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Abstract: New aspects of electron transport in quantum wires with Lévy-type disorder are described.
We study the weak scattering and the incoherent sequential tunneling in one-dimensional quantum
systems characterized by a tempered Lévy stable distribution of spacing between scatterers or
tunneling barriers. The generalized Dorokhov–Mello–Pereyra–Kumar equation contains the tempered
fractional derivative on wire length. The solution describes the evolution from the anomalous
conductance distribution to the Dorokhov function for a long wire. For sequential tunneling, average
values and relative fluctuations of conductance and resistance are calculated for different parameters
of spatial distributions. A tempered Lévy stable distribution of spacing between barriers leads to a
transition in conductance scaling.

Keywords: fractal; quantum wire; anomalous diffusion; tempered fractional equation; stable law;
weak scattering; tunneling; conductance

1. Introduction

Several experiments and numerical simulations have shown that disorder in mesoscopic systems
can be of a fractal (self-similar) type [1–6]. In [3], fractal disorder is observed in optical material,
in which light waves perform a random walk characterized by path length distributions of power
law type p(s) ∝ s−1−α if s → ∞, where 0 < α < 2. This random walk is known as Lévy flights, and
the system has been called “Lévy glass”. Studies [4,5] report on the scaling behavior of diameter
modulations in SiC quantum wires grown via a self-organization process. The probability distribution
function of displacements of diameter fluctuation has been shown to have heavy tails of the Lévy
type [4].

There is a series of theoretical studies devoted to electron and wave transport in quantum
wires with Lévy-type disorder [7–13]. Beenakker et al. [7] calculated moments of conductance
for the incoherent sequential tunneling through disordered fractal wire. They showed that the
average transmission is proportional to L−α ln L (0 < α < 1). Falceto and Gopar [8] studied
weak scattering in quantum wires with Lévy-type disorder and modified the solution of the
Dorokhov–Mello–Pereyra–Kumar (DMPK) equation by changing the number of scatterers according to
the corresponding fractal distribution. They have shown that the conductance distribution for fractal
wire is also universal in the sense that it is fully determined by the Lévy index α and the average
quantity 〈ln G〉. Fernández-Marín et al. [10] derived the statistics of electromagnetic transmission
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through a one-dimensional (1D) photonic heterostructure whose random layer thicknesses follow a
long-tailed Lévy-type distribution. Amanatidis et al. [11] investigated the conductance through a 1D
disordered system where the envelope of electron wavefunction decays spatially according to the
stretched exponential law.

Here, using tempered fractional calculus and tempered fractional stable statistics, we consider
two regimes of quantum transport (weak scattering and incoherent sequential tunneling) in
one-dimensional mesoscopic systems (quantum wires) characterized by the tempered Lévy stable
distribution of spacing between scatterers. These wires are homogeneous at a large scale and fractal at
an intermediate scale.

2. Tempered Fractional Stable Distributions

For the description of the problem under consideration, the “tempered” generalization of the
fractional stable statistics is introduced below for a particular case. Fractional stable distributions
(FSDs) appeared in [14] as limit laws for the continous-time random walk (CTRW) [15]. The class of
FSDs was studied in work [16]. FSDs can be expressed in terms of the Lévy stable densities [16], and
we use this representation to introduce the one-sided tempered FSD. The tempered stable distributions
were introduced in [17] (see also [18]). Koponen [17] considered smoothly (exponentially) truncated
Lévy flights [19] and provided a convenient analytic representation of limit distributions for a walker
coordinate. The process shows a slow convergence to a Gaussian one. In [20,21], using inverse
tempered stable laws, authors provided probabilistic interpretation of transition from the dispersive
transport regime to the normal diffusion-drift in disordered semiconductors.

The simplest (one-dimensional decoupled) version of the CTRW model [15] assumes that different
jump lengths Rj, as well as waiting times Tj between two successive jumps, are random variables
independent of each other and among themselves. To model super- or sub-diffusion, it is usually
supposed that distributions of jump lengths and waiting times have the following asymptotic behavior:

P{R > r} ∝ r−α, α > 0, r → ∞; P{T > t} ∝ t−β, β > 0, t→ ∞.

