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Abstract: We give fourth-order accurate implicit methods for the computation of the first-order
spatial derivatives and second-order mixed derivatives involving the time derivative of the solution
of first type boundary value problem of two dimensional heat equation. The methods are constructed
based on two stages: At the first stage of the methods, the solution and its derivative with respect
to time variable are approximated by using the implicit scheme in Buranay and Arshad in 2020.
Therefore, O (I* + T) of convergence on constructed hexagonal grids is obtained that the step sizes in
the space variables x1, x, and in time variable are indicated by £, V3pand T, respectively. Special
difference boundary value problems on hexagonal grids are constructed at the second stages to
approximate the first order spatial derivatives and the second order mixed derivatives of the solution.
Further, O(h4 + T) order of uniform convergence of these schemes are shown for r = % > %,
w > 0. Additionally, the methods are applied on two sample problems.

Keywords: implicit schemes; hexagonal grid; incomplete block matrix factorization; heat equation;
computation of derivatives
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1. Introduction

The modeling of numerous phenomena in diverse scientific fields leads us to consider
conventional or fractional boundary value problems of time dependent differential equa-
tions on a modeling domain such as the first and second type boundary value problems
to heat equation or diffusion equation. For example, the Brownian motion problem in
statistics is modeled by heat equation via the Fokker-Planck equation (Adriaan Fokker [1]
and Max Planck [2]). It is also named as the Kolmogorov forward equation, who discovered
the concept in 1931, see in [3] independently. The stock market fluctuations represent one
of the several important real-world applications of the mathematical model of Brownian
motion. It was first given in the PhD thesis titled as “The theory of speculation”, by Louis
Bachelier (see Mandelbrot and Hudson [4]) in 1900.

Another representative sample of problems that mathematical modeling brings about
the heat equation is the image processing problems appearing through many applied
sciences from archaeology to zoology. Examples of archaeological investigations include
a camcorder for 3D underwater reconstruction of archeological objects in the study of
Meline et al. [5]. Furthermore, a recent investigation by Wozniak and Polap [6] gave soft
trees with neural components as image processing technique for archeological excava-
tions. In zoology, a study of image reconstruction problem by the application of magnetic
resonance imaging was given by Ziegler et al. [7] and in medical sciences as medical
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image reconstruction was studied in Zeng [8]. Furthermore, tomography, and medi-
cal and industrial applications are archetypal examples where substantial mathematical
manipulation is required. In some cases, the aim is humble denoising or de-blurring.
Witkin [9] and Koenderink [10] gave the modeling of blurring of an image by the heat
equation. Later, a problem of solving the reverse heat equation known as de-blurring is
studied in Rudin et al. [11] and Guichard and Morel [12].

Additionally, in mathematical biology, Wolpert [13,14] gave a phenomenological
concept of pattern formation and differentiation known as positional information. The
pre-programming of the cells for reacting to a chemical concentration and differentiate
accordingly, into different kinds of cells such as cartilage cells was proposed. After-
wards, the animal coat patterns, pattern formation on growing domains as alligators,
snakes and bacterial patterns were modeled by reaction diffusion equations in Murray [15].
Furthermore, therein, gliomas or glioblastomas, which are highly diffusive brain tumors,
are analyzed and a mathematical model for the spatiotemporal dynamics of tumor growth
was developed. Therefore, the basic model in dimensional form was given by the diffu-
sion equation

%x _ V] + pc (1)
ar e
where ¢(%, t) is the number of cells at a position X and time ¢, p represents the net rate of
growth of cells including proliferation and death (or loss), and J diffusional flux of cells
taken J = DV¢, where D(x) (distance? /time) is the diffusion coefficient of cells in brain
tissue and V is the gradient operator.

In general, finding analytical solutions of these modeled problems is a difficult task or
even not possible. Approximations are needed when a mathematical model is switched to
a numerical model. Finite difference methods (FDM) are a class of numerical techniques
for solving differential equations that each derivative appearing in the partial differential
equation has to be replaced by a suitable divided difference of function values at the
chosen grid points, see Grossman et al. [16]. In the last decade, the use of advanced
computers has led to the widespread use of FDM in modern numerical analysis. For
example, recently, a study on fractional diffusion equation-based image denoising model
using Crank-Nicholson and Griinwald Letnikov difference schemes (CN-GL) have been
given in Abirami et al. [17]. Another example is the most recent investigation by Buranay
and Nouman [18] in which computation of the solution to heat equation

Ju %u  %u
g ( + > +f(x1/ X2, t)/ (2)

2 2
dx{  0xj

on special polygons, where w > 0 and f is the heat source by using implicit schemes
defined on hexagonal grids was given. Therein, under some smoothness assumptions of
the solution, two implicit methods were developed both on two layers with 14-point that
has convergence orders of O(h? 4+ %) and O(h* 4 T) accordingly to the solution on the
grids. Besides the solution of the modeled problem, the high accurate computation of the
derivatives of the solution are fundamental to determine some important phenomena of
the considered model problem. Such as for the diffusion problem (1) the functions % and J
gives the rate of change of the cells and diffusional flux of cells, respectively.

In the literature, exhaustive studies exist for the approximation of the derivatives of
the solution to Laplace’s equation under some smoothness conditions of the boundary func-
tions and compatibility conditions. For the 2D Laplace equation, research was conducted
by Volkov [19] and Dosiyev and Sadeghi [20]. For the 3D Laplace equation on a rectangular
parallelepiped, studies were given by Volkov [21] and Dosiyev and Sadeghi [22], and
recently by Dosiyev and Abdussalam [23], and Dosiyev and Sarikaya [24].

For the heat equation, the derivative of the solution of one-dimensional heat equation
with respect to the space variable was given in Buranay and Farinola [25]. Within this paper,
two implicit schemes were developed that converge to the corresponding exact spatial
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derivative with O (h* + ) and O (h? + 72) accordingly. Most recently, in Buranay et al. [26]
numerical methods using implicit schemes with hexagonal grids approximating the deriva-
tives of the solution of (2) on a rectangle has been given. The smoothness condition

7+a, T3t
ueC,,

the grids to the respective spatial derivatives of O(h* 4+ 12) of accuracy for r = 2 < 3
was proved.

In regard to the equilateral triangulation with a regular hexagonal support, we remark
the research by Barrera et al. [27] where a new class of quasi-interpolant was constructed
which has remarkable properties such as high order of regularity and polynomial reproduc-
tion. Furthermore, on the Delaunay triangulation, we mention the study by Guessab [28]
that approximations of differentiable convex functions on arbitrary convex polytopes were
given. Further, optimal approximations were computed by using efficient algorithms
accessed by the set of barycentric coordinates generated by the Delaunay triangulation.

The motivation of the contributions of this research is the need of highly accurate and
time-efficient numerical algorithms that compute the derivatives of the solution u(x1, x, )
to the heat Equation (2). The achievements of this study are summarized as follows.

, 0 < & < 1in the Holder space was required and uniform convergence on

1. The first type boundary value problem (Dirichlet problem) for the heat Equation (2)
on a rectangle D is considered. The smoothness of the solution u is taken from the

Holder space Cija’g# (Qr), 0 < & < 1, where x = (x1,x2) € D,t € [0,T] and
Qr =D x (0,T) also D, Qr denote the closure of D, Qr, respectively. At the first
stage, an implicit scheme on hexagonal grids given in Buranay and Nouman [18]
with O(h* + 7) order of accuracy is used to approximate the solution u(xy, xp,t).

The step sizes h and @h are taken for the spatial variables x; and x;, respectively,
while 7 is taken for the time variable. An analogous implicit method is also given to
approximate the derivative of the solution with respect to time.

2. Atthe second stages, computation of the first-order spatial derivatives and second-
order mixed derivatives involving time derivatives of the solution u(x1, x, t) of (2) are
developed. Whenr = 97 > % uniform convergence of the approximate derivative

L 2, . .
to the exact derivatives %, %, and %, i = 1,2 with order O (h4 + T) of accuracy on
1 1

the hexagonal grids are proved.

3. Numerical examples are given and for the solution of the obtained algebraic linear
systems preconditioned conjugate gradient method is used. The incomplete block
matrix factorization of the M-matrices given in Buranay and Iyikal [29] (see also
Concus et al. [30], Axelsson [31]) is applied for the preconditioning.

