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Abstract: This work is intended to directly supplement the previous work by Coutsias and Kazarinoff
on the foundational understanding of lacunary trigonometric systems and their relation to the Fresnel
integrals, specifically the Cornu spirals [Physica 26D (1987) 295]. These systems are intimately related
to incomplete Gaussian summations. The current work provides a focused look at the specific system
built off of the triangular numbers. The special cyclic character of the triangular numbers modulo m
carries through to triangular lacunary trigonometric systems. Specifically, this work characterizes the
families of Cornu spirals arising from triangular lacunary trigonometric systems. Special features
such as self-similarity, isometry, and symmetry are presented and discussed.

Keywords: Fresnel integral; Cornu spiral; lacunary trigonometric systems; triangular numbers;
Gaussian summations

1. Introduction

With the current work, the authors seek to connect with and augment a very interesting study
by Coutsias and Kazarinoff, which was published in 1987 [1]. Those authors looked at the lacunary
trigonometric system characterized by the sequence, S , of partial summations.

S ≡
{

SN =
N

∑
k=0

eiπ(αkr+βk)

}
(1)

This sequence of partial summations gives rise to a beautiful family of Cornu spirals [1]. These partial
summations are a generalization of incomplete Gaussian summations [2–7].

Coutsias and Kazarinoff’s work was quite thorough, with a variety of α and r values explored.
Quadratic systems (r = 2) are the most studied in the literature and are intimately connected to basic
number theory, specifically in connection with the theta functions studied by Hardy [8,9]. While
Coutsias and Kazarinoff discussed the quadratic case, their focus was on the non-quadratic case
because of its relative novelty [1]. Furthermore, for the systems described by definition (1), the Cornu
spiral patterns arise from choosing irrational values for α (β was set to zero in all the data sets discussed)
under both the r = 2 and r 6= 2 cases.

The current work takes a slightly modified approach by considering the set of partial summations
arising from triangular lacunary trigonometric system,

Fn,q ≡
{

f (N)
n,q =

N

∑
k=0

e
iπqT(k)

n

}
, (2)

where T(k) ≡ k(k+1)
2 is the kth triangular number [10]. Fn,q is certainly related to S and to incomplete

Gaussian summations [2], however, there is a critical difference in that the periodic nature of eix and
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the presence of the divisor n effectively performs the modulo 2n on triangular numbers. The triangular
numbers have a very interesting feature in that they are 2m-periodic under any modulo m (this is
discussed further below.) Consequently, the partial summations in Fn,q are 4n-periodic [2,4].

On the one hand, the triangular lacunary system is less general then the one studied by Coutsias
and Kazarinoff, but on the other hand, its periodic nature offers an interesting generalization to
that work.

Although all of the numerical calculations for this work were a direct summation of the lacunary
sequence members by MATHEMATICA, some recent work by Yamada and Ikeda has investigated
the use of Padé approximate methods for speeding up the convergence of summations for lacunary
functions [11,12].

2. Properties of Triangular Numbers

The set of triangular numbers (also called triangle numbers) has been the subject of a long history
of study [10,13], of which major insight has been provided by Gauss himself [14]. In spite of this, it
is the observation of the current authors that there is a dearth of literature focused on the triangular
numbers mod m, where m ∈ N+ [15].

Of particular importance for the current work is the consideration of the triangle numbers modulo
m. The most important aspect of the structure of these numbers is their cyclic nature. It can be proven
that the triangular numbers modulo m form a 2m-cycle for any m and the sequence is symmetric about
the “midpoint” of the 2m-cycle [16]. That is, the last m elements are the reverse sequence to that of the
first m elements. It can be shown that this behavior of the triangle numbers modulo m leads to the fact
that for each element which appears in Fn,q, its additive inverse also appears. Thus the sum of the
elements of Fn,q is zero [16].

