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Abstract: At present, the extreme multistability of fractional order neural networks are gaining
much interest from researchers. In this paper, by utilizing the fractional =-Caputo operator, a simple
fractional order discrete-time neural network with three neurons is introduced. The dynamic of this
model are experimentally investigated via the maximum Lyapunov exponent, phase portraits, and
bifurcation diagrams. Numerical simulation demonstrates that the new network has various types of
coexisting attractors. Moreover, it is of note that the interesting phenomena of extreme multistability
is discovered, i.e., the coexistence of symmetric multiple attractors.
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1. Introduction

In one of Lorenz’s studies on climatic expectation, he describes the Lorenz system [1].
Chaos has been a popular study, and many chaotic systems have been suggested during
the previous 50 years. Chaotic systems are nonlinear equation systems, in which the
solutions are extremely sensitive to tiny changes in the initial condition. Until recently,
numerous works were devoted to studying chaotic systems defined by differential and
difference equations, and have been used in a variety of disciplines, including information
encryption, secure communication, economics, biology, and ecology [2]. Many special
complex dynamical behaviours have also been widely studied, such as hidden attractor,
coexisting, and multistability. Basically, multistability is a nonlinear dynamical system
phenomenon that implies the presence of several types of attractors under varied beginning
circumstances and system parameters [3,4]. It is a typical phenomenon in nonlinear
systems, which has become a major source of worry for academic research committees.
Because of this characteristic, chaotic systems are extremely helpful in the realm of secure
communication. Coexisting bifurcations and attractors have recently been observed in
discrete-time systems (maps). Multiple attractors, on the other hand, remain to be explored
in the fractional-order discrete-time neural network.

According to [5,6], fractional calculus is a well-known field of mathematics that
has been effectively applied in various domains of science and engineering. Discrete
fractional calculus has recently become a popular research area [7,8]. Ref. [9] provided
the first discrete fractional operator definition, which has been derived by discretion from
a continuous-time fractional operator. Numerous different forms of difference operators
were suggested over time, particularly including fractional h-difference operators, that are
more extended versions of fractional difference operators [10].

Several articles on the fractional nonlinear discrete-time systems’ chaotic behaviour
have been published as a result of the formation of distinct discrete fractional operators.
Wu and Baleanu [11] utilised the Caputo left difference operator to create a fractional
version of the logistic map defined by fractional difference equations, which validated the
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discrete memory. The result demonstrates that the fractional order Logistic map’s complex-
ity is proportional to the fractional order value of the systems and that it outperforms its
integer equivalents. Fractional order discrete time systems with the left Caputo operator
were investigated and used in a variety of disciplines since then [12–14]. Furthermore, it
is demonstrated that certain systems may prevent the numerical discretization calcula-
tion error on continuous fractional systems. The fractional discrete-time systems, on the
other hand, are known to exhibit more complicated dynamics than their corresponding
continuous-time models.

Recently, theory and application studies of neural networks have caught widespread
attention. In these artificial neural networks, the Hopfield-type neural network (HNN) is a
significant nonlinear model that has played an important role [15]. In the past few years,
the study of complex dynamic behaviour in the HNN has received a lot of attention in
academia. Many interesting nonlinear phenomena have been discovered, such as multiple
chaotic attractors and hidden attractors. Because the dynamical behaviours are closely
related to the application of the HNN, a mass of modified HNN models were proposed,
including fractional order HNN. As a typical non-linear behavior, chaos is observed in
many fractional-order HNN models. For instance Kaslik et al., in [16], analyzed the
dynamic characteristics of the fractional-order HNN; whereas in [17], bifurcation and chaos
in non-integer neural networks has been illustrated. In [18], chaos and control of fractional
order HNN under electromagnetic radiation was investigated. All of the above fractional-
order models are continuous-time systems outlined by differential equations with fractional
order. For discrete-time fractional-order HNN, there is little literature on the investigation
of the chaotic behaviour [19–25]. For example, in [19], discrete fractional complex-valued
HNN was synchronized without exploring the chaotic dynamics; whereas in [20], the
authors studied the chaotic behavior of a 3D discrete HNN with commensurate fractional
order. The main advantage of fractional-order NN in comparison with the integer-order
model lies in two aspects, one is its infinite memory, the other is that the fractional-order
parameter enriches the system performance by increasing one degree of freedom.