2. Hexagonal Grid Approximation of the Heat Equation and the Rate of Change by
Using Fourth Order Accurate Difference Schemes

Let D = {(x1,x2) : 0 < x1 < 41,0 < xp < a2} be a rectangle, where we require a, to
be multiple of V3. Next, let Vi j =1,2,3,4, be the sides of D that starting from the side
x1 = 0 are labeled in anticlockwise direction. Furthermore, the boundary of D is shown

4 —
by S = U 7. Further, we indicate the closure of D by D = DUS. Let x = (x1,x2) and
j=1
Qr = D x (0,T), with the lateral surface St = {(x,t) : x = (x1,x3) € S,t € [0, T]} and Qr
is the closure of Q7. Let s be a non-integer positive number, Cif (Qr) be the Banach space
of functions u(x, t) that are continuous in Qr together with all derivatives of the form

a§+51 +52 u

Wfor2€+51+52<5 (3)

with bounded norm .
S

_ (s) ()
ull s _ =A(u + uy,s, 4
[ HC},?(QT) ( >QT ];)< >QT 4)
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where
. aC+51+52u
<u>(]) = max|————1,/=0,1,2,...,[s], (5)
o 2§+s12+52:j Qr |0t0xy 9xy
wWs = W+ w, G
< >(s) < i tsits2y >S[S} %
u = —_— ,
* 2r+s1+sp=[s] atéaxilax?
5§—2{—s1—89
s Qb tsits2y
wd - ¢ <> , ®)
: 0<s—2f—s1—5p<2 atgaxilaxzz ¢
further, (1)%, (u)f for a, B € (0,1) are defined as
x t
<u>ﬂc — sup ‘M(X, t) — u(x’, t)| (9)
X N 7
(wh, wpegy XX
B /
(u)f _ sup lu(x, t) —u(x, t )| (10)

(x,1), (x,t")€QT |t — tl“B

Volkov gave the differentiability properties of solutions of boundary value problems
for the Laplace and Poisson equations on rectangle in the study [32]. On cylindrical
domains with smooth boundary, the differentiability properties of solutions of the parabolic
equations were given in LadyZenskaja et al. [33] and Friedman [34]. On regions with edges,
Azzam and Kreyszig studied the smoothness of solutions of parabolic equations for the
Dirichlet problem in [35] and for the mixed boundary value problem in [36].

2.1. Dirichlet Problem of Heat Equation and Difference Problem: Stage 1 (H4th (u))

Our interest is the following problem for the heat equation:

BVP (1)
ou Pu  %u
ot _"”(aﬁ‘ka%>'+f@wat)lem
u(x1,x,0) = ¢@(x1,x)onD,

M(xl,X2,f) = (P(X],Xz,f) on S, (11)

where w is positive constant. This problem is framed as first type (Dirichlet) boundary
value problem.

We assume that the initial and boundary functions ¢(x1, x2), ¢(x1, X2, t), respectively,
also the heat source function f(x1, xp, f) possess the necessary smoothness and satisfy

9ta
the conditions that the problem (11) has unique solution u € Czjlx’ 2 (Qr). We define
hexagonal grids on D with the step size h, such that i = a; /N3, and Nj is positive integer

and present this set by D" as

h,

K¥—p 3(k +p'
thmZVYZP)

K=1,2.;p=0+142,.} (12)

D" = {x:(xl,xz) €D:x; =
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Let 'y;?,j = 1,...,4 be the set of nodes on the interior of 1}, and let ?;’ =j-1MN7;be

4 —
the j — th vertex of D, sh=J ('y]h U '?]h), Dh = D" U S". Further, we denote by D*h and
j=1
D*™* the set of interior nodes whose distance from the boundary is %, thus the hexagon
is irregular hexagon with a ghost point that emerges through the left (x; = 0) or right
(x1 = m) side of the rectangle, respectively. The illustration of the exact solution at the
irregular hexagons with a ghost point at time levels t — T, t and ¢ + 7 is given in Figure 1.

)
| k+1

oo u P,
1

Figure 1. The illustration of the exact solution at the irregular hexagons with a ghost point at time
levelst — 1, tand f + 1.

Further, we indicate by D*h = Dl D*h and D% = Dh\D*h. Moreover, let

T
v = {tk:kT,T:M/,kzl,...,M'}, (13)

T
7. = {tkzkr,rzM,k:O,...,M’}- (14)

Next, we give the set of interior hexagonal points and the lateral surface points by
D'y; = D'xv= {(x, t):xeD" te 'yf}, (15)
sh = shxy = {(x,t) cxe s, teﬂ}, (16)

respectively. Let D*"y; = D*" x 4 C D"y and D*"y; = D*" x o, C D"y, and
D*h'yT = D*””yT U D*’h'yr. Furthermore, DOh'yT = Dh'yT\D*h'yT and D"+ is the closure of
D''y+. We denote the center of the hexagon by Py and Patt(Py) is the pattern of the hexagon
consisting the neighboring points P;,i = 1, ..., 6. Furthermore, the exact solution at the
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neighboring points P;,i = 0,1, .

]I‘JH is the value on the boundary point as given:

h f h
u’f,;rl = u(x; — 52t —ht+T), u kH =u(x — 5>
u’fa:l = u(x; —hx,t+ T) k“ = u(x1 +h,x2,t +7T)

h f h
u’l‘,jl = u(x;+ /% ~—h,t+7T),u k+1 u(xg + 5/%2
u]f,:)rl = u(xy,x,t+ 1), u'f,“ =u(p,x,t+ 1),

., 6 for the time moment t 4 7T is presented by uk‘H, while

X2—?h,f+”[)
\fh t+7)

where (p, xp,t +T) € S’% and the Value of p = 0if Py € D*"yrand p = ay if Py € D*"y,.

Moreover, ul;ltlp, i=0,.

coordinates of Pl, i=0,..

.6, ”h z P , present the numerical solution at the same space
6 and Py accordmgly for time moments t 4 7. We also use the

following notations in Table 1 to denote the values and partial derivatives of the heat source

9f

function f and f; = 3;

with respect to

the space variables.

Table 1. Basic notations for the heat source function f and f;.

f ft
k+1 _ k+1 of
f =l t4T) f oo (x1,22,t+7)
k+1 _ (2 k+1 _ of
fo, =f(pixo,t+7) fip, = 3F (px2t+’r)
k o o~
fPA = f(pxt) ft Pa T 3 (P xo,t)
af . k .

J..fk = 9L i=1,2 .. A L i=1,2
504 = 05 50, L T
k+1 _ 8 . k+1 _ O°f o
R fr ' = 32 j=12 R fir, = R ,i=1,2

J 1 (201, x0,t+7) (x1,x0,t+7)
*f 2 k+1 3
92 0y, f1 = 2.9 =
1) P, 2 X2V X1Jt,P, 2
2 0 dx50x1 (1,2, 447) 2 0 dx50x10t (1,52, 447)
_Pf 2 k1 _
02 9y, fEH1 = 02 9 =
2/ P, x19x2Jt P, 2
1 0 Bxla 2 (1,22, 447) 1 0 dx70xp0t (1,52 447)

For computing numerically the solution of the BVP(u) we use the following difference
problem given in Buranay and Arshad [18] and call this Stage 1 (H4th(u)> .

Stage 1<H4th(u)>

Ay -+ on DMy,

Ajuf  + T ¢+ ¢ on Dy,

@(x1,%), t=00n 5h,

¢(x1,x2,1) on S}%,

(17)
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k=0,.., M —1,where ¢, ¢ are the initial and boundary functions in (11), respectively,

also
P = ﬂg;l 7}12(32 ka—l—aisz“), (18)
T k+1 1 k+1 k41
¥ 96wapA 96waPA +fry
L2092 k1 2 k1
+16h (3, £ + %, ) (19)
~ 3 4w 6
k1 _ (3 4w\ g k+1
On i <4r T )”Po * <24r 3h2) Lt (20)
A ukfiuk —i—iiuk (21)
W T g T e &
~ 17 14w 1 2w V3
* k+1 e R k+1 - = v
Oy, Lu = <24T+ 3h2>ul’o + <Z4T 3h2> (u(p,xz—i- 5 h,t+ 1)
3
+u(p, x2 — %hlﬂrf) +u(P+77/x2/f+T)>/ (22)

T _ 1 4w ~ \/§ ~ \/5
I = (—%T + %2) <¢(p, X2 + 7h,t+ )+ ¢(p,x2 — 7h,t+ r))

+ L+167w (A t+ )_L (A f)
18c oz )PP T = g B

1 . V3 . V3

Ry <¢(Pr x2 + Th/t) +¢(p,x2 — 2h,t)>, (23)

17 4

AhT 241_ +24<M(p,3(f2+ 5 ht)
3
+u(p,xp — %h,t) +u(p+77,xz,t)>, (24)
and
p=hp=0,5="1if Py D"y, (25)
p=a1—hp=ay,n= —% if Py € D*"hy..

2.2. Dirichlet Problem for the Rate of Change and Difference Problem: Stage 1 (H‘”h (%—”t‘))

Further, for the computation of %—”t‘, we construct the next boundary value problem

denoted by u; = %‘t‘ which defines the rate of change function

BVP(%)

aut azut azut
a3 w<ax%+ ox2 + fi (x1,x2,t) on Qr,

ur(x1,x2,0) = @ (x1,x2) on D,
up(x1,x2,t) = ¢ (x1,x2,t) on S, (26)
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where

f _ E)f(xl, X2, i’)
t ot ’

. 29 ¢
= N 0 7 /0 7
7 w(ax% + 8x§ + f(x1,x2,0)
0 , X, t
¢ = 74)(’65;(2 ), 27)

and ¢, ¢ are the initial and boundary functions in (11).