As a first example, consider F1,1. Here,

f (N)
1,1 =

N

∑
k=0

eiπT(k). (3)

It is immediately seen that one need only consider the triangular numbers modulo 2 (from n = 1
and m = 2n), {0, 1, 1, 0}, to determine that F1,1 = {1, 0,−1, 0}. f (∞)

1,1 itself is the divergent series,

f (∞)
1,1 = 1 + 0− 1 + 0 + 1 + 0− 1 . . ..

As a second example consider F2,1. Here the set of triangular numbers modulo 4 is
{0, 1, 3, 2, 2, 3, 1, 0} and leads to F2,1 = {1, 1 + i, 1, 0,−1,−1− i,−1, 0}.

3. Lacunary Sequences

An interesting class of mathematical functions are those whose singularities (points of infinity)
accumulate along the defined edge of the domain. This is called a natural boundary. One category
of such functions are the lacunary (or also called “gap”) functions [17,18]. Lacunary functions are
characterized by a Taylor series that has “gaps” (or “lacunae”) in the progression of powers. A
prototype example is f (z) = ∑∞

n=1 zn2
= z + z4 + z9 + z16 + · · · . The gap theorem of Hadamard [18]

says that if the gaps in the powers increase such that the gap tends to infinity as n → ∞, then the
function will exhibit a natural boundary. The natural boundary in this example is the unit circle,
|z| = 1.

Although not heavily used, lacunary functions have been employed in approaches to physical
problems. Creagh and White showed that natural boundaries can be important when calculating
properties of light outside of elliptic dielectrics [19]. Shado and Ikeda have demonstrated that natural
boundaries impact quantum tunneling in some systems [20]. Additionally, Yamada and Ikeda have
investigated wavefunctions associated with Anderson-localized states in the Harper model in quantum
mechanics [11].
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In addition to physics, lacunary functions have found utility in probability theory. Certain
lacunary trigonometric systems behave like independent random variables. Most notably they are
consistent with the central limit theorem [21]. Lacunary trigonometric functions appear in the context
of the random Fourier series in harmonic analysis. Additionally, lacunary functions exhibit features
upon approaching the natural boundary that are related to Weiner (stochastic) processes [22].

The Nth member of the lacunary sequence is given by the partial summation,

fN(z) =
N

∑
n=0

zg(n), (4)

where g(n) is a function of n satisfying the conditions of Hadamard’s gap theorem [18]. To recover a
trigonometric lacunary system like the ones studied here and by Coutsias and Kazarinoff, one sets
z = eθ . That is, one considers the system at the natural boundary (on the unit circle). All in all, one
considers the sequences of finite summations and because of the properties of the triangular numbers
modulo m which were listed above, the sequence is cyclic. Consequently, for the triangular lacunary
trigonometric systems considered here, one deals with a finite sequence of size 4n.

4. Fresnel Integrals and the Cornu Spiral

The Fresnel integrals most notably arise from the theory of Fresnel diffraction, which deals with
the case where the light source and observer are at a finite distance from the diffraction event [23,24].
They also occur in connection to Greens functions for steady waves [25].

Specifically, the Fresnel integrals are defined via an integral as [26],

C(t) =
∫ t

0
cos

(
1
2

πx2
)

dx, S(t) =
∫ t

0
sin
(

1
2

πx2
)

dx. (5)

These functions are also represented as a series [26],

C(t) =
∞

∑
n=0

(−1)n( 1
2 π)2n

(2n)!(4n + 1)
z4n+1, (6)

S(t) =
∞

∑
n=0

(−1)n( 1
2 π)2n+1

(2n + 1)!(4n + 3)
z4n+3. (7)

As a consequence of the Euler identity,

C(t) + iS(t) =
∫ t

0
e

1
2 iπx2

dx. (8)

Finally, the Fresnel integrals can be cast in terms of the confluent hypergeometric function, 1F1,

C(z) + iS(z) = z 1F1

(
1
2

,
3
2

,
πiz2

2

)
(9)

One useful way to represent the Fresnel integrals is to parametrically plot C(t) versus S(t). This
gives rise to the well-known Cornu spiral. In addition to its use in optics, the Cornu spiral has also
found use in highway design [27], Kloosterman paths [28], and Van der Corput transforms [29]. Very
recently Milici et al. [30] have studied fractional Cornu spirals via the machinery of fractional calculus.