The case α > 2 and β > 1 corresponds to normal diffusion at the diffusion limit (t→ ∞, |x| → ∞). All
other values of α and β lead to anomalous diffusion with characteristic exponents α, β.

The main asymptotic term of the probability density function p(x, t) obeys the fractional diffusion
equation (see, e.g., [22,23]):

0D
β
t p(x, t) = CL(α,θ)p(x, t) +

t−β

Γ(1− β)
δ(x), 0 < α ≤ 2, 0 < β ≤ 1. (1)

Here,

0D
β
t p(x, t) =

1
Γ(1− β)

∂

∂t

t∫
0

p(x, τ)dτ

(t− τ)β

is the Riemann–Liouville fractional derivative and L(α,θ) is the Feller fractional differential operator. In
case of symmetrical walking, θ = 0 and L(α, 0) = (∂2/∂x2)α/2 ≡ |∂/∂x|α (see for details [24]).

This partial differential equation of fractional orders has the self-similar fundamental solution

p(x, t) =
(

Ctβ
)−1/α

q
(

x(Ctβ)−1/α; α, β, θ
)

,

where the function
q(x; α, β, θ) =

∫ ∞

0
g(α,θ)(xτβ/α)g(β,1)(τ)τβ/αdτ (2)
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is expressed through the Lévy stable densities g(α,θ)(x). Densities (2) belong to the class of fractional
stable densities [16]. The Lévy stable densities are defined by their characteristic functions,

g̃(α,θ)(k) =
∞∫
−∞

e−ikxg(α,θ)(x)dx = exp {−|k|α exp[−i(π/2)θα sign k]} .

Here, θ ∈ [−θα, θα] is a skewness parameter, where θα = min{1, 2/α− 1}. The width of the anomalous
diffusion packet ∆(t) ∝ tβ/α. When β/α < 1/2, a subdiffusive regime takes place, when β/α > 1/2
superdiffusion is observed. Applications of fractional stable laws to problems of anomalous kinetics in
solids can be found in book [25].

The important case for this study is the one-sided solutions for α ∈ (0, 1] and β ∈ (0, 1]. Instead of
function (2), we will use the function of two variables

q(α,β)(x, t) = t−β/α
∫ ∞

0
g(α)+

(
x(τ/t)β/α

)
g(β)
+ (τ) τβ/α dτ, (3)

which is convenient for further generalization.
This pdf satisfies the following fractional diffusion equation containing

Riemann–Liouville derivatives:

0D
β
t [q

(α,β)(x, t)− δ(x)] = 0Dα
x q(α,β)(x, t), 0 < α ≤ 1, 0 < β ≤ 1. (4)

Function (3) can be written with the use of the inverse stable subordinator,

q(α,β)(x, t) =
∫ ∞

0
τ−1/αg(α)+ (xτ−1/α) h(β)(τ, t)dτ, (5)

where function
h(β)(τ, t) = β−1t τ−1−1/β g(β,1)(tτ−1/β)

is the inverse one-sided stable density with the following Laplace transform:

h̃(β)(τ, s) = sβ−1e−τsβ
.

Using the representation (5), it is easy to introduce the tempered generalization of FSD using the
tempered Lévy stable subordinator [26]:

g(α,µ)(x, τ) = e−µxτ−1/αg(α)+ (xτ−1/α)eτµα
,

with the Laplace transform
g̃(α,µ)(u, τ) = e−τ[(u+µ)α−µα]. (6)