Assuming uy € C,. + w e (Qr), fourth-order accurate implicit schemes for the solution

of the BVP( ) is proposed with the following difference problem. This stage is called
Stage 1 (H‘”h (‘%‘) )

ath (9
Stage 1 (H (—?))
Oy, k! Ay ik 7 Oh
®h'Tul‘}lr,T = Ah,‘fut,h,r +¢Pron Dy,
@Z,Tu’;;lr = Aj b, +Th g+ §f on D,
A~ —n
Uppr = @, t=0onD,
Upht = ¢t(x1/ X2, f) on S’%, (28)

k=0,.., M’ — 1, where the operators @h,w /~\h,r/ @; o F;‘l - and K; . are presented in
(20)—(24), respectively, and

e h k+1 1, g
llJt - 96wa 96T(Uft Py tPA +f
+Eh2 (82 fk+1 + 82 fk+1) (30)

2.3. M—Matrices and Convergence of Finite Difference Schemes in Stage 1 (H‘”h (u)) and

Stage 1 (H‘”h (%))

Let A = [“z‘,j} and B = [bi,j],i =1,2,..,Nandj = 1,2,.., N be real matrices. We
denoteby A > 0 (A > 0)ifa;; > 0(a;; > 0) foralli,j. Also A < B(A < B)ifa;; <b;
(a;; < b j). Analogous notation is also used for the vectors. Further, let w be a vector with
coordinates wj,j = 1,2,..., N, the vector with coordinates |w]| is denoted by |w|. For a fixed
time level k > 0 we present the Equations (17) and (28) in matrix form with N unknown
interior grid points Lj, j = 1,2, ..., N, labeled using standard ordering as

Al = Biu* + 1§,
At = Bif + 17, (31)

respectively, where A,B € RN*N and ﬁk,%, ﬁ’t‘, Zf;t € RN and

g 1 wT =%\ = . 1

C E, — %Inc e RN*N, (33)

S
|
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and Inc is the neighboring topology matrix, E1, E, are diagonal matrices with entries

3T, 0h
o ]]:{ 41fL]€D Tt j:1,2,...,N, (34)

% if L] c D*h')/T 4
. 4if Lj € DOy

= ] T . —

[Ez]],] { 13A if L] c D*h’)’T s ] 1,2,.., N, (35)
respectively (see Buranay and Arshad [18]).

Lemma 1. (Buranay and Arshad [18]) (a) The matrices A and B in (31) are symmetric positive
definite (spd) matrices

(b) A = I+ %FB~'C is spd matrix and H;lilHZ <1

Lemma 2. The matrix A in (31) is nonsingular M—matrix for r = > %.

Proof. Taking into consideration Lemma 1, the matrix Aisa spd matrix. Further, using
the Equations (32)—(35), A is strictly diagonally dominant matrix with positive diagonal
entries. Furthermore, off-diagonal entries are non-positive for r = 97 > 4 1g- Therefore, it is
nonsingular M—matrix. O

Let

She = une—uonDhyg (36)
C;L;fr = Uy — g on Dhoyg (37)

From (17) and (36) the error function (36) satisfies the following system as given in
Buranay and Arshad: [18]

Tgu k+1 _ Ah T(;;uk _|_1I;uk on DOh’)’r,
@h T Cu k+1 Ah,TCh,,r + \fg,k on D*fy,
g, = 0,t=0onD"
Gir = OonSt, (38)
where
qjilrk = Kh,’ruk - éh,ruk+l + 1;5’ (39)
= Aj k-8 T AT 9+ g (40)

and ¢, * and ¢ are presented in (17). Analogously, using (28) and (37) the error function
(37) satisfies the following system:

Oy, G Al Ay, T{f”t’ + ¥y * on DY,
@h Tgut,k+1 — Ah Tgut, Tgt, on D*hr)/”[/
gt = 0,t=00nD,
&' = OonSh, (41)
where
P = Ayl — Ol 4 gy, (42)

qjgt’k = Ah Tut ®h T k+1 + TZ,T(Pt + 1;5?/ (43)
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and ¢y, 1, and ¢} are the given functions in (27), (29) and (30) respectively.
Further, the following systems are considered:

O @ = Apc@ 4K on D",
O Wt = Ay @k, + T @0+ 5 on DMy,
@hﬂ' = @q),h,r/ t=0on Eh,
Z/ﬁh,r = @zp,h,r on SF]{ , (44)
On Wyt = Ay @+ on DMy,
O W = A, + T @ene + 75 on DM,
Wpr = Wene t=0o0n D"
Wpy = Wy ON S}%, (45)

fork=0,.., M — 1, where f’l‘, ?’2‘ and f’{,?’ﬁ are given functions. The algebraic systems (44)

and (45) at a fixed time level k > 0 may be given in matrix representation as

A = B + x5, (46)
Aol = B+ 1xk, (47)

accordingly. In these equations, @, @", &%, % € RN and the matrices A and B are given

in (32).

Lemma 3. Let the solutions of (46) and (47) be presented by @' and W1, respectively, for
7= ‘;1’—} > %. If

@ > 0and® >0 (48)
@ < @ (49)
o< # (50)
fork=0,..,M —1then
‘@"“‘ <@ k=0,., M —1, (51)

Proof. From Lemma 2, whenr = % > % the matrix A is nonsingular M —matrix therefore,

A1 > 0. Furthermore, from (32) B > 0 and using (48) it follows that s >0,k=0,.,M —1
and @° > 0. Further, assuming @~ > 0 and from induction we achieve

W = A71Bwk + tAT IR >0, (52)

which gives w1 > 0fork =0,..., M’ — 1. Next, assume that ‘@k‘ < using (46)—(50),
and by induction it follows that

@l = A'BaF + A IRk (53)
‘zﬁk“‘ < A—lﬁ‘@k‘Jrrﬁ—l‘f"’
< AT'BT 4+ tA% =T, fork=0,.., M —1. (54)
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O

Remark 1. Writing the implicit schemes on hexagonal grids for the problems (17) and (28) in the
canonical form it follows that the maximum principle holds when r = 57 > 11—6. Further, Lemma 3
is the consequence of comparison theorem (see Chapter 4, Section 4.2 Theorem 1 and Theorem 2 in
Samarskii [37]) applied to the systems (44) and (45).

Additionally, let
5 5 5
p(u) = max{max o u 84 87142
Or axlat axzat r |9xFox30t|’
o%u 86u 66 o%u
maxaa X78284 86 86} (55)
Qr |9x{ox3| Qp |9x70x;
%u
pa(u) = r%aTx 32| (56)

Theorem 1. For the solution of the system (38) and (41) when r = S5 > L, the following
pointwise error estimations hold true:

6t (v )] < (b, D)p(x1, 2, ) on Do, 7)
e (e, )| < a0, (s, 2, t) on Dl 59)
respectively, where
~ 34 3 47 s
O (h,T) = 5[57+ (160 + 2880w>1xh (59)
~ 3. 3 47 N\,
Op1(h,T) = 5,3tT+ (160 + 2880 )“th , (60)

and & = (), & = pa () and B = ia(u), Br = pua(us) and

d= max{;—;,;—;,l}, (61)

and u is the solution of BVP(u) and p(x1,x2,t) is the function giving the distance from the
considered hexagonal grid point (x1,x3,t) € Dlyr to the surface of Q.

Proof. We give the proof of (57) by considering the auxiliary system

5 ,Tm Kkl _ Ah,r‘iff + 04 (h,7) on D%,
®h TCh k- IN\ZTE;& + Z(Nh (h,T) on D*y.
é;fi = A;,,M =0, t=0o0n 5h,
EZ,T = Efé,h,r =0on S’%, (62)

and the majorant functions

E? (xl/xZI t) -

E;(xllxz, t)y =

&G xot) =

1 ~
ﬂﬂl(h, 7) (a1x1 - xl) > 0 on Dhy,, (63)
1 — -
55, ) (a2, = 33) = 0o Dl (64)
Q1 (1, T)t > 0 on Dhyy, (65)
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which & (x1, x2, ), satisfy the following difference problem for I = 1,2, 3, respectively.

Oy rdlﬁl = Ay r‘f?}fr + 4 (h,7) on DYy,
Gpnllie = Aicline + Tl + (01l ) on DMy,
e = Elu,go,h,'r =& (x1,x2,0) >0, t =0on D",
&ne = Clppe >0onSh. (66)

Therefore, difference problems (62) and (66) in matrix form are

gé\u,k+l — ~5uk+Tﬁuk (67)

AR = BE ok, i =1,2,3, (68)

accordingly, and A and B are as glven in (32) and 7" k d‘ k,i =1,2,3and é\”’k, ﬁ”’k, e RN

, CuO < Ci , and 71i > 0, and ‘Uuk < ﬁ?’k,i = 1,2,3, for k =

0,.., M’ — 1. Using that ﬁl(h, T) > “?;’k on D%+, and %Ql (h,T) > "T’;‘k
on the basis of Lemma 3 we obtain

satisfying C ;

on D*y. and

‘C};T(xl,xz, t)‘ < mlirgafy(xl,xz, < d(~)1 (h, T)p(x1,x2,t) on Dhry,. (69)
; iZ1o.