More pertinent to the current work, Lehmer showed that Cornu spirals arise from incomplete
Gaussian summations [2], which encompass the triangular lacunary trigonometric system of the
current work. Berry and Goldberg developed a renormalization procedure for such Cornu spirals [4]
as did Sinai [31] and Fedotov and Klopp [32], while Cellarosi and Marklof investigated the related
quadratic Weyl summations [33], and Paris provided much insight into various expansions of such
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systems along with asymptotic behavior [3]. Indeed families of, at times elaborate, combinations of
Cornu spirals arise when considering Fn,q.

5. Results and Discussion

For large values of n, the points in the sequence Fn,1 trend towards lying along the Cornu spiral
parameterized by,

Spn,1 =
(√

nC(t),
√

nS(t)
)

. (10)

This spiral has C2 rotational symmetry (equivalent to inversion symmetry in the plane) about the
origin. Thus, Sp has its inflection point at the origin. The spiral centers are at

√
n

2 (1+ i) and−
√

n
2 (1+ i).

The points of Fn,1 fall equally spaced along the Cornu spiral and each point occurs twice in the
sequence. The spacing between adjacent points is 1

2
√

n and the total arclength of the curve is 2n+1
2
√

n '
√

n
for large n. Changing the value of n only scales the Cornu spiral; it does not change the shape.

The left panel of Figure 1 provides an illustrative example for the case of F50,1. Even at only
n = 50, the Cornu spiral models the data very well. C2 rotational symmetry is clear, the spiral centers
are seen to be at

√
50
2 (1 + i) and −

√
50
2 (1 + i), and the inflection point is at the origin. The points from

F50,1 are evenly spaced along the Cornu spiral with a step size of 1
2
√

50
.

The right panel of Figure 1 shows the χ2 values for n ranging from 1 to 150. Each datum is
obtained by evaluating the summation of the squares of the difference between the value of the partial
summmation in Fn,1 and the Cornu spiral itself. This is normalized by the total number of points.
A progression, albeit not monotonic, to lower and lower χ2 values is seen.

Figure 1. Left panel: Set of partial summation values for F50,1. The values of the partial summation for
F50,1 closely follow a Cornu spiral. The values appear equally spaced along the curve. In this case,
the spacing is 1

2
√

50
. Furthermore, the length of the curve is 2n+1

2
√

n . Right panel: χ2 values for n = 1 to
n = 150. The Cornu spiral models the sequence of partial summations better with increasing n.

Increasing the value of q brings about a qualitatively (and somewhat quantitatively) predictable
change in the general shape of the spiral patterns. These spirals will be referred to here as higher order
Cornu spirals as they consist of linked Cornu spiral “monomer units”.

The general features of the Fn,q sequences are as follows. If q does not share a common divisor
with n, then the higher order Cornu spirals will consist of q chain-linked Cornu spiral monomers.
Every two adjacent monomer Cornu spirals will share a center. Furthermore, the overall C2 symmetry
of the higher order Cornu spiral is maintained.

The base monomer Cornu spiral is parameterized as,

Spn,q =

√
n
q
(C(t), S(t)) . (11)

The other monomer Cornu spirals in the chain are obtained through the isometric transformation of
the base monomer.



Fractal Fract. 2019, 3, 40 5 of 10

If q shares a common divisor with n, then the fraction q
n reduces to p

m . Consequently, one simply
considers Fm,p.

It is interesting to explore the case of holding q constant and changing n. In this case, the higher
order Cornu spiral will sweep through q distinct shapes before repeating the pattern. It is obvious that
if q is prime, there will be one member of this set of higher order Cornu spirals that reduces to that of
Fm,1. And if q is composite, there will be several reduced shapes appearing. Figures 2 and 3 illustrate
the above qualitative analysis where Figure 2 collects the set of three generic shapes for q = 3, while
Figure 3 does so for the five generic shapes associated with q = 5.

