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Abstract: This paper presents the optimal modeling of Power Law Filters (PLFs) with the low-
pass (LP), high-pass (HP), band-pass (BP), and band-stop (BS) responses by means of rational
approximants. The optimization is performed for three different objective functions and second-
order filter mother functions. The formulated design constraints help avoid placement of the zeros
and poles on the right-half s-plane, thus, yielding stable PLF and inverse PLF (IPLF) models. The
performances of the approximants exhibiting the fractional-step magnitude and phase responses
are evaluated using various statistical indices. At the cost of higher computational complexity,
the proposed approach achieved improved accuracy with guaranteed stability when compared to
the published literature. The four types of optimal PLFs and IPLFs with an exponent α of 0.5 are
implemented using the follow-the-leader feedback topology employing AD844AN current feedback
operational amplifiers. The experimental results demonstrate that the Total Harmonic Distortion
achieved for all the practical PLF and IPLF circuits was equal or lower than 0.21%, whereas the
Spurious-Free Dynamic Range also exceeded 57.23 and 54.72 dBc, respectively.

Keywords: analog filter approximation; analog signal processing; fractional-order filter; inverse filter

1. Introduction

The theoretical concepts of fractional calculus [1–3], which generalized differ-integral
operators, have led to significant developments in circuit theory, signal processing, control
theory, bio-impedance modeling, etc. [4–8]. Fractional-order (FO) filters are considered as
the generalization of the traditional filters [9]. This is due to the ability of the FO filters
to achieve any roll-off rate [10]; in contrast, an integer-order filter can only achieve a roll-
off at −20 log10 n decibels/decade (dB/dec), where n is an integer [11]. FO analog filter
transfer functions are generally realized from the integer-order filters by substitution of
the Laplacian operator s with the non-integer Laplacian operator sα, where α ∈ (0, 1). The
frequency–domain transfer function of sα is given by (1):

(jω)α = ωα
[
cos
(απ

2

)
+ j sin

(απ

2

)]
, (1)

where j =
√
−1 and ω is the angular frequency in radians per second (rad/s).

Since sα is an irrational function, various rational approximations based on series
truncation, frequency–domain curve-fitting, pole-zero placement, optimization techniques,
etc., have been reported [12–15]. The impedance characteristics of the operator sα may
be practically realized using the FO elements (also known as the fractance devices or the
constant phase elements) [16–18]. Due to the unavailability of the commercial FO device,
their behavior may be emulated using the passive and active circuits [19–22].

Recent works have demonstrated the generalization of the Butterworth [23], Cheby-
shev [24], inverse Chebyshev [25], and elliptic filters [26] to the FO domain. Another design
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strategy that involves the approximation of FO filter characteristics using the integer order
transfer function was also reported in the literature [27]. The integer order approximant
can be realized using the field programmable analog array [28], voltage mode operational
amplifier [29], switched capacitor [30], operational transconductance amplifier (OTA) [31],
and current feedback operational amplifier (CFOA) [32].

The application of numerical and metaheuristic optimization algorithms for the ap-
proximation of FO filters has gained traction in recent years. The modeling of FO RLC
filter and low-pass filter transfer functions of the form 1/(s + 1)α using classical opti-
mization techniques has been reported [33,34]. Numerical optimization methods were
employed for the approximation of low-pass [35,36] and band-pass [37,38] filters exhibiting
fractional-step behavior. The Nelder-Mead simplex [39], Cuckoo Search algorithm [40],
and MATLAB-based optimization function fmincon [41,42] were employed to model the
magnitude–frequency characteristics of the FO low-pass Butterworth filter. The perfor-
mances of several nature-inspired algorithms were compared for the optimal rational
approximation of the sα operator [43]. The optimal design of a grounded FO inductor
based on the generalized impedance converter was reported in [44]. (1 + α) and (α + β) or-
der, where α, β ∈ (0, 1), low-pass Bessel filter characteristics were optimally approximated
using the Interior Search algorithm [45].

Since inverse filters yield the reciprocal frequency characteristic of the system that
causes distortion during transmission or reception, these filters are widely used in commu-
nication systems to alleviate signal distortion [46]. Inverse filters are also employed in acous-
tic systems [47], proportional integral derivative controllers [48], and digital filtering [49].
Realizations of FO inverse filters using the operational amplifiers [50], CFOAs [51], opera-
tional trans-resistance amplifiers [52], and OTAs [53] have been recently reported.

A new class of FO filters, namely the Power Law Filter (PLF), was approximated
based on a frequency–domain curve fitting using the Sanathanan–Koerner (S-K) least-
square iterative method in [54]. Applications of power law compensators and filters in
achieving robust frequency compensation of process plants with uncertainties [55] and in
bio-impedance modeling of fruits [56] have also been exemplified. The transfer function,
magnitude–frequency, and phase–frequency relationships for these filters exhibiting the
low-pass (LP), high-pass (HP), band-pass (BP), and band-stop (BS) characteristics are
presented in Table 1 [54]. In the PLFs, a FO exponent term α is introduced in the transfer
function of the second-order filter (referred to as the mother filter function). Consequently,
the second-order filter characteristics may now be considered as a particular case of the
PLFs when α = 1.

Table 1. Transfer functions and frequency response expressions of the theoretical PLFs (ω0: pole frequency, and Q:
quality factor).

Type Transfer Function Magnitude Phase

Low-pass HLP
D (s) =

(
ω2

0
s2+

ω0
Q s+ω2

0

)α
1[

1+
(

ω
ω0

)4
+
(

ω
ω0

)2
·
(

1
Q2−2

)]α/2 −α · tan−1

[ (
ω

ω0

)
· 1

Q

1−
(

ω
ω0

)2

]

High-pass HHP
D (s) =

(
s2

s2+
ω0
Q s+ω2

0

)α
(

ω
ω0

)2α

[
1+
(

ω
ω0

)4
+
(

ω
ω0

)2
·
(

1
Q2−2

)]α/2 α ·
{

π − tan−1

[ (
ω

ω0

)
· 1

Q

1−
(

ω
ω0

)2

]}

Band-pass HBP
D (s) =

( ω0
Q s

s2+
ω0
Q s+ω2

0

)α 1
Qα ·

(
ω

ω0

)α

[
1+
(

ω
ω0

)4
+
(

ω
ω0

)2
·
(

1
Q2−2

)]α/2 α ·
{

π
2 − tan−1

[ (
ω

ω0

)
· 1

Q

1−
(

ω
ω0

)2

]}

Band-stop HBS
D (s) =

(
s2+ω2

0
s2+

ω0
Q s+ω2

0

)α
[

1−
(

ω
ω0

)2
]α

[
1+
(

ω
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)4
+
(

ω
ω0

)2
·
(
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)]α/2 −α · tan−1

[ (
ω
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)
· 1

Q
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(
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ω0