The proof of (58) is analogous and follows from Lemma 3 by taking the majorant
functions

_ 1 ~
ff;“(xl,xz, t) = Eﬂtll(h, T) (alxl — xl) > 0on Dh'yT, (70)
_ 1 ~

& (v t) = 5Oyl 7) (a2 —x3) = 0on Dy, 71)
&' (v, x0,t) = O4q(h,T)t > 0o0n Dl (72)

where (N)t,l (h,7) is as givenin (60). O

3. Second Stages of the Implicit Methods Approx1matmg and ai 357 With o(h* + 1)
Order of Convergence

Let
Sty = mx(0,T] ={(0,x2,t) : (0,x2) € 11, t € (0,T]},
Str2 = 712 x(0,T] = {(x1,0,¢) : (x1,0) € 72, t € (0, T]},
Stys = 13 % (0, T] = {(ar, x2,t) : (a1, %2) € 73, £ € (0, T},
Stys = 74 x(0, T] {(Xl,az, t): (Xl,az) € vy, t € (0, T]},
Stys = {(X],Xz,()) : (X],Xz) S D, t= 0}, (73)

and the corresponding sets of grid points is shown by Sty,,i =1,2,...,5.

3.1. Hexagonal Grid Approximation to a” : Stage 2 (H‘”h( ou ))

E)xl
For obtaining fourth-order accurate numerical approximation to v = 7 U first we apply
the implicit method given in Stage 1 (H‘“h( )) and compute the approximate solution

uy, r- Next, we denote p; = ax on Stv;,i = 1,2,...,5 and use the next problem given in
Buranay et al. [26].
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Boundary Value Problem for v = ax <BVP( ))

_ 9f(x1,x2,)
L'U — T on QT,
v(xl, X2, t) = p;on ST’)/Z',i =1,2,..5, (74)

where, f(x1, X2, t) is the given heat source function in (11) and

d 2
r=2 —w| X + 2 ). 75
ot ‘”(ang“axg) )

‘HX/ = +064+2 (

Taking into consideration u € C,
we take

(Qr), werequire v € C, Qr). Further,

125 (—25u(0, X2, £) + 48uy (b, x2, 1)
—36uy, (2, X2, t) + 161y, +(3h, x2, 1)

—3uy, - (4h, xp, 1)) if Py € DYy,
4th

ph = ﬁ(—zmau(o X, )+3675uhT(%,x2,t) on Sy, (76)
—1225uhf(2,x2, )+441uhr(2,x2,t)
_75uhr( o, X2, )) if Py € D*lh’Yr/

ﬁ(ZSu(al, x,t) — 48uy, (a1 — h, x, )
+36uy (a1 — 2h,xp,t) — 161y, (a1 — 3h, x2, )
+3uy, (a1 — 4h, xp, 1)) if Py € DYy,
th
ph, = . (2816u(a1,x2, £) — 36751, (al — I, x, t) onShys,  (77)
+1225u, (a1 — ¥ x,, t) — 441wy, (al — 5y, t)
+75uy, ¢ (a1 — %, X2, f)) if Py € D*rh’)ff

P(x1,x2, )

bin = T oon nST’erl =2,4, (78)
0p(xy, x
psn = Won Shos, (79)

where ¢(x1,x2), ¢(x1,x2,t) are as in (11), and uy, ; is obtained by using Stage 1 (H‘”h(u)).

Lemma 4. Let u be the solution of BVP(u) in (11) and uy, . be the solution of (17) in Stage
1 (H4th(u)>. Then, it holds that

h h ~ .
P () — py ()| <1540 (h,T), i=1,3, (80)

where Oy (h, T) in (59) and d in (61) was defined.

Proof. Using (76) and (77) from Theorem 1, and using (57) when Py € D, gives

h h 1
Pl () = phy ()] < 17 (48hd0n (,T) + 36(2)d0h (1, )
+16(3h)d0 (1, T) + 3(4h)dQ (I, r))
< 1540 (h,T), i =1,3, if Py € D"y, (81)
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where Q) (1, 7) in (59) and d in (61) was defined. In the case Py € D*. it follows that

th 4th 1
P?h (un) — ch (u )‘ 840K

(3675h dQy (h,T) +1225%- 3h 5 A0 (h,7)

+4417hd(~)1(h, ) + 757hd(~)1(h, r))

IN

640 (h, 1), i =1,3if Py € D",. (82)

Therefore, follows (80). O

Lemma 5. Let uy, 1 be the solution of the problem (17) in Stage 1 (H‘”h(u)). Then, it holds that

max pf-‘,;h(uhlr) — pi| < Mkt + 1540 (b, T), i=1,3, (83)
S 1UST’73
where My = tmax 3—5 and Qv (h, ) in (59) and d in (61) was defined.
X3

Proof. On the basis of u € C9+a Ex (@T), at the points (0, x,k7) € S’%’h and (a1, xp,kT) €
Shy3 of each line segment

l(xl,iy\fh,h') 0<x1<a1,0< xy :U§h <a, 0<t=kt<T|,

we obtain fourth order approximation of 837”] by the Formulas (76) and (77). From truncation
error formula (see Burden and Faires [38]) results

Ath ]’l4 851/1 Oh
max |pj, (1) —pi| < rrlax ——=|, 1=13if Pp € D"r. (84)
ShyUStys 5 ox X3
Analogously,
7h4 Pu
4th *h
max : ——max ,i1=1,3if Py e D , 85
Sty USlys Pin (1) = pi| < 128 L oxd 0 T (85)

Using Lemma 4 and the estimations (84) and (85) follows (83). [

Subsequently, for fourth order numerical solution of BVP (5’7”1) we propose the fol-

lowing problem and call this Stage 2 (H‘”h ( v, ) )

Ath [ 0
Stage 2<H ( T ))
@h,fv’;ll‘;l = KthvlfllT + Dy, on Dy,
~ ~ ~ th ~
®h TUI;lJ;l = AZ,TUI]’!C,T + r;,rp;lh (uh,’r) + Dxl l,b* on D*lh7T
~ ~ ~ th ~ ~
®h Tvl}clt—l = A;’;,Tv];l,'[' + r;,rpgh (uh,T) + Dxll)b* on D*rh,)/”f

th .
Unr = p?h (uh,T) on Sl%r)/ill = 1/ 3/
Upe = pmonSty, i=2,4,5 (86)
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where p‘llt;,pg;f, pin,i = 2,4,5 are defined by (76)—(79) and the operators éh,rf
/N\h,T, @Z T,f,’; . and /~\; . are the operators given in (20)—(24), respectively. Further-

more,
- 1
Du§ = nfi + W (B + %0 s, 57)
D 7 o= K2 B ST h? fk —78 k+1+8 k+1
1 96Tw WPy 9prw VPa M 1
o2 (3 4 00, 150 (88)
Let
& =opr—von Dhey, (89)

where v = o 9L From (86) and (89) we have

Onin = Ay, TCv’k ¥7% on DO,
@h Tg‘() k+1 — Ah Té’ + rh Tg ‘{j;/k on D*h’)/‘[
§h/T = Oon ST'yi, i=2,4,5,
She = &% =Pl (o) —pron Shoy, i =1,3. (90)
where
{le)'k = Kh,rvk - @h,TUkJrl + ﬁxl 1]«’1/ 91)
Y5 = A} 0f -0 M+ T pi+ D¢, i =13 (92)
Next, let 6; = 11(v), 01 = pp(v), where g, pp are given in (55) and (56), respectively,
and
~ ~ M d{ 3 47w
0 = 01, — +15— — + ——
max{ 1 0 + 5@(160 + 2880)0‘} (93)
= max{?rl,lSdE}, (94)
where @ = pi(u),p = uz2(u) and d in (61), also M is as given in Lemma 5 and

_ 3 47
0 = 0w + Ti520

Theorem 2. The solution vy, , of the finite difference problem given in Stage 2 (H‘”h <6x1>)
satisfies

6. 3 47 .
— —(T+1 —— ) (1+a%+a3)0K* 95
g‘i’f’”“ of < 5o(T+ )T+(640w+11,520>< ta+a@)ont,  ©9)

forr =% > 4 1¢ Where 0, are as given in (93) and (94), respectively, and v = aa” is the exact

solution ofBVP ( E) .
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Proof. Consider the next system

éh,réﬁj’iﬂ = /KhTézl; + (~)2(x1) on DYy,
~ —~ - A - 1 . N
O™ = A G+ T8 + Oa(x1) — 2 D) on D,
i = OonShy;, i=24,5
= 2 th .
e = &= rpi (upz) —pionShy;, i =1,3, (96)
where
~ 3 3 47 N\,
Q — 524 — A
2(%1) 5ay 0 F2m — M)+ (160 * 2880“’) o1,
3. 347 Ney o ook
> [ > l
Z 50T (160 + 2880w>9h > [#], ©7)

~ 3h 1 47 N1,4 *lh
Oa(x1) = §Oa(P) ( .

