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Abstract: This article contributes to clarifying the questions of whether and how fractal geometry, i.e.,
some of its main properties, are suitable to characterize architectural designs. This is done in reference
to complexity-related aesthetic qualities in architecture, taking advantage of the measurability of one
of them; the fractal dimension. Research in this area so far, has focused on 2-dimensional elevation
plans. The authors present several methods to be used on a variety of source formats, among them
a recent method to analyze pictures taken from buildings, i.e., 2.5-dimensional representations, to
discuss the potential that lies within their combination. Color analysis methods will provide further
information on the significance of a multilayered production and observation of results in this realm.
In this publication results from the box-counting method are combined with a coordinate-based
method for analyzing redundancy of proportions and their interrelations as well as the potential
to include further layers of comparison are discussed. It presents a new area of box-counting
implementation, a methodologically redesigned gradient analysis and its new algorithm as well as
the combination of both. This research shows that in future systems it will be crucial to integrate
several strategies to measure balanced aesthetic complexity in architecture.

Keywords: architectural analysis; fractal analysis; visual complexity; box-counting; grasshopper;
web application; redundancy; proportion; form and geometry; gradient analysis

1. Introduction

In 1975, Benoît Mandelbrot introduced the term “fractals” [1,2] in order to describe
objects with certain properties. The new created word was aimed to convey a theory that
describes the natural world in a better way than the commonly used Euclidean geometry.
It is a theory of self-similarity, one of the descriptive properties, besides irregularity, scale-
invariance and thus a fractal dimension that exceeds the topological dimension. Above
all, fractal geometry is the formal investigation of self-similar structures, self-similar in
observation of the whole object in relation to its detail, from large to small scale. With
natural objects (and also artificial objects), self-similarity occurs in a statistical rather than
a strict fashion–this means that self-similarity is present on average and not in the form
of exactly scaled-down copies of the whole. As an instrument for the description and
analysis of object shapes fractal geometry provides an alternative to Euclidean geometry,
the latter being a geometry of simple shapes–only a few parameters describe the form (such
as the radius describe a sphere). Furthermore, when zooming in on an Euclidean shape, no
further details appear. Therefore, conventional geometry is only suitable for describing
complex shapes under certain conditions. In regards to architecture, Mandelbrot already
goes as far as providing an impetus to distinguish between architecture related to fractal
geometry, such as that of the Beaux-Arts, and architecture by modernists like Mies van
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der Rohe, which he considers a step back to the scalebound Euclidean [3]. Similarly, Carl
Bovill [4] observes a lack of structural depth in modern architecture and identifies this
shortcoming as the reason why the public has been reluctant to accept some of its examples.
Based on this argument it is possible to classify architecture according to fractal properties.
However, this does not imply that buildings are fractals; it only means that the analysis of
fractal properties may serve to characterize architecture across certain scale ranges. Hence,
architecture is at best fractal-like.

Fractal-like objects encompass order and diversity at the same time, without monotony
or chaos–a prerequisite for aesthetics. This paper presents two measurement methods
evaluating degrees of self-similarity as a measure of complexity in different ways, the box-
counting method and the coordinate-based measurement of proportional redundancy [5].
These are puzzle pieces on the way to understand architectural quality [6]. The assessment
of the quality of a building design follows several criteria, including among others the
relationship to its surroundings, functional aspects, and sensual charisma [7]. As others
e.g., Salingaros [8] the authors are convinced that the presence of design components
corresponding to the human scale–from the entire body to the finger’s width–is essential
for the human perceptive experience. This implies that a characteristic architecture and the
aesthetic relations it contains are recognizable and readable within a distance-range from
city skyline up to direct contact of the perceiving individual with the entrance doorknob.

1.1. Fractal Geometry and Architecture

Analysis based on the fractal theory is about capturing complexity as it manifests
itself in nature, such as in the shapes of coastlines, clouds or trees. Mandelbrot stated
that “Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line” [3]. Architecture, although
based on simple Euclidean forms like squares and circles, usually constitutes an overall
complex shape that is often hard to capture using simple terms. Corresponding to the
idea that fractal geometry is an attempt to fathom nature’s complex phenotypic structures,
fractal analysis may also serve as a means to describe aesthetic complexity in architecture.
On this basis, it may be argued that fractal analysis of architecture is suitable to classify
architecture in terms of visual qualities. It is thus a comparatively new way of looking
at architectural quality [7]. In doing so it is of no surprise that relations between the
beauty of nature and iconic architecture can be identified scrutinizing their fractal related
characteristics [9]. However, it is not only the description of characteristic properties, e.g.,
self-similarity, irregularity or fractal dimension to name but a few, but also the definite
measurements, that point out the importance of continuous similar roughness across scales.
Functions, materials and economy limit the areas in which fractal properties occur. For
a characterization of architecture in the fractal dimension it is important to define these
areas.