Since the phenomena of multistability in fractional- order discrete-time neural network
is still unexplored, the goal of this study is to contribute to the field of fractional-order
discrete-time systems by describing and analysing the dynamics of a unique 3D fractional
discrete-time neural network that employs the Caputo-like difference operator. The main
contribution of the paper are as follows:

• It provides a new way to describe fractional order systems resulting by replacing the
Caputo fractional derivative with Caputo difference operator, without any loss in the
memory effects, which leads to better results.

• It is the first fractional-order discrete-time neural network to exhibit extreme mul-
tistability, or the coexistence of several attractors given the same variety of system
parameters and initial conditions.

• For different fractional order values, different coexisting behaviors of asymmetric
attractors emerged under different initial conditions.

• Extreme multistability behaviors of symmetric attractors have been discovered and
thoroughly explored.

The rest of the paper is organized as follows. Section 2 gives some primary preliminar-
ies associated with discrete fractional calculus. Section 3, introduces the new three-neuron
fractional-order discrete-time HNN. The dynamic properties of the conceived fractional
HNN are analyzed via bifurcation diagrams, phase portrait, and maximum LE. The 3D
neuron model possesses an interesting property, i.e., it is characterized by extreme multi-
stability behaviors of symmetric attractors. In Section 4 a conclusion with potential future
work is reported.

2. Preliminaries

For completeness, several preliminaries and basic ideas connected with discrete frac-
tional calculus are provided here, before we start investigating fractional order discrete
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neural network models. Fractional difference operators are defined by three various defini-
tions: Grunwald-Letnikov, Caputo, and Riemann-Liouville operators, which have been
shown to be useful in engineering applications. In the contest, we consider a function X de-
fined from a discrete time scale Na, where Na = {a, a+ 1, a+ 2, . . .} and a ∈ R. The forward
difference operator is represented as:

∆x(n) = x(n + 1)− x(n). (1)

In order to give a reasonable treatment of the discrete fractional calculus, we begin by
recalling Euler’s Gamma function:

Γ(=) =
∫ ∞

0
s= exp−s . (2)

This function is a factorial derivation in the governing equations:

Γ(n) = (n− 1)!. (3)

Definition 1. The falling factorial function of real order = is defined as:

s(=) =
Γ(s + 1)

Γ(s + 1−=) . (4)

Definition 2. In [7], the =-th fractional sum for ∆m
τ X(s) with = > 0, is defined by :

∆−=a X(s) =
1

Γ(=)
s−=
∑
τ=a

(s− τ − 1)(=−1)X(τ). (5)

Based on the above definition of the =-th fractional sum, it is possible to define the =-Caputo
like difference operator. Let X denote any function defined from Na+m−=. The Caputo difference
operator with order = 6= N, is defined by:

Definition 3. In [10] The =–Caputo type delta difference of a function X(s) : Na → R, which is
of the form:

C∆=a X(s) = ∆−(m−=)a ∆mX(s)
= 1

Γ(m−=) ∑
s−(m−=)
τ=a (s− τ − 1)(m−=−1)∆m

τ X(τ),
(6)

for = 6∈ N is the frctional order, s ∈ Na+m−=, and m = d=e+ 1.

Now a theorem is briefly summarized which will allow us to define the discrete
formula of fractional order discrete-time models in the following.

Theorem 1 ([8]). For the fractional difference equation:{ C∆=a X(s) = f (s +=− 1, X(s +=− 1)),
∆bX(a) = Xb, m = d=e+ 1, b = 0, 1, ..., m− 1,

(7)

the unique solution of the initial value problem (7) is given by:

X(s) = X0(s) + 1
Γ(=) ∑s−=

τ=a+m−=(s− σ(τ))(=−1)

f (τ +=− 1, X(τ +=− 1)),
(8)

where s ∈ N=+m, and:

X0(s) =
m−1

∑
b=0

(s− a)(b)

Γ(b + 1)
∆bX(a). (9)
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3. A Fractional Order Discrete-Time Neural Network
3.1. The Mathematical Model