)2
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This paper presents the optimal modeling of PLFs exhibiting the LP, HP, BP, and
BS characteristics. Comparative studies concerning the modeling performance based on
three different objective function formulations are presented. A non-parametric statistical
null hypothesis test is employed to investigate the similarity in the design performances
between the objective functions. The proposed strategy incorporates constraints to ensure
a stable PLF approximant. Additional constraints are also incorporated to avoid the
placement of zeros in the right-half s-plane. This allows the attainment of inverse PLF
(IPLF) characteristics through inversion of the optimal PLF models. Although the S-K
method [54] is simpler and computationally superior compared to the proposed technique,
the suggested approach demonstrates the following advantages:

(i) The stability of the PLF approximant in S-K method [54] is governed by the stability
of the mother filter function. While this guarantees a stable rational approximant,
however, the zeros of the filter transfer function may lie on the right-half of s (RHS)-
plane. For example, while the zeros of the BPPLFs and BSPLFs designed using the S-K
method lie on the left-half s-plane; however, the LPPLF and HPPLF models for α = 0.7
have zeros located at {+183.0053, –23.6922, –8.6177, –1.7485} and {+0.0055, –0.5718,
–0.1161, –0.0422}, respectively. It may be noted that for the S-K method-based LPPLFs
and HPPLFs with α ∈ [0.51, 0.99], one zero lies on the RHS-plane. Consequently,
inverting such a transfer function will lead to an unstable inverse-LPPLF (ILPPLF) and
inverse-HPPLF (IHPPLF) model. In contrast, the proposed approach can guarantee
the generation of stable designs for both PLFs and IPLFs. Hence, this paper also
presents the design of IPLFs that has not yet been reported in the literature.

(ii) The modeling accuracy of the proposed optimal PLF approximants, as justified by the
Mean Absolute Relative Error (MARE) metric, is significantly better (particularly for
the LP, HP, and BP-types) in comparison to the S-K method.

To demonstrate the practical efficacy, discrete component-based circuit realization
using CFOAs as active elements for the proposed PLFs and their inverse counterparts with
α = 0.5 is conducted. The experimental results reveal excellent agreement with the theoret-
ical magnitude– and phase–frequency behavior for the PLFs and magnitude responses for
the IPLFs. The time–domain and Fast Fourier Transformation (FFT) characteristics of the
practical filters are also investigated.

In this paper, Section 2 presents the proposed optimization problem formulation and
PLF/IPLF design strategy. The modeling accuracy of the proposed method is investigated
using MATLAB simulations in Section 3. Statistical studies concerning the hypothesis test
are also presented in this section. Practical circuit implementation and experimental results
(magnitude–frequency, phase–frequency, time–domain, and FFT) for the designed filters
are presented in Section 4. Finally, the paper concludes in Section 5.

2. Proposed Technique

The proposed rational approximant of the PLF is modeled as per (2):

HP(s) =
aNsN + aN−1sN−1 + . . . + a1s + a0

sN + bN−1sN−1 + bN−2sN−2 + . . . + b1s + b0
, (2)

where the coefficients of the numerator and denominator polynomials of HP(s) are denoted
by ak (k = 0, 1, . . . , N) and bk (k = 0, 1, . . . , N –1), respectively; and N is the order of the filter.

Figure 1 presents the flowchart of the proposed PLF design technique. The magnitude
and phase characteristics of the PLFs may be approximated by determining the optimal
values of the coefficients of HP(s) such that the error between the theoretical and proposed
responses is minimized. For this purpose, three different objective functions, as defined
by (3)–(5), are proposed:

f1 =
1
L

L

∑
i=1

∣∣|20 log10|HD(jωi)| − 20 log10|HP(jωi, X)|
∣∣+ 180

π
|∠HD(jωi)−∠HP(jωi, X)|, (3)
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f2 =
1
L

L

∑
i=1
||HD(jωi)| − |HP(jωi, X)||+ |∠HD(jωi)−∠HP(jωi, X)|, (4)

f3 =
1
L

L

∑
i=1

∣∣∣∣1− |HP(jωi, X)|
|HD(jωi)|

∣∣∣∣+ ∣∣∣∣1− ∠HP(jωi, X)

∠HD(jωi)

∣∣∣∣, (5)

where L denotes the total number of logarithmically spaced sample points in the bandwidth
of interest ω ∈ [ωmin, ωmax] rad/s; the decision variables vector is represented by X =
[aN aN−1 . . . a0 bN−1 bN−2 . . . b0]; |HD(jω)| and |HP(jω)| denote the magnitude of the
theoretical PLF and the proposed approximant, respectively; and the phase angles for the
theoretical (∠HD(jω)) and proposed (∠HP(jω)) PLFs are expressed in radians.

1 
 

 

 

Start

Inputs: QNL ,,,,,, 0maxmin ωωωα  

Set iter = 1, iterm = 100 

Generate a random initial point vector 

Minimize fk (k = 1, 2, 3) 

Store MAREk,iter and Xk,iter 

Is 
iter = = iterm 

?
iter = iter + 1 

No 

Determine the minimum value of MAREk,iter,  
i.e., MAREk,min = min{MAREk,iter} 

Identify Xk,best as Xk,iter pertaining to MAREk,min  

Display Xk,best 

End

Yes

Figure 1. Flowchart of the proposed PLF design technique.

To achieve a stable design, the inequality constraints as given by (6) are incorporated
in the proposed optimization method:

∆1, ∆2, ∆3, . . ., ∆N>0, (6)

where ∆1 = bN−1, ∆2 =

∣∣∣∣ bN−1 bN−3
bN bN−2

∣∣∣∣, ∆3 =

∣∣∣∣∣∣
bN−1 bN−3 bN−5

bN bN−2 bN−4
0 bN−1 bN−3

∣∣∣∣∣∣,. . . ,

∆N =

∣∣∣∣∣∣∣∣∣∣∣∣

bN−1 bN−3 bN−5 · · · 0
bN bN−2 bN−4 · · · 0

0 bN−1 bN−3
... 0

...
...

...
. . .

...
0 0 0 0 b0

∣∣∣∣∣∣∣∣∣∣∣∣
represent the Hurwitz determinants [57], and

bN = 1. The locations of zeros are also restricted to avoid the right-half s-plane by
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incorporating the constraints in (6) with bk substituted with ak (k = 0, 1, · · · , N). Thus,
the proposed formulation can be solved using a global search constrained optimization
problem solver.

The transfer function of the proposed IPLFs can be obtained as HI(s) = [HP(s)]−1.
As the value of α approaches 1, it is possible that the coefficients aN and a0 of the optimal
LPPLF and HPPLF, respectively, may attain a value of 0. The corresponding ILPPLF would
possess one extra zero as compared to the number of poles, while the IHPPLF model will
have a pole located at the origin of the s-plane.

