the real and imaginary components of the impedance. Applying this separation
to (5) yields:

min
x

f0(x) =
n

∑
j=1

(
<{Z(x, ωj)− yj}+={Z(x, ωj)− yj}

)2

s.t. x > 0 (6)

where <{·} and ={·} denote the real and imaginary components, respectively. There are a variety
of solvers available for this class of problem, which include the MATLAB optimization functions
(lsqcurvefit, fmincon, fminsearch). The least squares method is not the only optimization method available
for this class of problem; methods including particle swarm optimization and other biologically
inspired algorithms having been investigated [24–26]. Now while those alternative methods have
shown very good results in terms of both accuracy and execution speed [26], the least squares method
is applied in this work because of its widely available MATLAB implementation.

Algorithm 1 Sample MATLAB Code to Extract Cole-Impedance Parameters from Experimental
Impedance Data

% Requires:
% Experimental impedance (Ohms) stored in variable Z
% Frequency range (Hz) of Z stored in variable f

% Step 1: Setup function (ColeZ) to generate Cole-impedance
% P(1)→ R_\infty, P(2)→ R1, P(3)→ C, P(4)→ alpha

w = 2 ∗ pi ∗ f;
ColeZ = @(P) (P(1) + P(2)./(1 + (1i ∗ w).∧P(4) ∗ P(2) ∗ P(3)));

% Step 2: Setup objective function to minimize (Least Squares)
objfun = @(P) sum((real(Z) − real(ColeZ(P))).∧2 + (imag(Z) − imag(ColeModel(P))).∧2);

% Step 3: Setup constraints for fmincon
A = []; b = []; Aeq = []; beq = []; nonlcon = [];
lb = [0, 0, 0, 0]; % Lower search boundary
ub = [inf, inf, inf, inf]; % Upper search boundary
options = optimoptions(’fmincon’);

% Step 4: Generate random initial iterates for solver
InitialIterates = 100;
x0 = zeros(InitialIterates, 4);
lb2 = [1 1 −9 0.5];
for k = 1:1:4

x0(:,k) = lb2(k) + (ub2(k)-lb2(k)). ∗ rand(InitialIterates,1);
end
x0(:,3) = 10.∧x0(:,3);

% Step 5: Execution of optimization search for Cole parameters
MinError = inf
for m = 1:1:InitialIterates

[ColeParameters, ObjFunValue]=fmincon(objfun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options);
if (ObjFunValue < MinError)

BestFitCole = ColeParameters;
MinError = ObjFunValue;

end
end

The NLSF is susceptible to the local minima problem, where a solution that is not the global
solution may meet the stopping criteria of the solver. To overcome this challenge, the solver was applied
100 times to the simulated dataset using a different initial iterate for each execution. This method
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was previously implemented in [27], with the execution that yielded the lowest objective function
selected as the global solution. Each of the initial iterates were randomly generated within the ranges
1 Ω < R0,1 < 50 Ω, 0.1 nF < C < 100 µF, and 0.5 < α < 1. The intent of this approach is for at
least one of the generated initial iterates to be very close to the global solution, which improves the
likelihood of returning the global solution and avoiding a local minima when the ending criteria of the
solver are satisfied. A sample of MATLAB code (Algorithm 1) is presented to detail this setup of the
required functions to use the fmincon function. This implementation takes advantage of the inbuilt
MATLAB functions real and imag to separate the real and imaginary components of both experimental
measurements and the Cole-impedance model; which eliminates the need to determine the algebraic
representations of the real and imaginary components of (1) to implement the objective function
to minimize.