Figure 2. The sequence of partial summations for F250,3 (top, left panel), F251,3 (top, right panel), and
F252,3 (lower, left panel). These data sets represent the three basic shapes that occur when q = 3. As
n progresses, the shapes cycle through these q (in this case 3) canonical shapes (the space between
adjacent datum decreases as n increase). Note there are three spirals present in the top two graphs. This
is a manifestation of a general characteristic that there are q Cornu spirals. The exception seen in the
lower left graph is also a general characteristic. In the case shown, q = 3 evenly divides n = 252. The
result brings the data set into the Fn,1 class. If q is prime, this will happen only once. If q is composite,
then there will be several values which divide into n. Finally, in all cases, inversion symmetry is
preserved as must be the case. The lower right panel shows the members of this canonical family
superimposed on one another. There is a three-fold local quasi-symmetry around the primary spiral
centers (see text for details). The green trifold is set to guide the eye. Formula for the isometry of the
trifoil from the origin is given in the text.
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Figure 3. Analog to Figure 2 for the cases of Fn,5 where n runs from 651 to 655. The canonical shapes
each have q = 5 Cornu spirals except for 655 into which five divides. The bottom right panel shows
the members of this canonical family superimposed on one another. Now the local quasi-symmetry is
five-fold. The black pentifoil guides the eye.

5.1. Isometry and Quasi-Symmetry

Each monomer in the higher order Cornu spiral is related to the base monomer (Equation (11)) via
an isometric transformation involving only rotation and translation. A given isometry is represented as,

Îφ,z0 Sp =

√
n
q
(cos(φ)C(t)− sin(φ)S(t) + x0, sin(φ)C(t) + cos(φ)S(t) + y0) , (12)

where φ ∈ R and z0 = x0 + iy0. The higher order Cornu spiral is then the piecewise collection of all
transformed monomers along with the base monomer.

As a concrete example, consider the case of q = 3 as shown in Figure 2. The two non-reduced
shapes in this family are F250,3 (left panel) and F251,3 (right panel). Consider first F250,3. Note that
because of the enforced C2 rotational symmetry, one need only determine one of the two isometries.
This is because if Îφ,z0 is an isometry, then so is Îφ,z∗0

. Determination of the isometry yields φ = π
3 and

z0 =
1
2

(
cos

(π

3

)
− sin

(π

3

)
+ 1
)
+

i
2

(
cos

(π

3

)
+ sin

(π

3

)
+ 1
)

.

Furthermore, determination of the isometry for F251,3 yields φ = −π
3 and

z0 =
1
2

(
cos

(
−π

3

)
− sin

(
−π

3

)
+ 1
)
+

i
2

(
cos

(
−π

3

)
+ sin

(
−π

3

)
+ 1
)

.

For general q, the set of isometries is given by φ = j π
q and

z0 =
1
2

(
cos

(
j
π

q

)
− sin

(
j
π

q

)
+ 1
)
+

i
2

(
cos

(
j
π

q

)
+ sin

(
j
π

q

)
+ 1
)

,

where j is odd and ranges from−q to q. The isometries required for the 2nd level and higher monomers,
although straightforward to determine, become increasingly complicated to explicitly determine. There
also seems to be little additional insight gained by doing so.
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An interesting quasi-symmetry becomes apparent when viewing the members of a family
superimposed in one graph as in the lower right panels of Figures 2 and 3. The centers of the
base monomer Cornu spiral serves as the origin for a local q-fold rotational quasi-symmetry. The trifoil
and pentifoil placed on the graphs help guide the eye to this quasi-symmetry.

Care is taken to use the modifier “quasi” because n is different for each member of the family.
Thus their respective component monomer Cornu spirals are different. This difference reduces to zero
as n approaches infinity.

5.2. Series Relations

The triangular lacunary trigonometric function itself (N → ∞) can be can be related to a Jacobi
theta function [26]. Writing,

f (N)
n,q =

N

∑
k=0

e
iπqT(k)

n =
N

∑
k=0

e
iπq
2n (k2+k).