To circumvent these particular issues, (i) the proposed ILPPLF transfer function may
be represented as p.HI(s)/(s + p), where p is a large positive number such as 200, 500, or
1000. The accuracy of approximation for the IPLFs increases as p is increased; and (ii) for
the case when a0 = 0 arises for the HPPLF, a0 may be replaced by a small, positive number
(q), for instance, smaller than 0.005. This technique allows the pole of the IHPPLF to be
shifted away from the origin towards the left-half of the s-plane, thus, avoiding potential
instability issues.

A numerical optimizer requires a user-supplied initial point for the decision variables
at the start of the optimization procedure. Subsequently, the optimization algorithm
iteratively minimizes the objective function by varying the decision variables. For solving
a constrained optimization problem, an additional task of the optimizer is to satisfy the
design constraints (i.e., generate a feasible solution). At the end of a single run of the
optimization routine (when the maximum number of function evaluations or iterations or
function tolerance value is reached), the optimal values of decision variables are obtained.

The final solution quality of a numerical optimization algorithm may be influenced
by the choice of the initial point. For solving the global search optimization problems,
identifying an appropriate initial point may not be easy. To circumvent this problem, a
standard technique is to independently execute the optimization routine several times
(iterm) with randomly chosen initial points in each run. Hence, iterm number of near-global
optimal solution vectors can be generated in this process. The best decision variables vector
(Xbest) is selected as the one that achieves the smallest error (MARE in the present case)
from the iterm solutions. The previously-mentioned strategy is employed in this paper for
the optimal modeling of PLFs.

3. MATLAB Simulations and Performance Analysis

The optimization procedures to minimize the objective functions (3)–(5) are
implemented in MATLAB programming language using the function fmincon (algorithm:
active-set) with the following parameter settings: maximum number of function
evaluations = 50,000; maximum number of iterations = 50,000; and termination toler-
ance on the function value = 10−10. In each trial run, the initial point for the decision
variables vector is randomly chosen from a uniform distribution in the interval [0, 50]. For
each design case, iterm = 100 independent trial runs of the optimization routine for each
objective function are carried out.

Quantitative comparisons of the design accuracy are carried out based on the MARE
metric as defined by (7):

MARE =
1
L

[
L

∑
i=1

∣∣∣∣1− |HP(jωi)|
|HD(jωi)|

∣∣∣∣+ L

∑
i=1

∣∣∣∣1− ∠HP(jωi)

∠HD(jωi)

∣∣∣∣
]

. (7)

For demonstration purposes, the values of L, α, N, ωmin, ωmax, ω0, and Q are chosen
as 1000, {0.3, 0.5, 0.7}, 4, 0.01 rad/s, 100 rad/s, 1 rad/s, and 1

/√
2, respectively. Detailed

results for various other values of α are also available from the authors and can be shared
with interested readers.
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3.1. Statistical Analyses and Performance Evaluation
3.1.1. Comparisons Based on the MARE Metric

Statistical comparisons about the MARE metric were carried out to determine the
average performance of the proposed optimization strategy for the design of PLFs using
the three objective functions. The minimum (min), maximum (max), mean, and standard
deviation (SD) indices for the various design orders are shown in Table 2. Graphical
comparisons for the MARE attained for the designed PLFs are presented using boxplots
in Figure 2. In the case of LPPLFs, we found that: (i) for α = 0.3, f3 attained the best
performance for all the statistical indices; (ii) the most accurate model (i.e., the design with
the minimum value of MARE (MAREmin)) for α = 0.5 was achieved by f1 (1.11× 10−4),
although f2 yielded the best results for the other indices; and (iii) very similar performances
for MAREmin were achieved for α = 0.7, with f3 (0.0068) attaining marginally better
accuracy.

However, f3 distinctly outperformed the other two objective functions regarding the
max, mean, and SD values. For the HPPLFs, (i) f3 achieved significantly better MAREmin
(0.0081) as compared to f1 (0.0371) and f2 (0.0380) for α = 0.3. However, the max, mean,
and SD performances for f3 were the worst among the three functions; (ii) with α = 0.5, f1
yielded inferior performance about the min, mean, and SD indices, while the best values
concerning MAREmin and mean MARE were achieved by f3 (1.20× 10−5) and f2 (0.1516),
respectively; and (iii) for α = 0.7, f1 attained the most accurate model (MAREmin = 0.0068),
while f2 yielded the best performance for all the other indices.

Table 2. Statistical comparisons of the MARE for designed PLFs.

Filter Index
α = 0.3 α = 0.5 α = 0.7

f1 f2 f3 f1 f2 f3 f1 f2 f3

LPPLF

Min 0.0097 0.0100 0.0081 1.11 ×10−4 1.41× 10−4 1.54× 10−4 0.0072 0.0073 0.0068
Max 2.6271 2.3788 1.4640 2.9436 1.8702 1.9990 2.7724 2.7217 1.5765

Mean 0.1644 0.1960 0.0647 0.1095 0.0379 0.0740 0.1174 0.1410 0.0491
SD 0.4655 0.4563 0.1877 0.4031 0.1910 0.3262 0.3996 0.3878 0.1707

HPPLF

Min 0.0371 0.0380 0.0081 2.55× 10−4 2.06× 10−4 1.20× 10−5 0.0068 0.0415 0.0308
Max 3.2533 3.0948 4.8429 4.7061 5.3711 5.3368 5.7460 2.2993 7.6727

Mean 0.2869 0.1752 0.5542 0.3599 0.1516 0.1725 0.3906 0.1994 0.2710
SD 0.5413 0.3953 0.9991 1.0042 0.6603 0.6509 0.8299 0.3567 0.9709

BPPLF

Min 0.0850 0.0822 0.0785 0.0786 0.0758 0.0735 0.0568 0.0557 0.0540
Max 7.2483 5.6081 6.5838 4.9242 3.0704 8.2371 3.2517 7.1117 3.9668

Mean 0.5429 0.4603 0.3324 0.4141 0.3461 0.3522 0.3440 0.2805 0.2651
SD 0.9948 0.9361 0.7146 0.7051 0.5823 0.8862 0.6418 0.8186 0.5066

BSPLF

Min 0.0148 0.0564 0.0427 0.0133 0.0123 0.0438 0.0101 0.0090 0.0385
Max 5.9545 7.6578 8.9775 5.6246 8.2135 7.5578 7.2166 7.0028 7.5591

Mean 0.4435 0.6127 1.5306 0.5749 0.7712 1.2279 0.8967 0.8219 1.4433
SD 0.9858 1.5685 2.1678 1.0939 1.5658 1.6760 1.6799 1.4094 1.8164

In the case of BPPLFs, it is revealed that: (i) for all the cases, the best performer about
MAREmin is f3; (ii) regarding the mean and SD indices, f2 attained the minimum value for
α = 0.5 and f3 for the other two orders; and (iii) the best results for the max MARE were
achieved by f2 (5.6081), f2 (3.0704), and f1 (3.2517) for α = 0.3, 0.5, and 0.7, respectively.
Comparisons for the designed BSPLFs show that f1 and f2 achieved the best values for
all the statistical indices with α = 0.3 and α = 0.7, respectively. In the case of α = 0.5,
the most accurate model is attained by f2 (MAREmin = 0.0123), whereas f1 yields superior
performance for the other three indices.
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Figure 2. MARE comparison using boxplots for the (a) LPPLF, (b) HPPLF, (c) BPPLF, and (d) BSPLF. Note: The most
accurate model (lowest MAREmin) for each case is indicated in blue.