3. Results

The complete set of Cole-impedance parameters extracted from the pre- and post-fatigue
measurements of participants in the 60% and 75% exercise-intensity groups are given in Tables 1
and 2, respectively. To visualize the agreement between simulations using the extracted parameters
and the measured impedance, two representative cases are provided in Figure 3 for participants 0007
and 0018. These particular datasets were selected because they represent the best and worst fittings,
as evaluated by the average absolute error of the simulations compared to the experimental data.
The simulations using the Cole-impedance parameters are presented in Figure 3 as dashed lines,
with the experimental data presented as solid lines. The Cole-impedance model was simulated from
1 mHz to 100 MHz to highlight the impedance-arc which is not fully captured in the experimental
data frequency range of 10 kHz to 100 kHz. This visualizes how using the Cole-impedance model
parameters supports extrapolating the theoretical low and high frequency impedance values.

Table 1. Extracted equivalent circuit parameters from pre- and post-fatigue impedance measured from
the left and right biceps of participants in the 60% one-repetition maximum (1-RM) group.

Participant R∞ (Ω) R1 (Ω) C (F sec(α−1)) α fp (kHz)
Pre Post Pre Post Pre Post Pre Post Pre Post

Left Biceps

0001 14.9 13.3 30.3 27.2 3.41µ 2.05µ 0.733 0.741 43.8 51.2
0002 17.4 15.6 40.1 34.4 1.70µ 1.86µ 0.768 0.759 42.5 53.4
0003 15.5 14.6 23.4 21.4 2.55µ 2.34µ 0.758 0.766 59.1 65.1
0004 28.2 28.5 36.4 29.1 5.06µ 3.52µ 0.676 0.719 52.7 55.8
0005 18.7 15.8 32.3 27.1 1.76µ 1.82µ 0.756 0.755 65.4 80.6
0006 15.0 15.5 33.6 29.1 3.75µ 2.49µ 0.717 0.753 43.4 50.0
0007 22.4 21.8 25.9 22.8 4.07µ 2.69µ 0.722 0.737 51.4 53.5
0008 15.4 14.0 34.8 29.2 1.88µ 1.81µ 0.759 0.768 51.6 58.5
0009 12.3 9.9 31.5 22.5 2.23µ 3.36µ 0.768 0.747 40.5 52.4
0010 28.0 27.3 36.4 36.7 6.39µ 8.87µ 0.658 0.627 53.3 58.4

Right Biceps

0001 10.9 9.3 26.3 25.7 3.24µ 4.27µ 0.745 0.723 45.7 47.6
0002 15.5 14.8 31.4 24.6 1.98µ 2.08µ 0.779 0.779 40.1 51.7
0003 16.5 14.7 24.9 23.2 1.95µ 1.95µ 0.781 0.776 53.5 62.6
0004 30.5 30.0 38.7 33.2 8.20µ 6.58µ 0.632 0.655 55.0 62.2
0005 16.6 15.4 31.1 24.5 1.75µ 1.75µ 0.761 0.774 64.1 69.7
0006 10.5 10.7 26.8 24.4 2.80µ 2.28µ 0.741 0.760 59.3 63.0
0007 20.0 19.1 25.5 22.1 4.40µ 2.67µ 0.719 0.736 49.3 57.6
0008 14.5 13.8 34.6 30.5 2.64µ 2.68µ 0.747 0.748 41.1 46.4
0009 11.4 10.9 30.9 26.6 4.45µ 5.33µ 0.727 0.715 32.6 38.4
0010 28.6 28.3 41.9 36.7 11.4µ 9.83µ 0.604 0.619 50.7 58.5

Mean 18.1 17.2 ∗ 31.8 27.6 ∗ 3.78µ 2.47µ 0.728 0.733 49.8 56.8 ∗

Std. Dev. 6.21 6.51 5.30 4.76 2.40µ 2.32µ 0.049 0.047 8.56 9.15

Note: (∗) denotes that there is a statistically significant (p < 0.05) difference between the pre-fatigue
and post-fatigue means.
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Table 2. Extracted equivalent circuit parameters from pre- and post-fatigue impedance measured from
the left and right biceps of participants in the 75% 1-RM group.