'(?T(% + % + 61—4 + 32%(0 O if Py € D*"My,

> [#gF

. (98)

Further, x; = % and p =0if Py € D*"y.and x; = a3 — %,f) = qy if Py € D*"y;. We
take the majorant function

Ev(xll X2, t) = Ezlj(xl/xZI t) "‘Ezzi(xl/xb t)/ (99)
where
=v 3 —_
&1(x1,x0,1) = gUT(i‘ +1)(2a7 — x1) on Dl
1
= 3 47 ~ _
(;‘g(xhxz,t) = <640a)+ 11 520>0h4(1—0—a%+a5—x%—x%) on Dl

The function in (99) satisfies the difference problem

C:)h,TEZ:};Jrl = /Kh,rgztli + Oy (x7) on DMy,
& din = Ridie + TG+ Oa(n) = £D(p) on Dy,
Ehe = Gne=2C1(0,x0,1) +&5(0,x2,t) on Sy,
The = 1(x1,0,8) +83(x1,0,4) on Sy,
The = Cne=2Ci(a1,x0,t) + & (a1, x2,t) on Sy,
Che = Ci(x1,a0,1) + (21,0, 1) on Sy,
The = C1(x1,x2,0) + &5 (x1,%2,0) on Shys. (100)

Next, for k = 0,..., M’ — 1, we put the Equations (96) and (100) in matrix form as

Avér\v,k—l-l — Eé\v,k + Tﬁv'k, (101)

AN = BER 4 ok, (102)
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where A, B are as given in (32) and gok, Ev’k, ﬁ”'k,ﬁ”'k € RN. Using (97)-(100) we have
2% >0, and 77 > 0, and ‘ﬁvrk’ < 7k fork = 0,.., M’ — 1, and |%9| < &°. Then

¥
v k“‘ <z ™1 Furthermore,

Lemma 3 implies that

(x,x0t) < 2(0,0,T)
3 47

_ b 2 2\t
= (T+1)T+(640w+11,520)(1+a1+a2)9h’

yielding (95). O

2 (1 (25)

First, we construct BVP(%—;‘) and obtain the approximate solution u; j, ; by using the
implicit method given in Stage 1 (H‘”h (%—;‘) ) Next, we denote p;; = % on Stvy;,i =

1,2,...,5 and propose the below problem for v; = %.
Boundary Value Problem (BVP( I at)>
azf(xl, X, t)
Lv[ — Tlat on QT,
vt(xl, X2, t) = piion Stvyi,i=12,..,5. (103)
9+a —
From u € C9+a (Qr), we assume that the solution v; € C6+a A+ (Qr). We take

12h( 25u4(0, xp, t) + 481y jy - (h, x2, 1)
—36u;p (20, x2,t) + 161y ), (3h, x2, 1)

—3uy 0 (4h, x2,1)) if Py € D%y,
4th

h
Pian = 840]1 ( 2816u; (0 X2, ) + 3675Mt ht (%, X2, i’) on ST’)/1, (104)
—122514””(2,3(2, >+441uth7(2,x2,t>
—75uthr( 2h,X2, )) if Py € D*lh’)/T,

ﬁ(25uf(‘l1/ X2, t) - 48ut,h,T(al - h/ X2, t)
+36utrth(a1 —2h, xp, i’) —16u ) ¢ (ﬂl —3h,x2,t)
+3ut,h,T(a1 - 4h/ X2, t)) if PO € DOh,YT/
4th

Piap = - (2816ut(a1,x2, £) — 36751, )+ (a1 — b, t) onShys  (105)
+ 1225ut,h,7 (011 — %, X2, t) — 441ut,hrr (ﬂl — %, X2, t)
+75uyp ¢ (al — %h,xz, t)) if Py € D*rh'yr,

OPr(x1, X2, 1)

pt,ih = axl on ST,)/I/Z - 2/ 4:/ (106)
09(x1,x
Pish = "’(8;12) on Sts, (107)

where @(x1,x2) and ¢¢(x1, x2, t) are as given in (27) and u; j, ; is the approximate solution
achieved by using Stage 1 ( JgAth ( % ) ) _

For a fourth-order accurate hexagonal grid approximation of BVP (%) , We propose
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Stage 2 (H‘“h (axlat) ) :
@hrTU]t(,;z_,i = Kh,Tv’tc,h,T + 53‘1 1;51‘ on DOh'YT/
é;’kl,TUIt(,Z}f = /N\Z,Tvlt(,h,r + ’fz,rpflhh(ut,h,r) =+ 15351 IEF on D*lh'YT
évalt(ZlT = IN\Z,Tv’t(,h,T + fZ,Tpétl,Zh (ut,h,r) + f)xl l;bv;k on D*rh')’r
Othr = pﬂ;(”t,hﬂ') on S;%’)’i/i =13,
Vhr = Prinon Sty i=2,4,5 (108)

where pt 1h' ptah/ Prin i = 2,4,5 are defined by (104)—(107) and the operators @h o
Ah o o Ah - and Fh are the operator given in (20)—(24), respectively. Furthermore,

ht’
Uy r 1S the numerical solution of (108) and

~ 1
Due = onflgl+ 11 (3% fl) + %00 £}, (109)
D. oF = h? B k+1 h? 2 ko 18 k+1 Y k+1
xllpt - 96'1—(4] X1Jt,Py 96Tw xlft,PA 6 xlf + xlf
T h2 (3% £5) + 000 £51). (110)
Let
(;‘Zfr = 04pr — 0 on Dy, (111)

where vy = %. From (108) and (111), we have

@h Tgiit k+1 — 7\}1 Tgvt’k {]:7'0,5,]( on DOh/YTr
®h Tgvt,kJrl _ Ah Tgvt, + rh Tg*vt {I};t,k on D*h,)/_“
cth = Oon ST%, i=2,4,5,
th .
Cre = Gt = Piin(tenz) — prion Sty i=1,3, (112)
where
{?lehk = Ah Tvt ®h Tthr + Dxllpt/ (113)
Yok = Apof - O o 4T pri+ Dy i, i = 1,3, (114)
Let 6,1 = py(v), 011 = po(vr) where pq, o are given in (55) and (56), respectively,
and let
_ ~ M, d/ 3 4w
0, = 0i1, —— 4+ 15— — 115
! max{ S Q(160+2880> } (115
& = max{at,1,15d[§t}, (116)
where &; = pq(uy), ,Et = up(u) and d is as given in (61). Furthermore, ]\7It,1 = %nlax %
Qr 1
and ¢ = g, + 11 25
Theorem 3. The solution v, j, - achieved by using Stage 2 (H‘”h (a at)) satisfies
6. 3 47 \ s oN\a
_ < -
gli)ﬂvtm vy 5Ut(T-|— 1)t + (640w + 11,520)& (1 + a3 —i—aZ)h , (117)
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forr =95 > 1% where 01,5 are presented in (115) and (116), respectively, and v; = is the

exact solution fBVP ( axlat)

ax E)t

Proof. The proof basically is analogous with the proof of Theorem 2 and follows from the

6+a,3
requirement v; € C, e 3 (Qr). O

4. Second Stages of the Implicit Methods Approx1matmg and a’i 5 with O(h*+ 1)
Order of Convergence

4.1. Boundary Value Problem for > and Hexagonal Grid Approximation: Stage 2 (H‘”h ( 9z ))

Let the BVP(u) be given. First, we apply Stage 1 (H‘”h (u)) and obtain the approximate
solution uy, ; on the hexagonal grids. Then, by denoting q; = ax onSry;,i=1,2,..,5we

use the next problem for z = a” >, proposed in Buranay et al. [26]

Boundary Value Problem for 5)7”2 (BVP<ax2 ))

of(x1,x0,t
Lz = 9f (1, %2,1) alx22 ) on Qr,
z(x1,x2,8) = gonStvy;,i=1,2,.,5. (118)
We take
4th . 1 . o
Dy = 712\@}1 ( 25u(x1,0,t) + 48uy, . (xl, V3h, t) 361y, ¢ (xl,Z\@h, t)
+ 161y, ¢ (xl, 3v/3h, t) —3uy,; (xl, 4v/3h, t)) on Sty (119)
1
m (25u(x1, ap,t) — 48uy, - (xl, ay —V/3h, t) + 361y, ¢ (xl, ay — 2/3h, t)
—16uy, + (xl, a, —3v/3h, t) +3uy, ¢ (xl, a, — 4V/3h, t)) on S}%'m, (120)
0
qin = 47(9;3’(;2' ) on Stwy;,i=1,3, (121)
d0p(xq, x
Isn = %22) on S, (122)

and ¢(x1, x2), ¢(x1,x2,t) given in (11) are the initial and boundary functions, respectively,
uy  is the solution taken by using Stage 1 (H‘”h (u)) .