Kaslik and Sivasundaram, in reference [4], discuss the stability of a fractional-order
neural network of Hopfield type. The fractional-order Hopfield neural network, which is
made up of n neurons, can be described by:

cDqxi(s) = −aixi(s) +
n

∑
j=1

Ti,jgi
(
xj(s)

)
+ Ii, ∀s > 0 (10)

where T =
(
Tij
)

n×n is the synaptic weight value describing the connection between
neurons i and j [22]. ai > 0 are the self-regulating parameters of the neurons and gi : R→ R
are the neurons activation functions. Besides, Ii denotes the external inputs which is equal
to zero in our study. cDq denotes the Caputo fractional order derivatives given by:

cDqX(s) =
1

Γ(n− ν)

∫ s

s0

(s− τ)n−ν−1X(n)(t)dt, (11)

q is the fractional order q ∈ (0, 1].
In this study, a fractional-order continuous neural network with three neurons is

considered for simplicity. Assuming ai = 1 and g(x) = sin(xj), the weights matrix T can
be expressed as:

T =

 2 T1 T2
T2 2 T1
T1 T2 2

.

This yields the following fractional order continuous neural networks:
cDqx1(s) = −x1(s) + 2 sin(x1) + T1 sin(x2) + T2 sin(x3),
cDqx2(s) = −x2(s) + T2 sin(x1) + 2 sin(x2) + T1 sin(x3),
cDqx3(s) = −x3(s) + T1 sin(x1) + T2 sin(x2) + 2 sin(x3).

(12)

Inspired by the relevant work on fractional-order discrete time neural networks [20],
we replace the continuous Caputo fractional operator cDq in system (12) with the discrete
Caputo like difference operator C∆=a , one will obtained the corresponding fractional-order
discrete-time neural network (FoDtNN):

C∆=l x1(s) = −x1(s− 1 +=) + 2 sin(x1(s− 1 +=)) + T1 sin(x2(s− 1 +=)) + T2 sin(x3(s− 1 +=)),
C∆=l x2(s) = −x2(s− 1 +=) + T2 sin(x1) + 2 sin(x2(s− 1 +=)) + T1 sin(x3(s− 1 +=)),
C∆=l x3(s) = −x3(s− 1 +=) + T1 sin(x1(s− 1 +=)) + T2 sin(x2(s− 1 +=)) + 2 sin(x3(s− 1 +=)),

(13)

where s ∈ Nb+1−= and = ∈ (0, 1] is the fractional order. The fractional order’s complicated
dynamics are described in this section, and the lowest order for chaos to occur is found. We
shall first give the numerical formula of the FoDtNN (13) using the criterion in Theorem 1.
Take n = s− l, l = 0 and since (s− τ − 1)(=−1) is equal to Γ(s− τ)/Γ(s− τ −=+ 1), it
follows from Theorem 1 that:

x1(n) = x1(0) + 1
Γ(=) ∑n−1

i=0
Γ(n−1−i+=)

Γ(n−i) (−x1(i) + 2 sin(x1(i)) + T1 sin(x2(i)) + T2 sin(x3(i))),

x2(n) = x2(0) + 1
Γ(=) ∑n−1

i=0
Γ(n−1−i+=)

Γ(n−i) (−x2(i) + T2 sin(x1(i)) + 2 sin(x2(i)) + T1 sin(x3(i))),

x3(n) = x3(0) + 1
Γ(=) ∑n−1

i=0
Γ(n−1−i+=)

Γ(n−i) (−x3(i) + T1 sin(x1(i)) + T2 sin(x2(i)) + 2 sin(x3(i)))

(14)

where x1(0), x2(0) and x3(0) are the initial states. Due to the numerical formula (14),
the FoDtNN (13) has memory effect, which means that the iterated solutions xi(n) are
determined by all the previous states. For T1 = −1, T2 = 0, and constant order = = 0.98 the
FoDtNN (13) is chaotic. Figure 1 shows the chaotic attractor and trajectories, respectively.
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Figure 1. Chaotic attractor and trajectories of the FoDtNN (13) for the initial conditions
(x1(0), x2(0), x3(0)) = (0.1, 0.1, 0.1), fractional order = = 0.98 and T1 = −1, T2 = 0. (a) Chaotic
attractors, (b) chaotic trajectories x1, x2, x3.