3.1.2. Comparisons Based on the Wilcoxon Rank-Sum Hypothesis Test

Pair-wise comparisons based on the Wilcoxon rank-sum test for the PLFs designed
using f1, f2, and f3 are conducted to determine whether a statistically significant difference
exists in the modeling performance [58]. If no significant difference exists in the design
accuracy, then a similar average-case modeling error performance can be expected from
all the proposed objective functions. Consequently, all the three objective functions may
exhibit similar robustness.

Thus, in terms of solution consistency, the objective functions demonstrate similar
performance. For this purpose, the null hypothesis (H0: ‘equality of medians for the MARE
metric’) is considered at a confidence level of 95%. The decision index is represented by
H, where H = 0/1 indicates that H0 cannot/can be rejected. Table 3 presents the Wilcoxon
rank-sum test results along with the p-value (p-val) index. A smaller p-val indicates stronger
evidence in favor of rejection of H0.

It is revealed that: (i) H0 is rejected for all the pair-wise combinations concerning the
LPPLF, HPPLF, and BSPLF with α = 0.3, 0.7, and 0.3, respectively; (ii) only one case (HPPLF
with α = 0.3) exists where all the combinations may result in non-rejection of H0; (iii) for
comparisons involving all the three design orders for a particular pair, the hypothesis can
be rejected for f1/ f2 with the BSPLF, f2/ f3 with the LPPLF, and f1/ f3 for the BPPLF and
BSPLF, whereas H0 may not be rejected for the BPPLF with f2/ f3; and (iv) across all the
PLFs, 9, 8, and 5 cases out of 12 exist for f1/ f2, f1/ f3, and f2/ f3, respectively, that lead to
the rejection of H0. Overall, it may be concluded from the statistical analysis that, in terms
of attaining a similar performance consistency for all the design cases, the three objective
functions cannot be used interchangeably.

The optimal coefficients of the PLFs that achieve the smallest value of MARE for each
of the three objective functions are presented in Appendix A. The MATLAB-simulated
magnitude- and phase–frequency responses for the most accurate (least MAREmin) pro-
posed LPPLFs, HPPLFs, BPPLFs, and BSPLFs are presented in Figures 3–6, respectively.
The plots for the corresponding IPLFs are also illustrated in these figures. The values of p
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and q are considered as 1000 and 10−6 for the ILPPLF and IHPPLF, respectively, for α = 0.5
and 0.7. We observed that all the design cases attained good agreement with the theoretical
responses.

Table 3. Wilcoxon rank-sum test results for the designed PLFs.

Filter Index
f1 vs. f2 f1 vs. f3 f2 vs. f3

α = 0.3 α = 0.5 α = 0.7 α = 0.3 α = 0.5 α = 0.7 α = 0.3 α = 0.5 α = 0.7

LPPLF p-val 3.3× 10−8 0.9173 8.0× 10−9 9.7× 10−4 0.0911 0.1443 1.5× 10−6 0.0013 1.4× 10−8

H 1 0 1 1 0 0 1 1 1

HPPLF p-val 0.7369 0.0303 3.7× 10−6 0.5551 0.7966 1.1× 10−8 0.2087 0.6574 6.1× 10−6

H 0 1 1 0 0 1 0 0 1

BPPLF p-val 0.2503 0.0211 8.8× 10−6 0.0474 0.0417 0.0322 0.1626 0.1416 0.8902
H 0 1 1 1 1 1 0 0 0

BSPLF p-val 1.0× 10−6 6.6× 10−4 1.1× 10−4 0.0032 0.0294 0.0276 0.0087 0.1739 0.0708
H 1 1 1 1 1 1 1 0 0

The MAREmin attained for the ILPPLF (α = 0.5) with p = {100, 200, 500, 1000} is
{0.0919, 0.0439, 0.0164, 0.0079}. In the case of IHPPLF for α = 0.5 with q = {0.005, 0.002,
0.001, 0.0001}, the MAREmin is obtained as {0.0447, 0.0170, 0.0084, 0.0008}. These results
confirm that the approximation accuracy of the ILPPLF and IHPPLF improves for larger
values of p and smaller values of q, respectively. The MAREmin attained for the proposed
inverse BPPLFs (IBPPLFs) with α = {0.3, 0.5, 0.7} is {0.0790, 0.0745, 0.0548}; the same for
the inverse BSPLFs (IBSPLFs) is {0.0147, 0.0121, 0.0092}.
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Figure 3. (a) Magnitude and (b) phase–frequency responses of the proposed LPPLFs (dashed blue) and ILPPLFs (dashed
green) as compared to the theoretical ones (solid black).
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Figure 4. (a) Magnitude and (b) phase–frequency responses of the proposed HPPLFs (dashed blue) and IHPPLFs (dashed
green) as compared to the theoretical ones (solid black).
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Figure 5. (a) Magnitude and (b) phase–frequency responses of the proposed BPPLFs (dashed blue) and IBPPLFs (dashed
green) as compared to the theoretical ones (solid black).
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Figure 6. (a) Magnitude and (b) phase–frequency responses of the proposed BSPLFs (dashed blue) and IBSPLFs (dashed
green) as compared to the theoretical ones (solid black).
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3.2. Comparison with the Literature

The proposed most accurate PLFs are compared with the published literature [54]
based on the MARE metric, as shown in Table 4. The proposed designs outperform
the reported models for all the considered cases by achieving the least MARE values.

The improvements in the percentage absolute relative error (100×
∣∣∣MAREProp−MARERep

MARERep

∣∣∣),
where MAREProp and MARERep are the MARE values achieved for the proposed model
and [54], respectively, for the LPPLF, HPPLF, BPPLF, and BSPLF with α = {0.3, 0.5, 0.7}
are {47.40, 58.58, 83.41}%, {48.73, 87.22, 83.41}%, {7.75, 16.85, 27.71}%, and {18.23, 10.87,
8.16}%, respectively. Graphical visualizations of these percentage improvements for all
the proposed designs are shown using bar plots in Figure 7. Improvements over [54] for
the proposed LPPLF and HPPLF are distinctly pronounced as compared to those of the
BPPLF and BSPLF. Hence, the proposed technique may be considered as a more accurate
modeling tool when compared against [54].