Then completing the square in the exponent gives,

f (N)
n,q =

N

∑
k=0

e
iπq
2n (k+ 1

2 )
2

e
iπq
8n .

Extending the dummy index to −N and dividing by 2 yields,

f (N)
n,q =

1
2

e
iπq
8n

N

∑
k=−N

e
iπq
2n (k+ 1

2 )
2

.

At this point one considers q̄ ≡ q + iε, where ε is a small positive real number. N is then taken to
infinity such that,

f (∞)
n,q̄ =

1
2

e
iπq̄
8n

∞

∑
k=∞

e
iπq̄
2n (k+ 1

2 )
2

, (13)

where the summation is recognized at the second Jacobi theta function [26]. Hence,

f (∞)
n,q̄ =

1
2

e
iπq
8n e

−πε
8n ϑ2

(
0,

1
2

e
iπq
2n e

−πε
2n

)
. (14)

Taking the limit of vanishing ε yields,

f (∞)
n,q = lim

ε→0

1
2

e
iπq
8n e

−πε
8n ϑ2

(
0,

1
2

e
iπq
2n e

−πε
2n

)
. (15)

Now, letting δn ≡ e
−πε
2n , one can write,

f (∞)
n,q =

1
2

e
iπq
8n lim

δn→1
ϑ2

(
0,

1
2

δne
iπq
2n

)
. (16)

Equation (9) along with large n gives rise to an approximate series relation for the members of Fn,1.
Noting that these values appear uniformly along the Cornu spiral at position and using Equation (9),

f (N)
n,1 '

N
2 1F1

1
2

,
3
2

,
πi
(

N
2
√

n

)2

2

 . (17)
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5.3. Large n and Self-Similarity

Lacunary functions in general, and lacunary trigonometric functions in particular, exhibit scaling
and self-similarity in many interesting ways. The emergence of the higher order Cornu spirals is
no exception. Firstly, it is already clear that the higher order Cornu spirals are made up of identical
component Cornu spirals. Secondly, for certain high order Cornu spirals, remarkable self-similarity
emerges in which the inflection points of the component monomers fall along a base Cornu spiral
themselves. The example of the 17th member of the set of curves from F2831,67 is shown in Figure 4.
Indeed the inflection points of the 67 monomer Cornu curves lie on the base Cornu spiral albeit
rotated by π

2 . It is further noted that the component Cornu spiral alternates between lying normal to
and tangent to the larger Cornu spiral. Berry and Goldberg [4] and Coutsias and Kazarinoff [1]
discuss a similar self-similarity of non-periodic systems. They further discuss the potential for
renormalization procedures.

Figure 4. A striking manifestation of the self-similarity that can exist in these lacunary systems. The
graphs shows the case of F2831,67. This is one of the two most ordered of the 67 canonical members
of this family (the other is rotated by π/2). The full shape is composed of q = 67 individual Cornu
spirals. Interestingly, the inflection points of each Cornu spiral falls along the blue curve which is
precisely a rotated and inverted Cornu spiral of the F2831,1 case. Furthermore, the individual Cornu
spirals alternate as tangent or normal to the blue curve.

6. Conclusions

This work added to the foundational understanding of lacunary trigonometric systems and their
relation to the Fresnel integrals and specifically the Cornu spirals. Such systems are intimately related
to incomplete Gaussian summations and a thorough analysis was previously provided by Coutsias
and Kazarinoff. The current work supplemented this study and provided a focused look at the specific
system built off of the triangular numbers. The special cyclic character of the triangular numbers
modulo (any) m carry through to triangular lacunary trigonometric systems.

Specifically, this work characterized the families of Cornu spirals arising from triangular
lacunary trigonometric systems. Special features such as self-similarity, isometry, and symmetry
were investigated and discussed. It is hoped that this work will provide foundational information that
can be used to build upon towards applied problems in physics.

Author Contributions: T.V. and D.J.U. conceived and designed the investigation; T.V. provided background for
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data; T.V. and D.J.U. wrote the manuscript.
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