Lemma 6. Let u be the solution of (11) and uy, . be the approximation achieved by using Stage
1 (H4th(u)>. Then, the following inequality holds true

h h ~ .
T (wne) = gl ()] <1540 (h,7), i =2,4, (123)

forr > L where, O (h, 7) is given in (59) and d is defined in (61).
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Proof. From Theorem 1, and using (119) and (120), we have

ah () —aly (0] < f (48+/3hd 3y (1, 7) + 36(2/3hd (1, 7))
+16(3v/3hd 0 (h, 7)) + 3(4v/3hd Oy (h, T)))
< 15d0 (h,7), i=2,4. (124)

Thus, we obtain (123). O

Pu
axg

Lemma?7. Let M = %rgax and uy, ; be the approximation taken by using Stage 1 (H‘“h (u))
Qr

Then, the following inequality is true:

max
Sé’"'}’ZUST'M

" (1y,0) — qi} < Moh* +15d0 (h,T), i = 2,4, (125)

where O (h, ) is given in (59) and d is defined in (61).

9+IX 9+a¢ (

Proof. Requiring u € C, Qr), at the points (x1,0,kt) € Shyy and (xp,a0,k7) €

S"y4 of each line segment
[(0h,x2kT):0<x1 =0h<ay,0<x<ay, 0<t =kt <T],

we get fourth-order approximation of (—;97”2 by the difference Formulas (119) and (120). Then,
the truncation error (see Burden and Faires [38]) yields

aS
max qﬁh( u) — < gh'max|—5|, i=24. (126)
ShyaUSHy, Qr xz
Taking M, = %rgax % and using Lemma 6 and the estimation (123) and (126)
Qr 2
follows (125).
O

Second stage of the fourth-order accurate implicit method for the numerical solution
to BVP( ) is given as follows:

Stage 2 (H‘”h (aXZ ) )
C:)hlle;‘:;l = Kh,rzﬁ,r + Dy, on D%+,
éh Tzl}cltl = KZ,TZ;T + fz,rqlh + 5362 ll;* on D*lh')/l'r
@Z TZZJ-rrl = /N\;,rzlli,r + fz,r%h + f)xz lf* on D*rh')’rz
Zpr = {gipon Styi,i=1,3,5,

Zie = gy onShy,i=24, (127)
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where qlh ,i=2,4and q;,,i =1,3,5are defined by (119)—(122) and the operators ®h -

Ah . ®h o Fh -and AZ . are the operators given in (20)—(24) respectively. Furthermore,
Zp 1 iS the numerical solution and

Do = oufi+ —6h2 (9,00 f7 + 00,15, (128)
= h* T k k1 k1
szlp = @axz PA - 96T(Uax2fPA *afoP +ax2
1
+1e” (afq O i1+ 03, fk+1) (129)
Let
Cie = Zne —zon Diyq. (130)

From (127) and (130), we have

réz J—+1 _ Ah T(—: +‘I’Zk P DOh’)’T,
; reikfl = A; Tsh 4+ %5 on Dy,
sh/T = 0Oon ST'yi,z =1,3,5,
€. = qi"(u.) —qionShy;i=24, (131)

where qg;f, inl are defined by (119) and (120) accordingly, and

¥ = Apedt 02 + Dy g, (132)

¥F = A2 0f 2 T i+ Dyyt,i=1,3. (133)
Further, let A = ji1(z), 1 = z(z) where p1, i are given in (55) and (56), respectively,

and
~ ~ M, d/ 3 47w

A= AM,— + 15— — 4+ — 134

max{ vy T Q(l60+2880> } (134)

5 = max{&,lSdﬁ} (135)

where & = p1(u), B = pp(u) and d is presented in (61) and Mj is as given in Lemma 7 and
z is the solution of BVP (337”2).

Theorem 4. The solution zj,  achieved from Stage 2 (H‘”h (%)) satisfies

6~ 3 47 2 2\ 4
_ o< Z
g}:):’zhﬂ z| < 5(5(T—|—1)T+ (64060 + 1 520))\(14—111 +a2)h , (136)
forr =93> ié where A, 6 are as given in (134) and (135), respectively, and z = 9x, 1S the exact

solution ofBVP( ou )

sz
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Proof. We take the system
réh gk = Kh,l'gfq:]; + ()3(352) on DOh'YT/
~ 5.
(S Gt = AZ,TEZ,,I’([ + 603(9(2) on D™y,
&. = OonSiy,i=1,35,
~ th .
Che = i (o) —qion Sy, i =2,4 (137)
q‘é;f, ‘7411} are defined by (119) and (120) accordingly and
~ 3 3 47 ~
Q = —o1(2 —t ——w | AR
3(x2) 50, 57(2a; —x2) + (160 + 2880 > ’
> 2 [ > ¥ 1
= 5ot (160 + 2880w>Ah = ‘ 1 (138)
5~ 1 47 4
et - 20, — =
603(3(2) P 25T( ap — x3) + (64 + 3456w>Ah
S 1 47 4 gk
> = — .
> 25T+ (64 + 3456w>/\h “1’2 (139)
Furthermore, construct the following majorant function:
Ez(xll X2, t) = Ei(xll X2, t) +E;(x1/ X2, t)/ (140)
where
=z 3 ~ =
El(x1,x0,8) = 57257(1‘ +1)(2ap — xp) on Dy,
=2 _ 3 47 \54 2., 2 .2 .2 I
Eo(x1,xp,8) = (640w + 11’520))\}1 (1 +ai+a5—x] — x2> on D'y,
which satisfies the difference problem
=~ zk+1 ~ a2k | X
®h Tgi T - Ah ng T Q3(X2) on DOh'YTr
* = - * = 5~
®hr Zﬁjl = AZT i]; + rhr Z*T + 603(352) on D*h')/T/
Ge = Tne=01(0,22,8) +5(0,%2,t) on Sy,
EZ,T = Ei (xlr 0, t) + E;(xl/ 0, t) on 5}71"72/
The = Cne=2Cilar,xo,t) + &(a1, xo,t) on Shoys,
Tie = Cilxyant) +3(x1,a2,t) on Siy,
e = G1(x1,%2,0) +5(x1,%2,0) on Sis. (141)
By writing (137) and (141) in matrix form as
Avé\z,kJrl _ B’Ez k + Tﬁz k (142)
AZM = BE 4 ok (143)

respectively, where A, B are as given in (32) and gzk, Ez'k, 777k, 77% € RN and using (138)-(141)

we get 77K > 0 and ’ﬁz"‘ <7#* fork =0,1,..,M' —1and EZ’O >0, |¢20
=z k+l

& k+1’ <& k=0,1,..,M —1. From

the basis of Lemma 3 follows

—z,0
< @’z . Then, on
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T(xyxmt) < T(0,0,7)
= éN i 477 3 2 21,4
— 55(T+1)T+<640w+11,520))\(1+a1+a2)h,

follows (136). O

4.2. Boundary Value Problem for a?;‘ét and Hexagonal Grid Approximation: Stage

82
(1 (24)
Let the BVP(u) be given. Then, as the first step we apply the Stage 1 (H‘”h (%—”t‘))
and obtain the approximate solution u; j, - on the hexagonal grids. Subsequently, denote

qri = %z”at on Stv;,i = 1,2,...,5 and develop the next problem for z; = %.

Boundary Value Problem for Carl (BVP (%))

8x28t
9% f(xq, %o, ¢
Lzy = fngatz ) on Qr,
z¢(x1,x2,t) = qionSry;,i=1,2,..,5 (144)
We assume z; € Cijlx'ﬂ% (Qr). We take
4th o 1 _ o
Tion = 712\/5}1( 25u4(x1,0,t) +48ut,hfr(x1, \V/3h, t) 36u; ), ¢ (xl,Z\@h, t)
+ 161y, ¢ (xl, 3v/3h, t) —Buy . (xl, 4/3h, t)) on Sty (145)
4th o 1 . B _
Tran = 712\/5}1 (25ut(x1,a2,t) 48uy g, ¢ (xl,az V/3h, t) + 361 ) 1 (xl,az 2v/3h, t)
—16u;p, 1 (xl, a —3v/3h, t) +3upp 1 (xl, a —4v/3h, t)) on 51%74, (146)
oy (x1,x0,t .
Guin = 4”(6122) on Sfi,i = 1,3, (147)
09(x1,x
Tusn = "’(8;22) on S1s, (148)

where @(x1, x7) and ¢¢(x1, x2, t) are as given in (27) and u; , ; is the approximate solution
taken by Stage 1 <H4th (%—Lt‘) ) For a stable fourth-order accurate numerical solution of

BVP ( aizz'g t) we propose the next problem:
Stage 2 (H‘”h (%) )