Table 4. Comparison of the most accurate proposed PLFs with the published literature [54] in terms
of the MARE metric.

Filter Reference α = 0.3 α = 0.5 α = 0.7

LPPLF [54] 0.0154 2.68× 10−4 0.0410
Proposed 0.0081 1.11× 10−4 0.0068

HPPLF [54] 0.0158 9.39× 10−5 0.0410
Proposed 0.0081 1.20× 10−5 0.0068

BPPLF [54] 0.0851 0.0884 0.0747
Proposed 0.0785 0.0735 0.0540

BSPLF [54] 0.0181 0.0138 0.0098
Proposed 0.0148 0.0123 0.0090
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Figure 7. Percentage improvement in absolute relative error of the proposed PLFs with respect
to [54].

Comparisons about the computational time (tc) required by the S-K method [54]
and the proposed technique for the design of PLFs with α = 0.5 are conducted in the
following environment – CPU: Intel i3 @ 1.70 GHz, RAM: 2.0 GB, Operating System:
Windows 7 (64 bit), and Software: MATLAB 2014a. The tc required by [54] for the design
of LPPLF, HPPLF, BPPLF, and BSPLF is 1.601, 1.600, 1.665, and 1.663 s, respectively. For
the proposed technique with objective functions { f1, f2, f3}, the tc (expressed in seconds)
required to complete 100 iterations is, respectively, obtained as {254.036, 230.221, 215.673},
{251.964, 213.028, 260.650}, {265.070, 296.818, 291.986}, and {273.787, 230.171, 198.241}.

These results show that no specific objective function can attain the smallest value of
tc for all the designed PLFs. In terms of computational efficiency, the proposed strategy is



Fractal Fract. 2021, 5, 197 11 of 23

inferior to the reported technique [54]. However, since the PLF approximation is carried
out offline, the higher tc of the proposed method may be traded-off in favor of achieving
superior modeling accuracy compared to the S-K method [54].

4. Experimental Validation

CFOAs are popular analog signal processing integrated circuits that offer a high
slew rate, gain-bandwidth decoupling, and smaller power consumption compared to
operational amplifiers [59]. Due to their versatility, CFOAs have been widely employed to
implement FO filters [19,32,41,51,60].

Discrete components-based circuit realization of the proposed PLFs is carried out by
employing the CFOA as an active element in a follow-the-leader feedback topology [19].
The circuit diagram for the generalized PLF and IPLF implementation is presented in
Figure 8. The total numbers of CFOAs, capacitors, and resistors required to realize the
proposed Nth-order approximant are N + 2, N, and 3N + 4, respectively.
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Figure 8. CFOA-based circuit implementation of the proposed PLFs/IPLFs.

The proposed circuit resulted in a reduced component count compared to [54] where
the PLF implementation requires N + 4 operational amplifiers, N capacitors, and 3N + 8
resistors. Thus, irrespective of the value of N, the circuit reported in [54] requires two
extra op-amps and four additional resistors as compared to the proposed one. The general
transfer function of the proposed circuit is given by (8):

VOUT(s)
VIN(s)

=
Rout

Rin
×

R
R1

sN +
N

∑
i=1

sN−i

R1Ri−1
i

∏
k=1

Rk+1
Rk

Ck

sN +
N

∑
i=1

sN−i

RFRi−1
i

∏
k=1

Ck

. (8)

As a representative, the circuit implementation steps for the proposed PLFs and IPLFs
of LP, HP, BP, and BS types, whose transfer functions for α = 0.5 are given by (9)–(16), are
presented below.

HLP
P (s) =

s3 + 3.3454s2 + 3.9298s + 1.6952
s4 + 4.0523s3 + 6.5467s2 + 5.1288s + 1.6952

, (9)

HHP
P (s) =

s4 + 2.6111s3 + 2.5477s2 + 0.9238s
s4 + 3.3182s3 + 4.6441s2 + 3.2008s + 0.9238

, (10)

HBP
P (s) =

0.0727s4 + 8.6573s3 + 56.5588s2 + 8.6576s + 0.0727
s4 + 26.6767s3 + 58.9923s2 + 26.6771s + 1.0001

, (11)
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HBS
P (s) =

0.9999s4 + 0.6374s3 + 2.0280s2 + 0.6374s + 1.0001
s4 + 1.3406s3 + 2.2471s2 + 1.3407s + 1.0001

, (12)

HLP
I (s) =

200s4 + 810.4600s3 + 1309.3000s2 + 1025.8000s + 339.0400
s4 + 203.3454s3 + 673.0098s2 + 787.6552s + 339.0400

, (13)

HHP
I (s) =

s4 + 3.3182s3 + 4.6441s2 + 3.2008s + 0.9238
s4 + 2.6111s3 + 2.5477s2 + 0.9238s + 0.0020

, (14)

HBP
I (s) =

13.7552s4 + 366.9422s3 + 811.4484s2 + 366.9477s + 13.7565
s4 + 119.0825s3 + 777.9752s2 + 119.0867s + 1

, (15)

HBS
I (s) =

1.0001s4 + 1.3407s3 + 2.2473s2 + 1.3408s + 1.0002
s4 + 0.6375s3 + 2.0282s2 + 0.6375s + 1.0002

. (16)

The design steps are described as follows:

Step 1: Set N = 4 in (8). Therefore, six CFOAs, four capacitors, and 16 resistors are required
to construct the circuit. The transfer function for the CFOA-based circuit is given
by (17):

VOUT(s)
VIN(s)

=
Rout

Rin
×

R
R1

s4 + s3

R2C1
+ s2

RR3C1C2
+ s

R2R4C1C2C3
+ 1

R3R5C1C2C3C4

s4 + s3

RFC1
+ s2

RRFC1C2
+ s

R2RFC1C2C3
+ 1

R3RFC1C2C3C4

. (17)

Step 2: Select the desired center frequency for the filter. For instance, a center frequency of
1 kHz is used here.

Step 3: Set the values of R, RF, Rout, and Rin. Note that the resistor ratio Rout/Rin helps in
gain adjustment.

Step 4: Compare the coefficients of (17) with the corresponding coefficients of the de-
normalized transfer functions from (9)–(16) and determine the values of the re-
maining passive components for the filter.

Step 5: Choose the nearest values of the passive components from the E24 industrial
series for the resistors and the E12 series for the capacitors. The passive com-
ponents required to implement the proposed PLFs and IPLFs are presented in
Tables 5 and 6, respectively. For better accuracy, Rout was selected from the E48
series for the IHPPLF.

Table 5. Values of the passive components for the realization of the proposed PLFs (α = 0.5) (Note:
All resistances are in kΩ, and all capacitances are in nF).