Let us define tempered fractional stable density as follows:

q(α,β)
µ,ν (x, t) =

∫ ∞

0
e−µxτ−1/αg(α)+ (xτ−1/α)eτµβ

h(β,ν)(τ, t)dτ, (7)

where the inverse tempered stable subordinator [27–29] is used. It can be defined via its Laplace
transform [27,28]:

h̃(β,ν)(τ, s) =
(s + ν)β − νβ

s
e−τ

[
(s+ν)β−νβ

]
. (8)
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From expressions (6)–(8), the double Laplace transform of the one-sided tempered fractional stable
density can be derived:

q̃(α,β)
µ,ν (u, s) =

(s + ν)β − νβ

s
[
(u + µ)α − µα + (s + ν)β − νβ

] . (9)

The tempered fractional stable density satisfies the following equation:

0D
β,ν
t

[
q(α,β)

µ,ν (x, t)− δ(x)
]
= C 0D

α,µ
x q(α,β)

µ,ν (x, t) , 0 < α ≤ 1, 0 < β ≤ 1, (10)

with the tempered fractional derivative [26]

0D
β,ν
t p(x, t) = e−νt

0D
β
t eνt p(x, t)− νβ p(x, t).

Tempered fractional stable laws describe the distribution of a walker for CTRW with smoothly
truncated power law distributions of jump lengths and waiting times [27,30]:

P{R > r} ∝ r−αe−µr, P{T > t} ∝ t−βe−νt.

3. Weak Scattering in Mesoscopic Fractal Wires

Disorder plays an important role in mesoscopic systems. Quantum interference effects and
randomly distributed impurities lead to localization phenomena and fluctuations in the conductance
for different samples. One of the approaches to describe coherent quantum transport and localization
in disordered wires is the transfer matrix theory (see review [31]). In this approach, the transport
is considered as a quantum scattering problem, and the conductance is related to the transmission
matrix t by the Landauer formula. In [32,33], an equation known as the DMPK equation was derived
for the joint probability distribution of the transmission eigenvalues. Considering strongly disordered
systems, Muttalib and Klauder [34] proposed the generalized DMPK equation to describe the electron
transport. These equations of the Fokker–Planck type have been derived on the assumption of a
Poissonian ensemble of scatterers. Here, we consider the tempered fractional Poisson distribution of
scatterers along wire and generalize the transport equation.

The standard DMPK-equation for the evolution of the eigenvalue distribution function P({λ}, L)
in the ensemble of long (L� l) wires with increasing length L has the following form:

l
∂P
∂L

= ΛDMPKP,

where,

ΛDMPKP =
2

bN + 2− b

N

∑
j=1

∂

∂λj

[
λj(1 + λj)J(λ)

∂

∂λj

P
J(λ)

]
is the DMPK operator, λj are eigenvalues of quantum-mechanical transfer matrix t, N is the number of
transverse modes in the wire, and P({λ}, L) is the N-dimensional probability distribution function
of random vector (λ1, λ2, . . . , λN). The integer parameter b equals 1 in a zero magnetic field and 2
in a time-reversal-symmetry-breaking magnetic field. In the case of zero field and strong spin–orbit
scattering, b = 4. The Jacobian J = ∏i<j |λj − λi|b corresponds to the transformation from the transfer
matrix space to the eigenvalue space. The DMPK equation can be derived by computing the change in
the scattering matrix S when the length of the wire is increased from L to L + δL, under the condition
that the mean free path l exceeds the wavelength λ. Another essential assumption is the isotropy
assumption of the statistical equivalence of scattering from one channel to another. It is correct
when the length of the wire is much greater than the width, and time for transverse diffusion can
be neglected.
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For wire with a tempered Lévy-type disorder, according to the limit theorem, the length of the
wire corresponding to the large number m� 1 of scatterers is distributed according to the tempered
Lévy stable law (see, e.g., [26]). In the limit of weak scattering (m1/αl → ∞), we have

lim
m1/α l→∞

L∫
0

[
P({λ}, L)− P({λ}, ξ)

] 1
lm1/α

g(α,γ)
(

L− ξ

lm1/α

)
dξ =

m
N
〈trλ′〉1 ΛDMPKP({λ}, L).