This paper is based on the hypothesis that aesthetic quality in architecture requires
consistent design principles from large to small and therefore methods of analysis related
to fractal geometry are useful tools as they allow for calculating and visualizing charac-
teristic relations across scales, taking both the entire shape and its details into account.
This includes among others the consistency of roughness and the level of redundancy of
proportions. Thus, architectural aesthetic quality is linked with fractal characteristics of
roughness, self-similarity and scale-invariance.

1.2. Scalebound and Scaling Shapes

While Mandelbrot [10], as already mentioned, calls the architecture of Mies van
der Rohe a step back to the scalebound Euclidean, he names the Paris opera by J.-L.-C.
Garnier as a representation of a scaling shape. Mandelbrot calls shapes that have a limited
number of characteristic elements of scale, such as width and length, scalebound [10]. In
contrast, a building characterized as a scaling shape has different elements of scale with
interwoven harmonies that the observer can hardly distinguish visually, but which to
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him or her rather form a unit. With this property, significant characteristics of an object
remain the same, independent of scale. Due to this fact, its scales remain unclear–this
is called scale invariance, where the observed section can be a small or a large part of
the whole object. Similar to the structure of the striped fern, which becomes more and
more imprecise with closer inspection, architecture is also only slightly scale invariant.
As an observer is changing position while approaching a building, its elements will be
successively revealed in concordance with the altered distance between particular points
of view and the architecture, but only until a certain smallest scale is reached. Every
part offers the same degree of irregularity, this visual characteristic remains the same
independent of scale–the relation between smooth “empty” parts and details remains the
same [9]. The complexity of smaller parts is similar to that of the entire object. In other
words, coherence exists between the whole and its components. Coherence describes the
state in which all components are in balance and support one another [8]. Certain kinds of
architecture derive their coherence from the properties of scale invariance and (statistical)
self-similarity; statistically self-similar signifies that smaller details are on average similar to
the whole [11]–across scales a typical character is observable, the degree of its irregularity.

1.3. The Leitmotif

Buildings with only a few scale levels that reveal the Leitmotif (or design idea) and
large distances between them show an affinity to Euclidean geometry–they lack different
scales concerning their measurements. While only a few lines are sufficient to draw a
cube, fractal shapes require a large number of lines and line segments for representation.
Nonetheless, the underlying algorithm of a fractal form consists of only a few rules which
are repeated recursively. In architecture, this is similar to repeated variations of a Leitmotif
or theme on different scales, e.g., with the aid of production rules. From a fractal point of
view, Frank Lloyd Wright’s Robie House is a classic example of a consistent implementation
of such a strategy. The observer therefore remains interested while approaching and the
relation between confirmation and surprise regarding his/her expectations remain in
a tolerable, even enjoyable balance. As the distance to the building decreases, smaller
and smaller elements (in increasing numbers) appear that have a similar characteristic
in comparison to the whole, while larger elements completely disappear from view. The
idea that holds everything together at Robie House is derived from the surrounding
environment, the flat prairie [12]. Largely cantilevered and slightly sloped roofs, flat
bricks with flush bed joints, enclosing walls of different heights with elongated stone wall
crowns, details of the furniture and the generally flat overall design stress the element of
horizontality while also resembling a ship’s bow by the repetition of a certain angle [13].
Although F.L. Wright calls for simplicity, what he rather seems to adhere to is that each part
becomes a harmonious element of the whole [14]. The principles of organic architecture by
F.L. Wright are also a quest for the simplified specific shape that expresses a building; this
may be regarded as an early description of what fractal architecture is.

1.4. The Whole and Its Parts

Besides FL Wright, other architects have produced theoretical writings that also show
proximity to fractal geometry long before B. Mandelbrot formulated his stance on the
subject. In many cases, these thoughts arose in connection with nature or resulted directly
out of its observation. Louis Henry Sullivan (Wright’s “master”) derived his design rule
from nature, according to which the form always follows the function and to which not only
the whole object but also its details, such as ornaments, have to be subordinate [15,16]. In
his book “Une Architecture” Le Corbusier writes about the necessity of mathematics-based
rules for the design of a building [17]. He justifies this with the statement that these rules
are the only way to maintain order and thus allow the whole and its parts to appear as a
unit. Another example of closeness to fractality is the Schröder-house by Gerrit Thomas
Rietveld from 1924 [9]. It is one of the most refined examples of the Dutch movement De
Stijl. The house consists of a sequence of lines and surfaces of different sizes and functions.