Participant R∞ (Ω) R1 (Ω) C (F sec(α−1)) α fp (kHz)
Pre Post Pre Post Pre Post Pre Post Pre Post

Left Biceps

0011 20.5 19.6 28.1 25.4 8.88µ 10.1µ 0.666 0.659 40.8 44.7
0012 13.5 14.4 33.3 25.3 6.48µ 2.98µ 0.704 0.779 25.5 30.9
0013 12.0 11.2 24.4 22.8 3.38µ 3.82µ 0.760 0.750 27.4 41.4
0014 32.3 33.0 50.8 44.8 13.1µ 14.6µ 0.552 0.552 90.2 93.8
0015 19.4 15.5 26.5 27.2 16.3µ 13.2µ 0.584 0.584 91.5 125.7
0016 13.3 12.7 34.3 31.1 2.70µ 2.70µ 0.755 0.756 34.9 39.1
0017 20.2 18.1 34.2 24.0 4.47µ 3.56µ 0.697 0.734 45.8 55.9
0018 24.0 23.2 24.7 22.0 6.38µ 5.67µ 0.704 0.713 40.0 47.7

Right Biceps

0011 20.7 18.6 25.1 21.3 6.81µ 7.53µ 0.706 0.702 34.2 40.7
0012 16.6 14.9 33.3 33.0 3.67µ 3.41µ 0.747 0.746 27.5 31.4
0013 9.5 8.0 21.4 18.5 2.83µ 2.94µ 0.774 0.775 44.9 51.0
0014 34.4 33.3 38.8 34.3 6.76µ 7.26µ 0.624 0.628 86.6 87.6
0015 28.8 29.0 31.5 33.2 6.74µ 9.09µ 0.625 0.602 118.9 112.0
0016 15.0 13.4 40.1 32.5 2.39µ 2.03µ 0.753 0.779 34.5 37.0
0017 20.3 18.8 33.3 27.1 2.56µ 2.50µ 0.731 0.742 59.0 65.9
0018 24.9 23.0 28.9 24.7 6.39µ 5.42µ 0.690 0.705 41.3 49.7

Mean 20.3 19.2 ∗ 31.8 27.9 ∗ 6.24µ 6.05µ 0.692 0.700 53.3 59.7 ∗

Std. Dev. 7.18 7.48 7.33 6.55 3.88µ 3.92µ 0.066 0.073 27.8 29.3

Note: (∗) denotes that there is a statistically significant (p < 0.05) difference between the pre-fatigue
and post-fatigue means.
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Figure 3. Measured (solid) and simulated using Cole-impedance parameters (dashed) impedance
of biceps tissue from (a) left and (b) right biceps of study participant 0007 and (c) left and (d) right
biceps of study participant 0018. Pre-fatigue measures are presented as black lines with post-fatigue
measures presented as blue lines. The peak reactance calculated using the Cole-impedance parameters
are presented as a (o) in each figure.
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Additionally, the frequency at which the reactance reaches its peak value
( fp = ωp/2π = 1/2π(R1C)(1/α)) was determined using the extracted Cole-impedance model
parameters for the left and right arms of each participant. These values are also given in Tables 1 and 2.
Samples of these calculated peak reactances using the values in Tables 1 and 2 are given in Figure 3 as
(o) symbols.

To fully detail the agreement between the experimental data and simulations using the extracted
circuit parameters, relative error distributions of the resistance and reactance of both groups of
participants are given in Figure 4. From these distributions, the relative errors of the resistances (given
in Figure 4a,c) are predominately grouped between ±0.5%, while the reactances (given in Figure 4b,d)
show a wider grouping between ±2%. This supports that the fitting process achieves better agreement
with the resistance data than the reactance data, but both still show very good agreement with the
experimental data.
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Figure 4. Relative error distributions of simulated impedances using Cole-impedance parameters
compared to experimental values for (a) resistance and (b) reactance of the 60% 1-RM group; and
(c) resistance and (d) reactance of the 75% 1-RM group (using all right/left and pre/post-fatigue
datasets).