Here, g(α,γ)(x) is the one-sided tempered Lévy stable density with exponent 0 < α < 1 coinciding
with the fractal dimension of distributed scatterers in the wire. The Laplace transform of the tempered
stable density is

g̃(α,γ)(s) = exp[γα − (s + γ)α].

The scale γ−1 is the parameter defining homogenization of the spatial distribution of scatterers.
Taking into account the initial condition P({λ}, L → 0) = δ(λ) and introducing notation

K = 〈trλ′〉1/N, we arrive at the generalized DMPK equation for quantum wire with
quasi-fractal disorder,

lαDα,γ
L [P({λ}, L)− δ(λ)] = KΛDMPKP({λ}, L), (11)

where
0D

α,γ
L P({λ}, L) = e−γL

0Dα
LeγL P({λ}, L)− γαP({λ}, L)

is the tempered fractional derivative [26]. The Laplace transformation on length leads to the equation

[
(s + γ)α − γα

] [
P({λ}, s)− δ(λ)

s

]
= l−αKΛDMPKP̃({λ}, L).

Interpreting the process described by Equation (11) as a subordinated process, one can represent
the solution as the following integral

P({λ}, L) =
∞∫

0

P1

(
{λ}, ξ

lα

)
h(ξ, L)dξ, (12)

where h(ξ, L) is the inverse density to the tempered stable pdf (tempered subordinator) [27] with the

following Laplace transform (see Equation (8)): h̃(ξ, s) = s−1[(s + γ)α − γα] e−ξ[(s+γ)α−γα]. Function
P1({λ}, ξ) represents the solution of the standard DMPK equation, where ξ is associated with the
dimensionless length L/l. It can be found, e.g., in [35]. For L� γ−1, the standard DMPK approach
can be used. Solution (12) describes evolution from the anomalous conductance distribution to the
Dorokhov function for a long wire (Figure 1).

In regular quantum wires, 〈− ln G〉 scales linearly with length ξ. For quasi-fractal wires from (12),
we obtain ˜〈− ln G〉 =

∞∫
0

ξ g̃(ξ, s)dξ =
l−α

s
[
(s + γ)α − γα

] .

Inverting this Laplace transform, we arrive at the following expression:

〈− ln G〉 = l−α

L∫
0

dλ λα−1Eα,α (γ
αλα) exp(−γλ).

Here, Eα,α(x) is the two-parameter Mittag–Leffler function [36]. The scaling of 〈− ln G〉 for intermediate
lengths is of the form

〈− ln G〉 ≈ 1
Γ(1 + α)

Lα

lα
, l � L� γ−1. (13)
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For very long wires, we observe the normal scaling

〈− ln G〉 ≈ (γl)1−α

α

L
l

, l � γ−1 � L. (14)

Plots of 〈− ln G〉 vs. L/l for different values of α and γ are shown in Figure 2. They demonstrate
crossover from power law (∝ Lα) to linear behavior (∝ L). As follows from (13) and (14), this crossover
should be observed near value Lcr = γ−1[α/Γ(1 + α)]1/(1−α).
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Figure 1. Evolution of conductance distribution for the case of weak scattering in a quasi-fractal
wire characterized by a tempered-stable distribution of distances between scatterers (left panel).
Distributions for different values of α (right panel).
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Figure 2. Scaling of 〈− ln G〉 vs. L/l for different values of α and γ.

For the intermediate length (fractality domain), when l � L� γ−1, the tempered subordinator
can be replaced by the stable one, and relation (12) for conductance distribution takes the form

pα(G, L) ∼ L
lα

∞∫
0

p1(G, τ) g+

(
L
l

τ−1/α; α

)
τ−1−1/αdτ, l � L� γ−1. (15)