Filter Rout Rin R RF R1 R2 R3 R4 R5 C1 C2 C3 C4

LPPLF 10 10 10 10 ∞ 39 20 13 10 3.9 10 22 47
HPPLF 10 10 10 10 10 13 18 36 ∞ 4.7 12 22 56
BPPLF 10 10 10 10 130 30 10 30 130 0.56 6.8 33 390
BSPLF 10 10 10 10 10 20 11 20 10 12 10 27 22

Table 6. Values of the passive components for the realization of the proposed IPLFs (α = 0.5) (Note:
All resistances are in kΩ, and all capacitances are in nF).

Filter Rout Rin R RF R1 R2 R3 R4 R5 C1 C2 C3 C4

ILPPLF 30 20 20 20 0.1 5.1 10 15 20 0.039 2.2 6.8 18
IHPPLF 11.5 10 200 200 200 160 110 56 0.43 0.33 0.82 2.2 390
IBPPLF 51 51 51 51 3.6 16 51 16 3.6 0.027 0.47 22 390
IBSPLF 51 51 51 51 51 24 47 24 51 4.7 1.0 10 2.2
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Practical circuit implementations were carried out using the Analog Devices AD844AN-
type CFOAs. Supply voltage of 12 volts for the chips was provided from the Agilent E3630A
power supply. The magnitude–frequency and phase–frequency measurements were con-
ducted using the OMICRON Lab Bode 100 network analyzer and displayed using the Bode
Analyzer Suite software. In this regard, 801 logarithmically spaced frequency points in the
range 10 Hz to 100 kHz were considered. The level of the testing harmonic signal was set
to VPP = 1 V.

The receiver bandwidth of the analyzer was fixed at 100 Hz. The time–domain
behaviors of the practical filters were observed on Agilent InfiniiVision DSO-X 2002A digital
storage oscilloscope. The voltage 1 VPP (default value) was applied to the filter circuit
from the Agilent 33521A function/arbitrary waveform generator during measurements
of time–domain responses. Figure 9 presents the photograph of the hardware set-up
used to experimentally validate the performance of the proposed filters with the display
demonstrating the frequency responses for the BPPLF as a test case.

Figure 9. Photograph of the experimental set-up.

4.1. Measurement Results for the PLFs

The experimentally obtained magnitude and phase characteristics for the proposed
LPPLF, HPPLF, BPPLF, and BSPLF are compared with the theoretical ones in Figure 10a–d,
respectively. All the cases achieve excellent agreement with the ideal responses. The MARE
values (determined using L = 801) attained for the practical PLFs exhibiting the LP, HP, BP,
and BS behaviors are 0.1006, 0.9668, 0.1307, and 1.0031, respectively.

The time–domain responses of the proposed LPPLF and HPPLF measured at the
half-power frequency ( fH) of 1.11 kHz and 738 Hz, respectively, are shown in Figure 11a,b,
respectively. The peak-to-peak output voltage (VOUT(PP)) obtained for the LPPLF and
HPPLF at fH are 700 mV and 680 mV, respectively. Figure 12a–c show the three time–
domain input–output waveforms for the BPPLF (namely, BPPLF-a, BPPLF-b, and BPPLF-c)
when the input signal is applied at the center frequency ( f0 = 1.066 kHz), low half-power
frequency ( fH,low = 353.9 Hz), and high half-power frequency ( fH,high = 3.214 kHz),
respectively.

The corresponding values of VOUT(PP) are attained as 1.01 V, 710 mV, and 720 mV,
respectively. In Figure 13a,b, the two transient responses for the BSPLF (namely, BSPLF-a,
and BSPLF-b) at the input signal frequencies of fH,low (614 Hz) and fH,high (1.47 kHz),
respectively, are presented. Both cases yield 710 mV for VOUT(PP). The values for f0, fH,
fH,low and fH,high are considered with respect to the experimental measurements.

The Fourier spectrums of the measured output signals displayed up to the sixth
harmonic above −95 dBV for the LPPLF, HPPLF, BPPLF-a, BPPLF-b, BPPLF-c, BSPLF-a,
and BSPLF-b are shown in Figure 14a–g, respectively. The Spurious-Free Dynamic Range
(SFDR), expressed in dBc, for the seven cases is respectively obtained as 60.35, 59.77, 62.77,
57.23, 57.81, 58.20, and 57.62. The Total Harmonic Distortion (THD), evaluated from the
plotted harmonics, is obtained as 0.17%, 0.15%, 0.07%, 0.16%, 0.16%, 0.15%, and 0.19%.
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Figure 10. Comparisons between the theoretical (solid black) and experimentally (dashed blue) obtained (a) LP, (b) HP, (c)
BP, and (d) BS filter frequency responses of the PLFs (α = 0.5).

VIN VOUT 

(a)

VIN VOUT 

(b)
Figure 11. Input–output waveforms observed in oscilloscope for the proposed (a) LPPLF (α = 0.5) with an input frequency
of fH = 1.11 kHz, (b) HPPLF (α = 0.5) with an input frequency of fH = 738 Hz.

VIN VOUT 

(a)

VIN VOUT 

(b)

VIN VOUT 

(c)
Figure 12. Input–output waveforms observed in oscilloscope for the proposed BPPLF (α = 0.5) with an input frequency of
(a) f0 = 1.066 kHz, (b) fH,low = 353.9 Hz, and (c) fH,high = 3.214 kHz.
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VIN VOUT 

(a)

VIN VOUT 

(b)
Figure 13. Input–output waveforms observed in oscilloscope for the proposed BSPLF (α = 0.5) with an input frequency of
(a) fH,low = 614 Hz and (b) fH,high = 1.47 kHz.
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Figure 14. FFT spectrums (experimental) of the proposed filters (α = 0.5) pertaining to the (a) LPPLF, (b) HPPLF, (c) BPPLF-a,
(d) BPPLF-b, (e) BPPLF-c, (f) BSPLF-a, and (g) BSPLF-b.

4.2. Measurement Results for the IPLFs

Comparisons between the theoretical and experimental magnitude and phase re-
sponses achieved for the proposed ILPPLF, IHPPLF, IBPPLF, and IBSPLF are presented
in Figure 15a–d, respectively. The magnitude characteristics for all the cases demonstrate
good agreement with the theoretical ones whereas the phase behavior deviates as the
operating frequency approaches towards 100 kHz. The practical IPLFs with LP, HP, BP, and
BS responses attain the MARE values of 0.2441, 6.8457, 0.2221, and 3.6490, respectively.
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Figure 15. Comparisons between the theoretical (solid black) and experimentally (dashed blue) obtained (a) LP, (b) HP, (c)
BP, and (d) BS filter frequency responses of the IPLFs (α = 0.5).