Statistical Tests

Paired-samples t-tests (SPSS, IBM Inc.) were used to determine whether there was a statistically
significant (p < 0.05) difference between the mean values of the Cole-impedance model parameters
extracted from the pre-fatigue and post-fatigue datasets for both the 60% and 75% groups of
participants. These tests were applied to those datasets that did not violate the assumption of
normality as assessed by the Shapiro-Wilk’s test. Based on these tests, there were statistically significant
differences between the pre/post fatigue R∞ (p < 0.0005, p = 0.001), R1 (p < 0.0005, p < 0.0005),
and fp (p < 0.0005, p = 0.008) means for both the 60% and 75% groups. There were no statistically
significant differences between the pre/post fatigue means of C (p = 0.603) and α (p = 0.223) for the
60% group.
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It should be noted that the C and α datasets for the 75% 1-RM group violated the assumption of
normality as assessed by the Shapiro-Wilk’s test with p = 0.007 and p < 0.0005, respectively. Due to
these violations of normality, the statistical comparisons of the pre- and post-fatigue values were tested
using a Wilcoxon signed-rank test. Using this test it was determined that there were no statistically
significant differences in the median values of both C (p = 0.612) and α (p = 0.160) in this group,
similar to the testing of the 60% group. All post-fatigue means that show a statistically significant
difference are denoted using the (∗) symbol in Tables 1 and 2.

4. Discussion

In this work, a total of 72 impedance datasets (18 participants with two biceps each and
two measurements per biceps) were fit to the Cole-model given by (Figure 1), expanding on the
preliminary fitting of five datasets in [23]. The low errors of both resistance and reactance between
the Cole-impedance model using the extracted parameters and the experimental measurements,
observed in the relative error distribution of Figure 4, continues to support that this model is a very
good choice for representing biological tissue impedance in this frequency range (1 kHz to 100 kHz).
This highlights that this fractional-order model can accurately represent the frequency-dependent
impedance behaviour of these tissues. The range of extracted values of α, 0.552 ≤ α ≤ 0.781 support
that these tissues are well represented by a fractional-order, as these values are far from the integer
order case of α = 1 that would occur otherwise.

From the experimental measurements, there are changes in resistance and reactance comparing
the pre and post fatigue measurements of the participants biceps tissues. Samples of these changes
were given in Figure 3 for participants 0007 and 0018. These changes result in differences of the
Cole-impedance parameters that represent these impedance datasets in the pre and post fatigue
states. Based on the statistical testing of the extracted model parameters, only R∞, R1, and fp show a
statistically significant (p < 0.05) difference between the pre-fatigue and post-fatigue states for both
groups of participants. The resistance parameters of the 60% group had mean decreases of 5.0% and
13.2% for R∞ and R1, respectively, with the 75% group having mean decreases of 5.4% and 12.3%.
The decrease in resistance parameters is consistent with the previous studies investigating skeletal
muscle fatigue using bioimpedance measurements [6,7]. These studies hypothesized that the decreases
in resistance may be the result of mechanisms that include: (i) increased blood flow to the muscle due
to the hemodynamic response to exercise [7], (ii) heat dissipation in the tissue increasing cutaneous
blood flow and vasodilation [7], and (iii) an increase in metabolites in the tissue increasing its electrical
conductivity [6]. An increase in muscle edema paired with a decrease in muscle quality has been
hypothesized as the reason for decreased muscular strength following exercise [28]. Localized edema
is expected to increase the available charge carriers in the region resulting in the decreased tissue
resistance observed after the participants completed the exercise protocol. However, a limitation of this
study is that the circumference of each participants biceps pre and post fatigue were not measured to
quantify the association between the resistance parameters in the Cole-impedance model and swelling.