The latter formula coincides with the expression obtained in [8]. They use the standard DMPK
equation, modifying the solution by changing the number of scatterers according to the fractal
distribution. Change of the integration variable leads to the Monte Carlo algorithm for the calculation
of pα(G, L):

pα(G, L) =
∞∫

0

p1

(
G, (L/ly)α

)
g+ (y; α) dy =

〈
p1

(
G,

Lα

lαSα
α

)〉
, (16)

where Sα is the stable random variable.
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For a regular distribution of scatterers, the relative fluctuations of their number in the wire decay to
zero when L→ ∞. Parameter s = L/l represents the number of scatterers in the long wire, and it is the
unique parameter of the universal conductance distribution. In the fractal case, the relative fluctuations
tend to a non-zero value, and the behavior depends on α. Falceto and Gopar [8] use ξ = 〈− ln G〉 as
the second (scale) parameter. It is related to l by expression (13). So (L/l)α in Formula (16) can be
replaced by 〈− ln G〉Γ(1 + α). For α < 1, the conductance distributions have meaningful values in all
regions (0, 1) and can have two peaks [8].

4. Incoherent Sequential Tunneling Through Wire with Lévy-Type Disorder

Beenakker et al. [7] considered the one-dimensional chain of tunnel barriers where distances
between neighboring barriers are distributed according to an asymptotical power law. Considered
barriers were characterized by identical transmission probabilities Γ� 1 and resistance ρ = h/e2NΓ,
where N is the number of transverse modes. The authors [7] considered the case NΓ � 1, which
means that ρ � h/e2, so that the Coulomb blockade of single-electron tunneling can be neglected.
Beenakker et al. [7] considered the asymptotical (L→ ∞) behavior of negative moments of resistance
〈R(L)−k〉, where k = 1, 2, 3, ..., which correspond to positive moments of the conductance G = 1/R.
Here, we generalize this model using tempered stable distribution of distances between barriers, and
similar distribution for barrier resistances.

Let us consider a wire of length L. The wire resistance is the sum of resistances of individual
barriers. The number of tunneling barriers is random and determined by the distribution of distance
between neighboring barriers and the wire length. In addition, the individual resistances themselves
may be random. The total resistance can be considered as a coordinate of a CTRW process where
length L plays the role of time. All resistances are positive, and the process is one-sided. Let us assume
the tempered power law distribution of distances between tunneling barriers with parameters α and µ.
In addition, we imply the similar distribution of resistances with parameters β and ν. According to
Section 2, the distribution of wire resistance can be presented in the form of the tempered fractional
stable density. Furthermore, we put l = 1, ρβ = 1:

wR(r; L, β, α) ∼ q(β,α)
ν,µ (r, L) , L� l. (17)

The corresponding Laplace transform on r and L has the form (see Equation (9) in Section 2)

w̃R(u; s, β, α) ∼ q̃(β,α)
ν,µ (u, s) =

(s + µ)α − µα

s
[
(u + ν)β − νβ + (s + µ)α − µα

] .

Finding first and second derivatives of this function on u at point u = 0, we find two first moments of
the random resistance,

〈̃R〉(s) = βνβ−1

s
[
(s + µ)α − µα

] , 〈̃R2〉(s) = β(1− β) νβ−2

s
[
(s + µ)α − µα

] + 2β2ν2β−2

s
[
(s + µ)α − µα

]2 .

Using the Gaver method of numerical Laplace transform inversion [37], we find dependence of average
resistance 〈R〉 and relative fluctuations δR = (〈R2〉 − 〈R〉2)/〈R〉 on wire length for several values of α

and β (See Figure 3). Dependencies of 〈R〉 and δR on L demonstrate crossover between two scaling
behaviors. This crossover disappears when α→ 1.
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Figure 3. Average resistance (a,c) and relative fluctuations (b,d) for a quantum wire of length L.
Distances between barriers in the wire are distributed according to the tempered Lévy stable law with
parameters α and µ = 0.01. Resistances of individual barriers are distributed according to the tempered
β-stable law with β = 0.5 or 1.0, and ν = 0.01.