3.2. Dynamical Analysis and Numerical Simulations

In the following, we present the dynamics of the FoDtNN (13) by considering some
numerical simulation. Phase portraits, maximum Lyapunov exponents (MLEs), and bi-
furcation diagrams are examples of such simulations. The impact of fractional order
and starting circumstances on the dynamical behaviour of the new system is studied in
depth, with the goal of highlighting the coexistence of several chaotic attractors. Note that,
through the manuscript, all the simulation results and related figures are obtained using
the software MATLAB.

3.2.1. Coexisting of Symmetric Attractors Depending on System Parameter T1

Obviously, the FoDtNN (13) is invariant under transformation (x1, x2, x3) →
(−x1,−x2,−x3), for all values of parameters T1, T2 and fractional order =. Hence this sys-
tem could display coexisting attractors for the appropriate choice of initial conditions and
fractional order. In order to explore this property, the bifurcation diagrams and maximum
Lyapunov exponent (MLE) are considered by changing the bifurcation parameter T1 for
T1 ∈ [−10, 10], when selecting the constant T2 = 0. Taking symmetrical initial conditions
and fractional order value = = 0.98, the bifurcation diagrams are plotted in Figure 2
with the maximum LE for the initial conditions (0.1, 0.1, 0.1). Note that the bifurcation
diagram in blue starts with the initial conditions (x1(0), x2(0), x3(0)) = (0.1, 0.1, 0.1), while
the bifurcation diagram in red begins with the initial conditions (x1(0), x2(0), x3(0)) =
(−0.1,−0.1,−0.1). As can be seen, the neural network (13) exhibits extremely complex
dynamics behavior including, chaos, periodic windows, period doubling bifurcation, and
coexisting attractors. When the value of T1 increases the FoDtNN (13) has multiple inter-
nal crises points. Moreover, it can be obtained from the MLE diagram in Figure 2, that
when T1 ∈ [−9.675,−7.192] ∪ [−6.625,−3.26] ∪ [−2.722,−1] ∪ [1, 10] the system (13) is
in chaos with some periodic windows where the maximum LE is positive and fits well
with the coexisting bifurcation diagrams. In particular, symmetric coexisting attractors are
observed in the interval [−1, 1.6], i.e., coexisting chaotic attractors, coexisting period-two,
and period-fore attractors. To observe the coexisting region better, a close look to the
bifurcation diagram in the interval [−3, 3] is provided in Figure 3.
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Figure 2. Bifurcation diagrams and maximum Lyapunov exponents of the fractional-order discrete-
time neural network (13) versus T1 for fractional order value = = 0.98, system parameter T2 = 0 and
a set of symmetric initial conditions: (0.1, 0.1, 0.1) blue diagram, (−0.1,−0.1,−0.1) red diagram.

Figure 3. Coexisting dynamics of the FoDtNN (13) with respect to the bifurcation parameter T1 ∈
[−3, 3] for fractional order value = = 0.98 and symmetric initial condition (±0.1,±0.1,±0.1).
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Two phase portraits of coexisting symmetric attractors with different parameters T1
are presented in Figure 4, where the red trajectories are obtained for the initial conditions
(−0.1,−0.1,−0.1); while the blue trajectories are obtained for (0.1, 0.1, 0.1).

Figure 4. Two coexisting chaotic attractors for the symmetrical initial conditions (±0.1,±0.1,±0.1),
fractional order = = 0.98 where positive initial conditions in blue trajectories, and negative system
parameters in red trajectories with T2 = 0.