It is interesting to note that the C and α parameters did not have a statistically significant change
between the immediately pre and immediately post exercise data in either of the groups measured
in this study. While the discrete 10 kHz, 50 kHz, and 100 kHz reactance measurements did show a
statistically significant difference between pre and post-fatigue measurements in the study participants
[8], this may be an effect of the interactions between the resistive and capacitive components
contributing to the overall real and imaginary components of the impedance. To highlight the complex
interactions between components, the real and imaginary components of the Cole-impedance given
by (1) have been separated to yield the expression:

Z =

[
R∞ +

R1
(
1 + ωαR1C cos

(
απ
2
))

1 + 2ωαR1C cos
(

απ
2
)
+ ω2αR2

1C2

]
− j

[
R1
(
wαR1C sin

(
απ
2
))

1 + 2ωαR1C cos
(

απ
2
)
+ ω2αR2

1C2

]
(7)
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Note that the imaginary term in (7) has contributions from R1, C, and α, so that changes in the
measured reactance are not a result of only changes in C and α. Therefore, changes in R1 will result
reactance changes without changes in C or α, which could explain the significant changes in reactance
reported in [8] without the significant changes in this analysis. To highlight this, a simulation of (7)
with R∞ = 15 Ω, C = 3 µF sec(α−1), α = 0.75 and R1 = 30 Ω, 28 Ω, and 26 Ω are given in Figure 5.
Each of these simulations have different reactances even though only the R1 value is varied. Further,
the impedances at 50 kHz are given on each simulation case as a solid (·), which show a decrease with
the decreasing R1 values.

15 20 25 30 35 40 45
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ea

ct
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ce
 (

Ω
)

R1 = 30 Ω

R1 = 28 Ω

R1 = 26 Ω50 kHz

Figure 5. Simulated Cole-impedance with R∞ = 15 Ω, C = 3 µF sec(α−1), α = 0.75 and R1 = 30 Ω
(black), 28 Ω (blue), and 26 Ω (red).

This also raises questions about which component of measured bioimpedance is the most
appropriate marker to monitor changes that are a result of muscle damage, discrete reactances
or capacitive components of electrical circuit representations. Previous work by Sanchez et al.
investigating the bioimpedance changes in mice after injury supports that the capacitive component of
the Cole-model is sensitive to changes from injury [29], which could indicate that the exercise protocol
in this study, while fatiguing the participants, did not induce detectable levels of skeletal muscle
damage. However, since this work did not collect markers to assess the localized tissue damage in
participants it cannot be determined and will require follow-up investigations that collect further
markers of tissue damage in addition to the participant bioimpedance measures. While the C and α

changes in this study were not significant, the trend of decreasing resistance components and increases
in the peak reactance frequency are consistent with changes that were observed in [29].

It is important to note that electrode positioning has a significant impact on the measured
electrical impedance of localized tissues [30] yet there is no widely adopted process to standardize
electrode placement for localized bio-impedance measurements; though recent guidelines have been
proposed [31]. A limitation of this work is that the use of only a single-electrode configuration on the
study participants fails to provide the data necessary to evaluate the optimum configuration to detect
changes in the localized tissues due to exercise and fatigue.

Referring to the distortions that are observed in the impedance measures of the right arm of
participant 0018, given in Figure 3d, these distortions may be an artifact of the measurement setup,
specifically, resulting from the time required to apply the stepped-sine excitations to collect the
measurements from 10 kHz to 100 kHz. For this series of tests, the Keysight E4990A was configured
to measure at its highest accuracy setting, which required 0.2 s per measured frequency for a total of
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13.6 s for the measurement from 10 kHz to 100 kHz. Even though participants were asked to relax
their arms and remain motionless, there could have been variations in arm position and changes in the
contraction of muscles which could have altered the electrical impedance of the tissue at each instant.
This is a known limitation of the measurement of impedances using stepped sines for time-invariant
impedances [32]. To reduce the potential impact of the time variant measures for future studies using
the Keysight E4990A for bioimpedance studies, the measurement time could be reduced. However,
this will reduce the accuracy of collected measurements and needs to be investigated to determine the
correct balance of measurement time/accuracy for these applications. Also, additional sensor data
could be collected during bioimpedance measures to assess motion and posture to evaluate windows
during which movement artifacts will not be impacting the bioimpedance data; with this approach
having been implemented for wearable systems to assess knee joint health [33].