Fractal Fract. 2021, 5, 244 4 of 24

Each part of the composition subordinates to a binding principle. The Schröder-house
follows the basic idea of lines and surfaces running past each other, thus canceling its
boundaries. This holds true for the whole (large white slabs determine the spatial and
structural order of the house), the smaller slabs (forming the balconies) and the lines (iron
girders and gutter) down to smaller interior design elements (sliding walls and chairs).

Even entire building tasks of an epoch can show a statistical self-similarity due to
their basic idea. Gothic cathedrals, as such an example, are an expression of aspiring to
“strive for heaven”, reflected in the verticality of all parts (e.g., the arches) and the entire
building. Although the shapes of individual elements are adapted to specific functions, to
the construction, to artistic or content-related expressions, each scale nevertheless shows
a similar roughness, which leads to a uniform character. Changing the position and in
doing so the distance to a building, the latter will always offer some elements that fit to the
scale defined by the observers position while a basic idea relates individual elements to
the whole. The Gothic cathedral is thus an expression of unity between the whole and its
parts, which can also be found in nature e.g., in coastlines (see [18] and for state of science
on recent processing algorithms e.g., [19]).

1.5. Complexity and Irregularity

A closer look at façades shows that they are more than just the outer one-dimensional
silhouette lines. They are by no means smooth two-dimensional surfaces. They consist of
a multitude of elements in different sizes, from walls, windows, frames to single bricks
(the smaller the elements become, the more they grow in number). Building elevations
show cutouts such as windows and doors, but also receding and projecting or overhanging
parts such as bay windows, cornices and canopies. Also, surfaces are uneven due to the
materials used and the way they are processed. Therefore it can be deduced, that the
outward appearance of buildings in general is related to fractal geometry, with a broken,
i.e., fractal dimension between one and two [9]. This is consistent with the assumption
that fractal geometry provides a possibility to describe complex spatial structures (such
as building elevations) by their fractal-related characteristics, including irregularity, scale-
invariance and fractal dimension. In conclusion, the applicability of these properties is a
strong clue for buildings being more or less a sub class of fractal geometry. However, with
buildings there is always a lower limit of scalability, which is reached once dimensions
drop below the human scale.

2. Materials and Methods

With methods that analyze 2-dimensional line graphics (box-counting and redun-
dancy), the correct selection of what the observer perceives is decisive. The components to
be measured are in this sense essential, since it is not the real building that is examined,
but only its representation, e.g., in the form of CAD drawings. The method presented here
does not measure self-similarity, but the continuity of roughness over a range of scales.
The range simply reflects the interdependence of two values (scale versus covering boxes).
In regards to this measurement, it is irrelevant whether the values result from repetitions
of the same element with unaltered size (e.g., the repetition of similar ornaments around
windows of a so-called Gründerzeit house) or from a variation of an idea from large to the
small scale.

2.1. Fractal Dimension

The fractal dimension [20] is a characteristic measure of fractals and provides a
connection between different levels of scale that have self-similar elements [21]. According
to the definition, a fractal is a set whose Hausdorff-Besicovitch dimension [22], that is
the theoretical definition of the fractal dimension, exceeds the topological dimension [3].
In many cases, the fractal dimension is fractional. Since some fractals (e.g., from nature)
do not have any strict self-similarity, fractal dimension is often the only way to describe
them. According to Mandelbrot, this also allows for a further differentiation of otherwise
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topologically identical shapes (e.g., regarding coastlines; [3]). Box-counting is one of several
possible measurement methods and its result is equivalent to the fractal dimension of the
object under scrutiny. This method turned out to be particularly suitable for architecture,
especially for façades. Taking into account the architectural fractal dimension, it:

• allows the quantitative measurement of mixture between order and surprise in a
structure [3]

• gives the visual complexity a quantitative value [3]
• allows to analyze and to compare geometric properties [22]
• enables statements about harmonic relation between the whole and it parts [8]
• enables the comparison of different design solutions [8]

2.2. The Box-Counting Method Applied to 2-Dimensional Line-Graphics

A similar roughness across scales, as an indication of (statistical) self-similarity, man-
ifests itself in a similar fractal dimension for the whole and its parts [8]. As described
above, there are different approaches to defining the fractal dimension and accordingly,
different measurement methods. Since its first application in architecture, it turned [3,23]
out that, the box-counting method works well in this field, especially on façades [22,24].
One advantage of this method lies in the measurability of non-fractals.