For the case of a non-truncated power law distribution of individual barrier resistance, when
0 < β < 1, all moments of the total resistance diverge. Below, we pass to the distribution of wire
conductance. The asymptotic distribution of the resistance R of a long quantum wire with length L
presents the pdf of a one-sided fractal random walk, which is expressed through the fractional stable
density [16],

wR(r; L, β, α) ∼ 1
ρβ

(
L
l

)−α/β

q(β,α)

(
r

ρβ

(
L
l

)−α/β
)

, L� l. (18)

This function satisfies the equation

0Dα
L[wR − δ(r)] =

ρ
β
β

lα 0D
β
r wR, 0 < α ≤ 1, 0 < β ≤ 1. (19)

The conductance G = 1/R is distributed according to

wG(y; L, β, α) ∼ 1
ρβy2

(
L
l

)−α/β

q(β,α)

(
1

ρβy

(
L
l

)−α/β
)

, L� l. (20)

Using the Mellin transform of the fractional stable density [38], we found the expression for the
conductance moments:

〈Gk〉 ∼ Γ(1 + k/β) Γ(1− k/β)

Γ(1 + k) Γ(1− αk/β)
ρ−k

β

(
L
l

)−αk/β

.

This formula is inapplicable when β and k are equal to 1 simultaneously. For this case, result are
presented in [9],

〈G(L)〉 ∝ ρ−1(L/l)−α ln L, δG(L) ∝ (L/l)−α/2/ ln L
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In the case of a regular spatial distribution of barriers (α = 1),

〈G〉 ∼ Γ(1 + 1/β)ρ−1
β

(
L
l

)−1/β

, 〈G2〉 ∼ Γ(1 + 2/β)

2
ρ−2

β

(
L
l

)−2/β

.

Relative fluctuations do not depend on α and tend to a constant positive value for large L in the case of
β < 1:

δG =

√
VarG
〈G〉 ∼

√
Γ(1 + 2/β)

2 [Γ(1 + 1/β)]2
− 1, L� l.

Figure 4 demonstrates the agreement of analytical results with numerical Monte Carlo calculations.
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Figure 4. (a) Average conductance of a quantum wire of length L in the case of sequential incoherent
tunneling. Barrier resistances are distributed according to the β-stable law. The spatial distribution of
barriers in the wire is regular α = 1, the mean distance is l = 0.1 nm, ρβ = 1. (b) Relative fluctuations
for different values of β.

Results for resistance distribution (17) and conductance distribution (20) are generalizations of the
solutions presented in [7,9]. New results correspond to the case of truncated power law distribution of
distances between tunneling barriers and random barrier resistances Ri. It should be noted, however,
that in the case of wide distribution of Ri, the Coulomb blockade can play a sufficient role. The latter
effect was neglected here.

Tempered fractional stable law and corresponding tempered fractional equation introduced in
Section 2 allowed us to simplify sufficiently consideration of the problem. New distributions expressed
via two tempered stable laws with different parameters can describe not only the transition from one
mode of anomalous diffusion to normal diffusive transport, but also more complex evolution with
several transitions.

5. Concluding Remarks

Electron transport in quasi-fractal one-dimensional mesoscopic systems (quantum wires) is
studied. These systems are characterized by a tempered Lévy stable distribution of spacing between
scatterers or tunneling barriers. Wires are homogeneous at a large scale and fractal at an intermediate
scale. Regimes of weak scattering and sequential incoherent tunneling in such quasi-fractal wires are
described. For description, “tempered” generalization of the fractional stable statistics is introduced.
Corresponding densities satisfy the equation with tempered fractional derivatives. For the weak
scattering, we generalized the DMPK equation for the distribution of eigenvalues of the transmission
matrix. The corresponding solutions expressed via the tempered Lévy stable laws describe evolution
from the anomalous conductance distribution for a relatively short wire to the Dorokhov function
for a long wire. For the sequential tunneling through quasi-fractal wires containing barriers with
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widely distributed resistances, average values and relative fluctuations are calculated for resistance
and conductance that demonstrate crossover between different scaling behaviors.
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