5. Conclusions

We conclude that the Cole-impedance model does provide a very good fit to the measured
electrical impedance of the biceps tissues from 10 kHz to 100 kHz of the participants in this study
during both rested and fatigued states. This model shows very good agreement with the experimental
data with less than ±0.5% and ±2% relative errors comparing the simulations using the Cole-model
and extracted parameters to the experimental data, continuing to support the use of fractional-order
circuit models to represent the frequency-dependent behaviour of biological tissues. The R∞, R1, and
fp components of the Cole-model each exhibited statistically significant differences comparing pre and
post-fatigue data in both groups of participants, supporting that these components may be an effective
marker of fatigue-induced changes of the skeletal muscle. The changes in resistance parameters R∞

and R1 are expected to be a result of the localized tissue edema after the exercise protocol, but further
studies are required to quantify this association.

Author Contributions: T.F. and B.F. conceived and designed the experiments; B.F. performed the experiments;
T.F. analyzed the data; T.F. and B.F. prepared and reviewed the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grimnesand, S.; Martinsen, O. Bioimpedance and Bioelectricity Basics, 3rd ed.; Academic Press: London,
UK, 2013.

2. Zhu, F.; Kuhlmann, M.K.; Kotanko, P.; Seibert, E.; Leonard, E.G.; Levin, N.W. A method for the estimation of
hydration state during hemodialysis using a calf bioimpedance technique. Physiol. Meas. 2008, 29, S503–S516.
[CrossRef] [PubMed]

3. Nescolarde, L.; Yanguas, J.; Terricabras, J.; Lukaski, H.; Alomar, X.; Rosell-Ferrer, J.; Rodas, G. Detection
of muscle gaps by L-BIA in muscle injuries: clinical prognosis. Physiol. Meas. 2017, 38, L1–L9. [CrossRef]
[PubMed]

4. York, S.L.; Ward, L.C.; Czerniec, S.; Lee, M.J.; Refshauge, K.M.; Kilbreath, S.L. Single frequency versus
bioimpedance spectroscopy for the assessment of lymphoedema. Breast Cancer Res. Treat. 2009, 117, 117–182.
[CrossRef] [PubMed]

5. Sanchez, B.; Rutkove, S.B. Electrical impedance myography and its applications in neuromuscular disorders.
Neurotherapeutics 2017, 14, 107–118. [CrossRef] [PubMed]

6. Li, L.; Shin, H.; Li, S.; Zhou, P. Localized electrical impedance myography of the biceps brachii muscle during
different levels of isometric contraction and fatigue. Sensors 2016, 16, 581. [CrossRef] [PubMed]

7. Vescio, G.; Rosell, J.; Nescolarde, L.; Giovinazzo, G. Muscle fatigue monitoring using a multifrequency
bioimpedance technique. In 5th European Conference of the International Federation for Medical and Biological
Engineering; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1257–1260. [CrossRef]

8. Fu, B.; Freeborn, T.J. Biceps tissue bioimpedance changes from isotonic exercise-induced fatigue at different
intensities. Biomed. Phys. Eng. Express. 2018, 4, 025037. [CrossRef]

http://dx.doi.org/10.1088/0967-3334/29/6/S42
http://www.ncbi.nlm.nih.gov/pubmed/18544816
http://dx.doi.org/10.1088/1361-6579/aa7243
http://www.ncbi.nlm.nih.gov/pubmed/28636566
http://dx.doi.org/10.1007/s10549-008-0090-6
http://www.ncbi.nlm.nih.gov/pubmed/18563555
http://dx.doi.org/10.1007/s13311-016-0491-x
http://www.ncbi.nlm.nih.gov/pubmed/27812921
http://dx.doi.org/10.3390/s16040581
http://www.ncbi.nlm.nih.gov/pubmed/27110795
http://dx.doi.org/10.1007/978-3-642-23508-5$_$325
http://dx.doi.org/10.1088/2057-1976/aaabed