@h,rzﬁl_}f = Kh,rzlt(,hlq— + f)xzibvt on DOh'YTr

(:)Z,TZI;,Z} = ZN\Z,TZI;,h,T + fZ,Tﬂlmh + f)xz ’;L’v? on D*lh')’T/

@Z,Tzlt(,;,lr = Kz,’rzltc,h,T + TZ,thBh + ﬁleﬁf on D*rh')’r
Zh,T = Qt,ih on Sl%’)/i,i = 1, 3, 5,

th )
Zihe = i o0 Sty i =2,4 (149)
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where qlh ,i=2,4and gy, ,i = 1,3,5 are defined by (119)-(122) and the operators G)h o
Ah,r/ G)h - Fh - and AZ . are the operators given in (20)—(24) respectively. Additionally,

Do = dunfifl + 412 (3,0 fi) + 00,1551, (150)
N hz 1 P k1o e k1
Dy, i = maxz tPs %axzft,PA - gaxzf +ax2f
1
L (3,0 fi) + 0 F55)). (151)
Let
giir = Zypr —ZtON Dh')’rr (152)
from (149) and (152) we have
Térzt k1 Ah ngt k v.IJZt,k on DOh’Yr,
0; Teif’f“ = Al Tsi”T +¥3* on D1y,
Sh,r = 0Oon ST'yi,z =1,3,5
th .
. = qtin(ung) — quion Sty i =2,4. (153)

where q‘tlfzhh , qﬂh s qGrin 1 = 1,3,5 are defined by (145)—(148) accordingly and

{i}?,k - Ah th @h th+ + sz lpt/ (154)
{ffét,k _ Ah 2k @hT A4 Fh,th,i + Dy, ¥7,i=1,3. (155)

Let 7\“ = u1(z¢), gt,l = yp(z¢), where 1, iy are given in (55) and (56), respectively,
and

- ~ M, d( 3 47w
Ar = Ap1, —= + 15— 156
t max{ A Q<160+2880> } (156)
5 = max{31,154p:}, (157)
where & = py(ut), Bt = po(ur) and d is presented in (61) also M;o = 2max % and
Qr 2
0= 640w + 11 520 and z; is the solution of BVP(aX at)
Theorem 5. The solution z; ), » achieved by Stage 2 (H‘“h ( a?;”ét )) satisfies
_ < [ R
gui)ﬂzthf zt (St(T—f—l)T-f— (64Ow+11,520>At(1+a1+a2)h , (158)

Zt = ai;ét is the exact solution OfBVP(axzat)

forr =953 > 16, where Ay, &; are positive constants given in (156) and (157), respectively, and

Proof. The proof is analogous to the proof of Theorem 4, and follows from the requirement
7€ C6+ﬂé3+2 (QT) 0

5. Experimental Investigations

The proposed fourth order two stage implicit methods are applied on two test prob-
lems such that for the first example the exact solution is known. However, for the second
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example the exact solution is not given. We take D = {(xl,xz) 0<x<1,0<n < ?},
and t € [0, 1]. Further, Mathematica is used for the realization of the algorithms in machine
precision. Also we used preconditioned conjugate gradient method with the precondition-
ing approach given in Buranay and lyikal [29] (see also Concus et al. [30] and Axelsson [31]).
We define the following;:

H4”’( ) i =1,2 is the given fourth order method for the computation ‘37” i =1,2,

respectlvely

HA4th ( aa;g t),i = 1,2 is the given fourth-order method for the computation aa;g 5 i=1,2,
seriatim.
C TIa‘{fth, | = 1,2 presents the CPUs for one time level spend by the method H*" (%),

0%;

i = 1,2, accordingly.

C T’;I; th, i = 1,2 shows the CPUs for one time level spend by the method HAth (aajcigt),
dx;ot
i = 1,2, respectively.

Furthermore, vy y-a, Zg—y p-n , Uyp—pp-2, @0d 0y 54 9-2, Z; 54 -2 are the computed
grid functions obtained by the methods H*" ( Ju ) i=1,2, H¥" (a”) and H*" (ax at>

i = 1,2, accordingly for i = 27# and T = 27" where y, A are positive integers. The error
function ¢, ; on the set D"y, obtained by H4th( ) i=1,2 forh=2""1=2"j

presented by 8H4 " (27#,271),i = 1,2 while the error function resulting by the methods

ox;

A (ax at) i = 1,2 are shown with ¢H,. (27#,271),i = 1,2, respectively. Furthermore,

axiat
H4Hl .
max| el (2 Moo ) — |lH L i=1,2, (159)
Dh'yT 9 ;oo
4th .
max| et (2 "o ) = |l i=1,2 (160)
Dh’y-[ Bxl-Bt E)xl-Bt 00

Further, we denote the order of convergence of the approximate solution v, ,-» and

Zy—u o-a to the functions v = au

method H*" ( Ju ) i=1,2 by

and z = ;‘2 obtained by using the fourth-order implicit

el (27, 274) ‘

REM i © i1, (161)
5 glgsth (2—(;4+1),2()\+4))H

o o

1

Furthermore, the order of convergence of the approximate solutions v, ,—x ,-1 and

: : ; _ du _ du :
Z; -u o2 to their corresponding exact solutions v; = 9%;0F and z; = Ix,0F obtained by
H4th _ —A
Ju (2 ”/ 2 )

F4th (
‘ e
3xoF

RE," = i L’ Li=1,2. (162)
ax 5t ’ EH;Jh (2—(y+1),27()\+4)) H

) i = 1,2 are given by

dx;ot

We remark that the computed values of (161) and (162) are ~ 2% showing the fourth
order convergence of the given methods in x1, x; and linear convergence in t.
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5.1. Test Problem Example 1

Equations are given as follows:

ou u  %u

i 2

9 0. 5(82+82> + f(x1,x2,t) on Qr,
u(x1,x,0) = 0.005x] % +0.08x3 ™ + 1+ x7x, on D,
u(xll X2, t) = il\(xl/xZI t) on ST/

where

Flxy,x0,t) = —(9;“>t75“ sin(t%)
—x125¢ ™ — 0.25(9 + &) (8 + ) 0,005 7 4 0.03:] |
ii(x1,x2,t) = 0.005x]™ +0.03x5 ™ + cos(t %) + xyx0e

present the heat source and the exact solution respectively and we take & = 0.5. For the

Example 1, Table 2 demonstrates C Tg:“h, slg:th d 3&‘:13: " i = 1,2 achieved by H*" ( Ju )
9x; 3 leo 9x;
i = 1,2 respectively while Table 3 shows C Tlg; " Iﬁzl and %Igih i =1,2 taken by the
ox;0t ;01 || oo 9x;0t

method H*" ( a{fg ; ) ,i = 1,2 accordingly. Tables 2 and 3 justify the theoretical results given

such that the approximate solutions Uh s Zh 7 Ut and zp - converge to the corresponding

) 22 2 . . .
exact functions v = ax and z = ax LU = axfét and z; = ai;ét with fourth order in spatial

variables and first order in time for r > 1 1g- Moreover, the last two rows in Tables 2 and 3
demonstrate that the order of convergence is also O (h* + 7) whenr < 11—6.

HAth
€3

Table 2. CTH",
w la [leo
respective derivatives for the Example 1.

for i = 1,2 and the convergence orders of v}, r and zj, ; to their exact

TS A T A o T
dxq a1 lleo dxq dxy %y |loo dxy

(274,279) 0.33 45384 x 1072 14.634 0.31 53873 x 1073 14.595

(27°,277) 2055  3.1012x107* 15901  19.03  3.6911x10°* 15.895

1309.02 1.9503 x 107> 15.991 1220.01 23222 x 107> 15.992
82,622.60 1.2196 x 10~° 78,092.10  1.4521 x 10~°

( )

( )

(274,271 7927  18788x107° 15980  73.06  2.0209 x 107>  16.006
( ) 5209.05 1.1757 x 1076 4880.77  1.2626 x 107°
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Table 3. CTgum, Ig::h

dx;ot dx;ot
respective derivatives for the Example 1.

€ , for i = 1,2 and the convergence orders of v;,  and z;, . to their exact

h h h h h h

(o) cTi, S| R, CTR ) RG,

dxq 0t 9x19¢ || o dxq 0t dxpot 0x20t || o dxpat

(274,273) 0.41 442644 x107% 15451 039  4.2937 x10°% 15401

(272,277) 24.78 28648 x 1077 15925 22593 27879 x 1077  15.892

(276,271)  1595.03  1.7989x 1078 15997 1436.69 1.7543 x 107%  15.993
(277,2715)  100,555.00  1.1245 x 10~ 92543.1  1.0969 x 10~ 1

(274,271 96.94 1.8392x 1078 15997 8861  1.7381x107% 15920
(275,2716) 641428  1.1497 x 1077 573349 10918 x 1077

Figures 2 and 3 illustrate the grid functions slijth (274,273)

ox;

4th _ _
el " (27°,277)
8xi

7 4

slijth (276,271)| and

ox;

el (277 2-15)

ox;

, 1 = 1,2, respectively, when t = 0.8 obtained

Ju
ox;

by the corresponding method H4th( ), i = 1,2 for the Example 1. Figures 4 and 5

HAth —4 -3
e, (275,27°)
dx;ot

demonstrate the grid functions sfng (273,277)

dx;ot

8}55:1 (2—6’ 2—11)

dx;ot

, , and

H¥ (5-7 515
e, (277,279)
dx;ot

ing method HAth (%) ,i =1,2 for the Example 1.

for i = 1,2 respectively, for t = 0.8 achieved by applying the correspond-

0.00020
0.00015}

0.00010 |,
0.00005

£
0.00000 4
0.0

0.00001]
5 x10%t

0.00000
0.0 I

=08

1.0 00

Figure 2. The grid function of absolute errors when ¢ = 0.8 obtained by the method H*" (aa—;‘l) for
the Example 1.
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1.0 0.0

=08 £ o0

Figure 3. The grid function of absolute errors when t = 0.8 obtained by the method H*" (a%) for
the Example 1.