The principle of this method is to cover the object to be measured with a minimum
number Ns of squares with a certain side length s [25]. In terms of architecture, such an
object consists of all relevant lines that characterizes e.g., the façade; it may be assumed
that the object is an artifact pointing to the basic design intention of the architect. The
general formula for calculating the box-counting dimension DB results from the repeated
reduction of the dimension of the squares constituting the grid according to:

DB = lim
s→0

(
log(Ns)

log( 1
s )

)n

(1)

for the case that a limit value with s→ 0 exists [20]. While the function slowly approaches
the limit value, the slope of the regression line in a double logarithmic graph with Ns versus
s estimates the box-counting dimension (which is equivalent to the fractal dimension). In
short, the fractal dimension represents itself as a trend; more specific as a straight line in a
double logarithmic graph with the magnification factor versus the change in sizes of length,
area or volume. With façades and other artificial objects, two cases are possible: the data
points in the double logarithmic graph fluctuate heavily, i.e., no relationship exists between
the side length ε and the number Ns, or the data points show a significant relationship for
a certain range. Even in the latter case, a certain tendency holds true for a limited range
of scales at best; within this range, the increase in the number of architectural elements
relates to the decrease in their size. In every case, from a certain scale onwards, the result
flattens and approaches the value one (the value for a straight line). The coefficient of
determination helps to define the characteristic range. In summary, the box-counting
dimension characterizes the continuity of roughness across (a limited range of) scales.
However, only by giving the scale range, the coefficient of determination, and the height of
DB it is possible to compare different objects (e.g., façades) with one another.

Although the box-counting method is easy to implement, one has to be aware that
specific factors influence the result; including general parameters related to the method
itself [26], but also architecture related factors. Previous studies showed the importance of
mainly two factors [8]. First, the range of significant relation between scale and roughness,
and second, the characteristic value itself. The range of significant relation is an indicator
for size ranges of continuity, expressed as a strong positive correlation between scale and
number of covering boxes. The graph allows to easily identify changes in the characteristics
(i.e., the direct relation changes, visualized by the flattening of the curve). The amount
of the characteristic value in turn describes the roughness itself–with lower values for
smoother appearance and higher values for rougher appearance. The visual preference
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peaks for fractal dimensions between 1.3 and 1.5 [27], although it may be argued that
such a balance must take into account other layers of aesthetic complexity (e.g., color-
related analysis in connection with box-counting of pictures). The implemented algorithm
compensates inaccuracies owed to the reduction factor and the position of the grid. In
addition, statistical values describe the accuracy of the results. Recursive programming
speeds up the measurement process.

2.2.1. Influence Factors

In literature concerned with the subject, scientists, although using the same method,
give different results for the same elevation. This is due to several influence factors, but
also a result of different preparations of the elevation. Therefore, it is important not only
to provide the image of the elevation but also to describe the algorithm and to give the
specific parameters as additional information about the measurement. Consequently, it is
not possible to describe façades by a single value, but by a set of parameters.

Regarding façades, or more precisely its black and white representation, box-counting
measures the relation between significant transitions–represented as lines in the elevation–
and empty spaces in between. Therefore, the preparation of the elevation is of vital
importance. With this in mind, it is obvious that it makes a difference whether pixel
graphic or a vector graphic is measured. The former has a certain line thickness that
influences the result, while the latter has no thickness per se. As a result, this paper uses
an implementation that measures vector graphics. In this way, no further processing of
the otherwise (scanned) pixel graphics is necessary. Another influencing factor is the
selection of the elements, which are considered, e.g., the significant lines. Such significant
components must correspond to the main elements of the original façade and may include
the outline, receding sections of the walls, doors and windows. Whether the analysis
should include ornaments is a decision about the range of observation (i.e., which distances
to the building shall be covered) as well as about the question if the basic design intention
is to be detected in an exemplary fashion or the whole representation is to be scrutinized
generally.