Fractal Fract. 2018, 2, 27 12 of 13

9. Freeborn, T.J. A survey of fractional-order circuit models for biology and biomedicine. IEEE J. Emerging Sel.
Top. Circuits Syst. 2013, 3, 416–424. [CrossRef]

10. Cole, K.S. Permeability and impermeability of cell membranes for ions. Proc. Cold Spring Harbor Symp.
Quant. Biol. 1940, 8, 110–122. [CrossRef]

11. Nguyen Huu, D.; Kikuchi, D.; Maruyama, O.; Sapkota, A.; Takei, M. Cole-Cole analysis of thrombus
formation in an extracoporeal blood flow circulation using electrical measurement. Flow Meas. Instrum. 2017,
53A, 172–129. [CrossRef]

12. Kapur, K.; Taylor, R.S.; Qi, K.; Nagy, J.A.; Li, J.; Sanchez, B.; Rutkove, S.B. Predicting myofiber size with
electrical impedance myography: A study in immature mice. Muscle Nerve 2018, 58, 106–113. [CrossRef]
[PubMed]

13. Jesus, I.S.; Tenreiro-Machado, J.A.; Cunha, J.B. Fractional electrical impedances in botanical elements. J. Vib.
Control 2008, 14, 1389–1402. [CrossRef]

14. Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to
Arbitrary Order; Academic Press: New York, NY, USA, 1974.

15. Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Springer: Heidelberg, Germany, 2011;
ISBN 9789400707474.

16. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Connecticut: Paris, France, 2006.
17. Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010,

59, 1586–1593. [CrossRef]
18. Ionescu, C.; Lopes, A.; Copot, D.; Tenreiro-Machado, J.A.; Bates, J.H.T. The role of fractional calculus in

modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159.
[CrossRef]

19. Das, S. Functional Fractional Calculus for System Identification and Controls; Springer: Berlin/Heidelberg,
Germany, 2008.

20. Ortigueira, M.D.; Tenreiro-Machado, J.A.; Trujillo, J.J. Fractional derivatives and periodic functions. Int. J.
Dyn. Control 2015, 5, 72–78. [CrossRef]

21. Butera, S.; Di Paola, M. A physically based connection between fractional calculus and fractal geometry.
Annals Phys. 2014, 350, 146–154. [CrossRef]

22. Galvao, R.K.H.; Hadjiloucas, S.; Kienitz, K.H.; Paiva, H.M.; Afonso, R.J.M. Fractional order modeling of
large three-dimensional RC networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 2013, 60, 624–637. [CrossRef]

23. Freeborn, T.J.; Bohannan, G.W. Changes of fractional-order model parameters in biceps tissue from fatiguing
exercise. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27–30 May 2018. [CrossRef]

24. Halter, R.J.; Hartov, A.; Paulsen, K.D.; Schned, A.; Heaney, J. Genetic and least squares algorithms for
estimating spectral EIS parameters of prostatic tissues. Physiol. Meas. 2008, 29, S111–S123. [CrossRef]
[PubMed]

25. Gholami-Boroujeny, S.; Bolic, M. Extraction of Cole parameters from the electrical bioimpedance spectrum
using stochastic optimization algorithms. Med. Biol. Eng. Computer. 2016, 54, 643–651. [CrossRef] [PubMed]

26. Yousri, D.A.; AbdelAty, A.M.; Said, L.A.; AboBakr, A.; Radwan, A.G. Biological inspired optimization
algorithms for cole-impedance parameters identification. Int. J. Electr. Commun. 2017, 78, 79–89. [CrossRef]

27. Freeborn, T.J.; Maundy, B.; Elwakil, A.S. Extracting the parameters of the double-dispersion Cole
bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 2014, 52, 749–758.
[CrossRef] [PubMed]

28. Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle function after exercise-induced muscle damage and rapid
adaptation. Med. Sci. Sports Exerc. 1992, 24, 512–520.