=08

Figure 4. The grid function of absolute errors when t = 0.8 obtained by the method H*!" (%) for
the Example 1.
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o ()

B

£
0.000201
0.00015

Figure 5. The grid function of absolute errors when t = 0.8 obtained by the method H*!" ( a?:;ét ) for
the Example 1.

5.2. Test Problem Example 2

Equations are given as follows:
ou %u  d*u
T 0.25 (E + @) +f(X1, x3,1) on Qr,

u(xy,%,0) = 0.0lxyxp(1—x7) (\/75 — x2> on D,
u(x1,x,t) = OonSr.

The heat source function is

f(xy,x0,t) = —0.01xyx2(1 —xq) (? — x2> sint

+0.005 (xl(l —x1) +x2 (%5 - x2>> cos t.

The problem in Example 2 is a benchmark problem such that the solution is not
provided. An analogous problem with zero heat source was also considered in Henner et

al. [39]. By applying the proposed methods H*" (;ar”) i = 1,2, we obtain the approximate
solutions v,y ,-1 and z,-y, ,-1 accordingly at every time level for the considered values
i =>5,67and A =7,11,15. Tables 4 and 5 present vz—‘u,,z—/\(x], X, t) and z,-, 2 (x1, %2, 1),

respectively, at the grid points (0.125,%%,1), (025,53,1), (0.375,%,1), (05,%3,1),

(0 625, ‘{;, 1) (0.75, ‘/?3, 1) and (0.875, ‘8[, 1) and the corresponding order of conver-
gence B%alh( P) fori = 1,2 at the grid point P(x1, x,t) given as

9x;

Uy— P)—vo P
§RH4th( ) _ 252~ 7( ) — 26— 11( ) ) (163)
oxy 0y-62-11(P) = 0y-75-15(P)
Zy557(P) — 256 5-11(P
§RI_I4Hl( ) — 2 5,2 7( ) — 2 6,2 11( ) . (164)
%y 2276’2—11 (P) 22—7’2715(1))
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By the same way Tables 6 and 7 show v; 54, -2 (x1, X2, 1) and z; 5, 5-a (X1, X2, ), re-

spectively, at the the considered grids and the corresponding convergence orders %Igih (P)

dx;ot

for i = 1,2 at the point P(x1, x2,t) defined as

Vi9-557(P) —0;5-65-11(P
%[-g;‘:l (P) _ t2-52 7( ) £2-62 11( ) ) (165)
axy0f 0yp-6-11(P) = 0157,5-15(P)
) Zi9-55-7(P) — 24 9—6 n—11 (P
%I—g;tj (P) — t,2 5,2 7( ) t,2 6,2 11( ) ) (166)
axp01 Zpp-6p11(P) =24 57515(P

Table 4. The numerical solution vy,  at seven points when t = 1, and the convergence orders obtained
by H4th(aa7”1) for the Example 2.

P vy5,5-7(P) Vy-6,-11(P) v 7, s(P)  RE"(P)

9x1

(0:125,%,1) 0000569713036 0.000569841548  0.000569849555  16.052
(025,%,1) 0000379748416  0.000379890609  0.000379899468  16.049
0 1) 0000189857076  0.000189944236  0.000189949667 16048
(05,%.1) 5.22 x 10716 —327 x 1017 1.87 x 10718 16.046
0.625,%%,1)  —0.000189857076 ~—0.000189944236 —0.000189949667  16.048
(0.75,%3,1)  —0.000379748416  —0.000379890609 ~—0.000379899468  16.049
(0.875,%3,1)  ~0.000569713036 —0.000569841548 ~ —0.00056984955  16.052

Table 5. The numerical solution zj, . at seven points when ¢ = 1, and the convergence orders obtained
by H4th(aa7”2) for the Example 2.

P Zp-5,-7 (P) Zp-6-11 (P) Zp-75—15 (P) %Iﬁ”’ (P)

dxp

) 0.000255810101  0.000255886243  0.000255890985 16.052

0.000438524584  0.000438661691  0.000438670233 16.052
(0 l) 0.000548151240  0.000548326834  0.000548337774 16.052
(O.S, g, 1) 0.000584693185  0.000584881865  0.000584893620 16.052
(O 1) 0.000548151240  0.000548326834  0.000548337774 16.052
(0.75, @, 1) 0.000438524584  0.000438661691  0.000438670233 16.052
(0.875, @, 1) 0.000255810101  0.000255886242  0.000255890985 16.052
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3x1 ot

Table 6. The numerical solution v;j, ; at seven points when t = 1, and the convergence orders
obtained by H4"(-24) for the Example 2.

r OUt,2-5,2-7 (P) Ot 2—6 211 (P) 7’t,2—7,2—15(P ) mlf,it: (P)
axq 0t
(0.125,%2,1)  —0.000887304144 —0.000887477357 —0.000887488206  15.966
(025,%,1)  —0.000591460365 ~0.000591646827 —0.000591658507  15.964
(0:375,%3,1)  ~0.000295709687 —0.000295822129 —0.000295829173 15963
(05.,1)  722x10718 3.33 x 10719 —986x10°2° 15957
(0.625,%,1)  0.0002957096868 ~ 0.000295822129  0.000295829173 15963
(0.75,%3,1)  0.0005914603655 ~ 0.000591646827  0.000591658507  15.964
(0.875,%3,1)  0.0008873041426 ~ 0.000887477357  0.000887488206 15966

Table 7. The numerical solution z,; )  at seven points when ¢t = 1, and the convergence orders
obtained by H4th(%) for the Example 2.
2!

P Z;5-52-7(P) 2¢9-6-1(P) Z-70-5(P) RV (P)
dxpdt
(0.125, % l) —0.000398417531 —0.000398520228 —0.000398526661 15.966
(0.25, %, 1) —0.000682992442  —0.000683176968 —0.000683188526 15.966
(0.375, @, 1) —0.000853734894 —0.000853970855 —0.000853985635 15.965
(0.5, @, 1) —0.000910648720 —0.0009109021308 —0.000910918003 15.966
(0.625, % 1) —0.000853734894 —0.0008539708553 —0.000853985635 15.966
(0.75, @, 1) —0.000682992442 —0.000683176968 —0.000683188526 15.965
(0.875, ?3 l) —0.000398417531 —0.000398520228 —0.000398526661 15.966

The computed solutions v,-7 ,-15 and z,-7 ,-15 achieved by using the corresponding
two stage method H*" (%),i = 1,2 are demonstrated in Figures 6 and 7 for the time
levels t = 0.2 and t = 0.8. Figures 8 and 9 illustrate the approximate solutions v;, 7 515

and z;, -7 ,-15 taken by using the respective two stage method A (8‘121”8‘ ; ) ,i=1,2for time
levelst =0.2and t = 0.8.

Figure 6. The approximate solution v,-7 »-15 at time levels = 0.2 and ¢ = 0.8 obtained by the method
HA (aa—;‘l) for the Example 2.
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Figure 7. The approximate solution z, 7 515 at time levels t = 0.2 and ¢ = 0.8 obtained by the method
H4" (%‘2) for the Example 2.

Figure 8. The approximate solution v;, 7,15 at time levels t = 0.2 and ¢ = 0.8 obtained by the
method H*" (%) for the Example 2.

r=0.8

Figure 9. The approximate solution z;,-7 515 at time levels t = 0.2 and ¢ = 0.8 obtained by the
method H*" ( ) for the Example 2.

oxp0t

6. Conclusions

Numerical methods using implicit schemes defined on hexagonal grids are proposed
for computing the derivatives of the solution to Dirichlet problem of heat equation on
rectangle. For the required smoothness conditions of the solution and when r = 5% > 7 1
the uniform convergence of the constructed difference schemes on the grids to the respectlve
exact derivatives 2 o L and -2 ax at, i = 1,2 is shown to be O(h4 + T).

Novelty Statement:

In Buranay et al. [26], we gave a second-order hexagonal grid approximation of
the first-order spatial derivatives of the solution to BVP(u) in (11) with the smoothness

7+0(/ 2

conditionu € C,. ,0 < a < 1in the Holder space. The method was established in two

stages. In this study, we require that u € C;, + w g , and give hexagonal grid computation

of all the first order derivatives and the mlxed order second order derivatives involving
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the time derivative by developing two stage implicit methods of fourth order accurate in
space variables.
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