Figure 16a,b show the time–domain input–output waveforms of the practical ILPPLF
and IHPPLF measured at the input frequency of fH = 1.212 kHz and 887.8 Hz, respectively.
Measurements reveal that VOUT(PP) of 1.259 V and 1.421 V are, respectively, obtained for
the ILPPLF and the IHPPLF. The time–domain responses for the IBPPLF (i.e., IBPPLF-a,
IBPPLF-b, and IBPPLF-c) at the input frequencies of f0 = 967 Hz, fH,low = 330.3 Hz, and
fH,high = 2.919 kHz are presented in Figure 17a–c. The values of VOUT(PP) achieved for
these three cases are 0.966 V, 1.374 V, and 1.355 V, respectively. The input–output plots
for the IBSPLF (i.e., IBSPLF-a and IBSPLF-b) at the input frequencies of fH,low = 650.3 Hz
and fH,high = 1.482 kHz are shown in Figure 18a,b, respectively. The measured values of
VOUT(PP) at these two frequencies are obtained as 1.438V and 1.426 V, respectively.

VIN

VOUT 

(a)

VIN VOUT 

(b)
Figure 16. Input–output waveforms observed in oscilloscope for the proposed (a) ILPPLF (α = 0.5) with an input frequency
of fH = 1.212 kHz, (b) IHPPLF (α = 0.5) with an input frequency of fH = 887.8 Hz.

Figure 19a–g present the FFT plots of the measured output responses for the proposed
ILPPLF, IHPPLF, IBPPLF-a, IBPPLF-b, IBPPLF-c, IBSPLF-a, and IBSPLF-b. The SFDR
(dBc) attained for these designs is 63.44, 54.72, 57.41, 58.30, 58.25, 65.39, and 61.61; the
corresponding THD values are 0.10%, 0.21%, 0.17%, 0.15%, 0.15%, 0.07%, and 0.11%.
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VIN VOUT 

(a)

VIN VOUT 

(b)

VIN VOUT 

(c)
Figure 17. Input–output waveforms observed in oscilloscope for the proposed IBPPLF (α = 0.5) with an input frequency of
(a) f0 = 967 Hz, (b) fH,low = 330.3 Hz, and (c) fH,high = 2.919 kHz.

VIN VOUT 

(a)

VIN VOUT 

(b)
Figure 18. Input–output waveforms observed in oscilloscope for the proposed IBSPLF (α = 0.5) with an input frequency of
(a) fH,low = 650.3 Hz and (b) fH,high = 1.482 kHz.



Fractal Fract. 2021, 5, 197 18 of 23

0 . 0 2 . 0 x 1 0 3 4 . 0 x 1 0 3 6 . 0 x 1 0 3 8 . 0 x 1 0 3
- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 8 . 9
1

- 7 3 .
2 5 - 7 2 .

3 5

- 8 2 .
9 0 - 7 7 .

0 1
- 8 5 .

4 4

 I L P P L F :  T H D  =  0 . 1 0 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( a )

S F D R  =
6 3 . 4 4  d B c

(a)

0 . 0 2 . 0 x 1 0 3 4 . 0 x 1 0 3 6 . 0 x 1 0 3
- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 7 . 8
8

- 6 2 .
6 0

- 7 0 .
3 9

- 7 6 .
7 3 - 7 4 .

2 9

- 8 7 .
2 9

 I H P P L F :  T H D  =  0 . 2 1 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( b )

S F D R  =
5 4 . 7 2  d B c

(b)

0 . 0 2 . 0 x 1 0 3 4 . 0 x 1 0 3 6 . 0 x 1 0 3
- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 1 0 .
9 7

- 6 8 .
3 8

- 7 4 .
7 9

- 8 3 .
3 8 - 7 4 .

7 5

- 8 4 .
3 7

 I B P P L F - a :  T H D  =  0 . 1 7 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( c )

S F D R  =
5 7 . 4 1  d B c

(c)

0 . 0 1 0 3
2 . 0 x 1 0 3

- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 6 . 8
7

- 7 0 .
8 2 - 6 5 .

1 7

- 7 7 .
5 5 - 7 3 .

2 1

- 9 1 .
6 5

 I B P P L F - b :  T H D  =  0 . 1 5 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( d )

S F D R  =
5 8 . 3 0  d B c

(d)

0 . 0 1 0 4
2 . 0 x 1 0 4

- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 7 . 2
1

- 6 5 .
4 6

- 7 1 .
0 3

- 7 8 .
6 7 - 7 6 .

5 7

- 9 0 .
4 9

 I B P P L F - c :  T H D  =  0 . 1 5 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( e )

S F D R  =
5 8 . 2 5  d B c

(e)

0 . 0 2 . 0 x 1 0 3 4 . 0 x 1 0 3
- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 6 . 6
4

- 8 7 .
6 8 - 7 2 .

0 3

- 8 4 .
9 3 - 7 4 .

3 5

- 8 5 .
0 5

 I B S P L F - a :  T H D  =  0 . 0 7 %  

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )
( f )

S F D R  =
6 5 . 3 9  d B c

(f)

0 . 0 5 . 0 x 1 0 3 1 0 4
- 1 2 0
- 9 0
- 6 0
- 3 0

0 - 7 . 5
7

- 6 9 .
1 9

- 7 2 .
1 6

- 8 2 .
1 8 - 7 4 .

4 8

- 8 9 .
9 4

 I B S P L F - b :  T H D  =  0 . 1 1 %  

( f )

V O
UT

 (d
BV

)

F r e q u e n c y  ( H z )

S F D R  =
6 1 . 6 1  d B c

(g)

Figure 19. FFT spectrums (experimental) of the proposed inverse filters (α = 0.5) pertaining to the (a) ILPPLF, (b) IHPPLF,
(c) IBPPLF-a, (d) IBPPLF-b, (e) IBPPLF-c, (f) IBSPLF-a, and (g) IBSPLF-b.

5. Conclusions

In this paper, we presented the optimal and stable rational approximation of the
PLFs and their inverse functions. Design examples for the LP, HP, BP, and BS-type PLFs
with α = {0.3, 0.5, 0.7} and three different objective functions were presented. Statistical
performance comparisons and Wilcoxon rank-sum test results revealed that no single
objective function attained the best accuracy and solution quality consistency for all types
of PLFs. Comparisons with published literature highlighted the improved accuracy for all
the proposed PLFs. The drawback of obtaining unstable ILPPLF and IHPPLF for several
design orders based on the reported S-K method was circumvented here through the
incorporation of design constraints.

Since the PLF/IPLF design is an offline procedure, the inferior computational time
of the proposed technique may be waived in favor of attaining the previously-mentioned
benefits. CFOAs employed as active elements were used to practically realize the pro-
posed PLFs and IPLFs for all four response types with α = 0.5. The experimental results
exemplified an excellent agreement in the magnitude and phase responses with the ideal
PLFs. The magnitude behavior for the IPLFs also attained proximity with the theoretical
anticipations. For all measurements, the THD remained lower than 0.2%, and the SFDR
exceeded 57.23 dBc for the PLFs. In the case of IPLFs, the THD and SFDR values were
equal or smaller than 0.21% and larger than 54.72 dBc, respectively.
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Appendix A

See Table A1.