29. Sanchez, B.; Iyer, S.R.; Li, J.; Kapur, K.; Xu, S.; Rutkove, S.B.; Lovering, R.M. Non-invasive assessment of
muscle injury in healthy and dystrophic animals with electrical impedance myography. Muscle Nerve 2017,
56, E85–E94. [CrossRef] [PubMed]

30. Fu, B.; Freeborn, T.J. Estimating localized bio-impedance with measures from multiple redundant electrode
configurations. In Proceedings of the 40th International Engineering in Medicine and Biology Conference,
Honolulu, HI, USA, 17–21 July 2018.

31. Sanchez, B.; Pacheck, A.; Rutkove, S.B. Guidelines to electrode positioning for human and animal electrical
impedance myography research. Sci. Rep. 2016, 6, 32615. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JETCAS.2013.2265797
http://dx.doi.org/10.1101/SQB.1940.008.01.013
http://dx.doi.org/10.1016/j.flowmeasinst.2016.06.025
http://dx.doi.org/10.1002/mus.26111
http://www.ncbi.nlm.nih.gov/pubmed/29476692
http://dx.doi.org/10.1177/1077546307087442
http://dx.doi.org/10.1016/j.camwa.2009.08.039
http://dx.doi.org/10.1016/j.cnsns.2017.04.001
http://dx.doi.org/10.1007/s40435-015-0215-9
http://dx.doi.org/10.1016/j.aop.2014.07.008
http://dx.doi.org/10.1109/TCSI.2012.2209733
http://dx.doi.org/10.1109/ISCAS.2018.8351812
http://dx.doi.org/10.1088/0967-3334/29/6/S10
http://www.ncbi.nlm.nih.gov/pubmed/18544804
http://dx.doi.org/10.1007/s11517-015-1355-y
http://www.ncbi.nlm.nih.gov/pubmed/26215520
http://dx.doi.org/10.1016/j.aeue.2017.05.010
http://dx.doi.org/10.1007/s11517-014-1175-5
http://www.ncbi.nlm.nih.gov/pubmed/25023892
http://dx.doi.org/10.1002/mus.25559
http://www.ncbi.nlm.nih.gov/pubmed/28056487
http://dx.doi.org/10.1038/srep32615
http://www.ncbi.nlm.nih.gov/pubmed/27585740


Fractal Fract. 2018, 2, 27 13 of 13

32. Louarroudi, E.; Sanchez, B. On the correct use of stepped-sine excitations for the measurement of
time-varying bioimpedance. Physiol. Meas. 2017, 38, N73–N80. [CrossRef] [PubMed]

33. Hersek, S.; Toreyin, H.; Teague, C.N.; Millard-Stafford, M.L.; Jeong, H.K.; Bavare, M.M.; Wolfkoff, P.;
Sawka, M.N.; Inan, O.T. Wearable vector electrical bioimpedance system to assess knee joint health.
IEEE Trans. Biomed. Eng. 2017, 64, 2353–2360. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1361-6579/aa556d
http://www.ncbi.nlm.nih.gov/pubmed/28005012
http://dx.doi.org/10.1109/TBME.2016.2641958
http://www.ncbi.nlm.nih.gov/pubmed/28026745
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Study Participants
	Exercise Protocol
	Localized Electrical Impedance Measurements
	Nonlinear Least Squares Fitting

	Results
	Discussion
	Conclusions
	References