3.2.2. Coexisting Symmetric Attractors Depending on the Fractional Order =
To further investigate the dynamics of the FoDtNN (13), the relationship between

the state variable and the fractional order =, and computations of maximum LEs with
respect to the fractional order are carried out. We choose to change the fractional order
value = from 0 to 1 while the bifurcation parameters are fixed. Figure 5 displays the
bifurcation diagrams of the state variable x1 corresponding to the system parameters
T1 = −1, T2 = 0 and positive initial condition (0.1, 0.1, 0.1) in the blue diagram and
the negative initial condition (−0.1,−0.1,−0.1) in the red diagram. The corresponding
maximum LE diagram is presented in Figure 5 with n = 5000. Figure 5 shows that the states
of the proposed neural network goes from chaos to periodic states and then to limit circles
with some periodic windows as the order = decreases. Furthermore, it is deduced that the
FoDtNN (13) exhibits coexisting chaotic and periodic attractors. To illustrate more of these
properties, we choose to plot the phase portraits of the 3D FoDtNN for two symmetric
initial conditions (±0.1,±0.1,±0.1) and for six fractional order values with T1 = −1 and
T2 = 0. The obtained results are plotted in Figure 6. When = = 0.95 and = = 0.846, there
are two symmetric separate chaotic attractors, while two periodic attractors coexisted for
= = 0.08 and = = 0.51.
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Figure 5. Bifurcation diagrams and maximum Lyapunov exponents of the fractional-order discrete-
time neural network (13) versus fractional order = for system parameters T1 = −1, T2 = 0 and a set
of symmetric initial conditions: (0.1, 0.1, 0.1) blue diagram, (−0.1,−0.1,−0.1) red diagram.
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3.2.3. Extreme Multistability Analysis

In order to reveal the extreme multistability phenomena of the FoDtNN (13), the max-
imum LEs and bifurcation diagrams of the state variable x3 are calculated as shown in
Figures 7 and 9, where the fractional order = are chosen as 0.98 and 0.1, respectively.
The parameters are selected as T1 = −1 and T2 = 0, and the initial conditions are fixed as
x1(0) = x2(0) = 0.1, while x3(0) is varied from −20 to 20. As shown in Figure 7, when
= = 0.98, system (13) generates multiple chaotic attractors along the x3 axis, where the
values of the LEs of the FoDtNN (13) are nearly the same, which indicates that all these
attractors have very close chaotic features. For the sake of exhibiting the phenomenon of
multistability, typical chaotic attractors of the network (13) for different initial condition
x3(0) are simulated, as shown in Figure 8. In the same way, Figure 9 displays the phenom-
ena of extreme multistability, i.e., the coexisting of many attractors. From Figure 9, when
= = 0.1 the fractional neural network states changes from stable states to periodic states,
then to chaos via the period doubling bifurcation route. Obviously, the dynamic behaviour
of the FoDtNN (13) depends on the initial condition and the value of =. For simplicity, two
phase portraits of the attractors in the 3D plane are displayed in Figure 10. In particular,
Figure 10 reveals the periodic attractor for the initial state (0.1, 0.1, 0.1) and the chaotic
attractor for the initial state (0.1, 0.1, − 10). These previous figures confirm the rich
dynamics of the proposed fractional order discrete-time neural network, illustrating that
several attractors might be identified by using different x3(0) quantities as well as various
fractional order numbers in the = ∈ (0, 1] range.

Figure 7. (a) Bifurcation diagram and maximum LEs of FoDtNN (13) versus (b) initial condition
x3(0), for parameter values T1 = −1, T2 = 0, and fractional order = = 0.98.
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Figure 8. For coexisting chaotic attractors for different initial condition values x3(0) and system
parameters T1 = −1, T2 = 0, and fractional order = = 0.98.
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Figure 9. (a) Bifurcation diagram and maximum LEs of the FoDtNN (13) versus (b) initial condition
x3(0), for parameter values T1 = −1, T2 = 0, and fractional order = = 0.1.
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Figure 10. Two phase portraits of the FoDtNN (13) for fractional order = = 0.1, initial condition
x1 = x2 = 0.1. Periodic attractor for x3 = 0.1, chaotic attractor for x3 = −10.

4. Conclusions

Referring to fractional-order discrete-time neural networks, this paper has introduced
a new FoDtNN with an extreme multistability property. The conceived network has shown
the existence of different types of symmetric chaotic attractors. Dynamics of the conceived
network have been analyzed in details via bifurcation diagrams and maximum Lyapunov
exponents. Compared with the network with memory effects, the fractional network
with short memory and variable order has more complexity. Due to the rich complex
dynamical behaviour, this research can provide a theoretical basis and help for research in
the encryption field and secure communication.
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