Table A1. Optimal coefficients of the designed PLFs based on different objective functions ( fk).

Filter fk α X

0.3 [0.0237 6.5086 157.6053 608.9508 435.0749 55.8440 461.1371 792.3060 435.0843]
f1 0.5 [0.0000 1.0000 3.3454 3.9298 1.6952 4.0523 6.5467 5.1288 1.6952]

0.7 [0.0000 0.0935 14.6833 215.5569 363.5909 56.1673 406.3852 575.4828 363.5909]

0.3 [0.0251 6.1852 130.3929 454.1981 337.5340 48.9649 357.4187 596.5829 337.5048]
LPPLF f2 0.5 [0.0000 1.0000 4.3404 5.8369 2.7806 5.0470 9.1598 7.8036 2.7806]

0.7 [0.0000 0.0923 14.9358 225.8841 382.2588 57.9809 426.5128 604.2660 382.2596]

0.3 [0.0226 6.7236 168.2873 653.3916 495.0099 59.0935 493.5963 863.3283 495.0150]
f3 0.5 [0.0000 1.0000 9.8083 16.3840 8.7772 10.5143 23.5806 22.5905 8.7772]

0.7 [0.0000 0.0913 15.5822 238.8673 406.6527 60.8165 451.6448 641.4255 406.6529]

0.3 [1.0002 7.5918 14.8771 1.8950 0.0121 8.0206 18.1103 9.0732 0.3853]
f1 0.5 [1.0000 9.3030 14.9498 7.7159 0.0000 10.0097 21.7838 20.4089 7.7158]

0.7 [1.0000 0.5868 0.038258 0.000224 0.0000 1.5767 1.1100 0.1493 0.0024555]

0.3 [1.0001 12.8022 22.9435 3.1493 0.0213 13.2325 28.3618 14.3874 0.6643]
HPPLF f2 0.5 [1.0000 19.5428 32.3707 16.4524 0.0000 20.2498 46.4427 44.0274 16.4512]

0.7 [0.9995 9.9045 2.9823 0.0395 0.0000 10.8723 13.5286 7.2042 0.3404]

0.3 [1.0000 1.3285 0.3407 0.01354 0.0000453 1.7526 1.0021 0.1194 0.00201]
f3 0.5 [1.0000 2.6111 2.5477 0.9238 0.0000 3.3182 4.6441 3.2008 0.9238]

0.7 [1.0000 6.2426 2.1947 0.0444 0.0000 7.2319 8.8913 4.9099 0.2952]

0.3 [0.2099 18.7044 113.0789 18.4473 0.2033 38.0356 117.7061 37.7091 0.9723]
f1 0.5 [0.0687 9.0727 69.2331 9.0209 0.0678 29.8104 73.4942 29.7361 0.9906]

0.7 [0.0194 4.3195 40.6182 4.2579 0.0189 22.5306 43.6451 22.4438 0.9807]

0.3 [0.2127 18.0508 102.8481 18.0055 0.2118 36.1575 106.9896 36.1009 0.9960]
BPPLF f2 0.5 [0.0703 8.6453 59.6221 8.6040 0.0697 27.2035 63.2085 27.1331 0.9931]

0.7 [0.0200 4.1789 35.4722 4.1789 0.0200 20.5126 38.2202 20.5126 1.0000]

0.3 [0.2176 17.2313 87.4857 17.2161 0.2167 33.5267 89.6188 33.5101 0.9971]
f3 0.5 [0.0727 8.6573 56.5588 8.6576 0.0727 26.6767 58.9923 26.6771 1.0001]

0.7 [0.0202 4.2911 36.7490 4.2911 0.0202 21.2939 39.0462 21.2940 1.0000]
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Table A1. Cont.

Filter fk α X

0.3 [0.9999 0.7280 2.0449 0.7280 0.9999 1.1484 2.1611 1.1484 1.0000]
f1 0.5 [0.9999 0.6126 2.0260 0.6126 0.9999 1.3146 2.2312 1.3146 1.0000]

0.7 [0.9999 0.4551 2.0072 0.4551 0.9998 1.4395 2.2719 1.4395 0.9999]

0.3 [1.0006 19.0360 14.7799 21.6636 7.6187 19.4913 22.0923 24.9053 7.6180]
BSPLF f2 0.5 [0.9999 0.6374 2.0280 0.6374 1.0001 1.3406 2.2471 1.3407 1.0001]

0.7 [0.9999 0.4853 2.0080 0.4852 0.9998 1.4714 2.2974 1.4713 0.9999]

0.3 [1.0000 18.3224 15.0720 21.3661 7.3968 18.7480 22.5398 24.5052 7.3968]
f3 0.5 [1.0000 14.5925 9.3187 15.8700 4.9779 15.3015 19.2474 19.3917 4.9779]

0.7 [1.0001 24.7915 14.1559 26.3442 10.5783 25.7848 38.2286 36.8248 10.5803]

Abbreviations and Symbols
The following abbreviations and symbols are used in this manuscript:

BP Band-Pass
BPPLF Band-Pass Power Law Filter
BS Band-Stop
BSPLF Band-Stop Power Law Filter
CFOA Current Feedback Operational Amplifier
FFT Fast Fourier Transform
FO Fractional-Order
HP High-Pass
HPPLF High-Pass Power Law Filter
IBPPLF Inverse Band-Pass Power Law Filter
IBSPLF Inverse Band-Stop Power Law Filter
IHPPLF Inverse High-Pass Power Law Filter
ILPPLF Inverse Low-Pass Power Law Filter
IPLF Inverse Power Law Filter
LP Low-Pass
LPPLF Low-Pass Power Law Filter
MARE Mean Absolute Relative Error
PLF Power Law Filter
SD Standard Deviation
SFDR Spurious-Free Dynamic Range
THD Total Harmonic Distortion
ak Numerator coefficients of the proposed approximant
α Fractional order
bk Denominator coefficients of the proposed approximant
∆N Hurwitz determinants
fH Half-power frequency
fH,high High half-power frequency
fH,low Low half-power frequency
H Decision index for Wilcoxon rank-sum test
iterm Maximum count of loop
L Total number of sampled data points
N Order of the proposed approximant
ωmax Upper bound of bandwidth
ωmin Lower bound of bandwidth
ω0 Pole frequency
ω Angular frequency
p-val p-value of Wilcoxon rank-sum test
Q Quality factor
sα Fractional-order Laplacian operator
X Vector of design variables
Xbest Best optimal vector of design variables
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