Other influencing factors derive directly from the method of analysis, including the
initial size of the grid, given by the largest box-size. Fourtan-Pour et al. [26] define this
size, in general, as one fourth of the smallest side of the object, while one third is sufficient
for less complex structures. The smallest box size, in turn, is identical to the scale at
which the data points in the double logarithmic graph approaches a slope of 45 degrees.
This corresponds to the point after which only separate one-dimensional lines are in
focus. Another influencing factor concerns the reduction factor from one grid size to the
consecutive smaller size. In the literature, this is often a reduction by half. This leads to
large gaps between the individual measurements, especially with larger box sizes. The
implementation presented here considers this and allows smaller reduction factors as
well. Finally, the empty area around an object also influences the result. This area makes
it possible to move the grid and thereby reduce the influence of the starting position in
relation to the measured object. This also prevents counting a straight line of a vector
graphic that lies exactly on the borderline between two boxes twice; this is important
because the method requires the smallest number of boxes to cover the object.

2.2.2. Implementation

The authors have implemented an earlier method, written in VBA for AutoCAD, in
Grasshopper® for Rhinoceros® [28]. This time, too, the possibility of setting various param-
eters considers the influencing factors (see Figure 1). The main result of a measurement
series consists of:

• The box-counting dimension DB as a result of the minimum number of covering boxes
and the corresponding coefficient of determination R2 (which serves as a measure of
coherence)
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• The median DB (central value of a data series) of all results visualized in a box-plot,
with the interquartile range describing the accuracy of the entire set

• The average DB of all results
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Figure 1. Box-counting with graphic macro programming in Grasshopper®.

The box plot is important because it visualizes the distribution of the data points (the
scattering of the data). While the median of the box plot divides all data values exactly
into two halves, the first (lower) and third (upper) quartiles designate the limit value of a
quarter and three-quarters of the data, respectively.

After calling the appropriate Grasshopper® program, the user selects the object un-
der consideration in Rhinoceros® and assigns it. For performance reasons, the authors
recommend grouping all relevant objects. With the definition of the bounding box, the
program also calculates the shortest side. Then follows, depending on the user selection
(see (e) in Figure 1), the subdivision of the smallest side or of the x-parallel side into the
specified number of boxes (“numBoxesSide” (d) in Figure 1). The subdivision of the other
side results from the approximation of square boxes. Regarding the following iterations
(number of divisions; “iterations” (a) in Figure 1), exactly dividing each box into quad-
rants means recursively considering only those boxes that have already covered a piece
of the object. This speeds up the algorithm as smaller grid sizes do not examine empty
boxes anymore. Dividing the distance between the two largest box sizes by the number
of “steps in between” (see (f) in Figure 1) results in the additional starting grid sizes. To
achieve better accuracy of the measurement, the program adds an empty space around
the object in a further step. The empty space corresponds to the difference resulting from
a multiplication of the smallest side of the bounding box with the factor “enlargement”
(see (b,g) in Figure 1). This also enables different starting positions of the grid, while at the
same time maintaining the absolute size and completely covering the object. With only two
offsets (see (c) in Figure 1), the lower-left starting point results from the fact that the grid
still has to cover the upper right corner of the object (its bounding box). The same applies
to the other three corner points. Consequently, two offsets result in four (2 by 2)-starting
positions. In the visualization, the iterations are in the horizontal direction while the offsets
and intermediate steps are in the vertical direction. In addition to the before-mentioned
parameters, the user defines the worksheet number of an open Excel sheet into which to
write the result.

2.3. The Box-Counting Method Applied to Photographs

FRACAM is a web-application that analyzes pictures taken with the cell phone
(Figure 2). Put in simple terms, the application extends the algorithm for vector graphics
(or black and white images) by a third dimension, which is the color (or the grayscale
value). The difference lies not only in the color; FRACAM also takes the surroundings
into account and the perspective replaces the orthogonal projection. The vision that drove
the development of the application was reaching the possibility to analyze the current
status of a building as opposed to its representation as a technical drawing. While the
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conventional box-counting method rather analyzes the design intention contained in the
latter, FRACAM is focused on the building in its real environment with adjoining buildings,
surrounding vegetation as well as the sky, thus taking material properties, natural shadow-
ing and coloring into account [5]. Since the application analyzes pictures taken with the cell
phone camera, it contains color analysis methods to simultaneously examine the influence
of colors on the result. While methods applied to line graphics of façades allow for a
quantitative analysis, grayscale analysis rather concentrates on the texture [29,30]. In doing
so FRACAM integrates, besides the basic box-counting method, the improved differential
box-counting method based on square cut-outs [31] with and without shifting boxes [32],
the integer ratio based box-counting method based on original image dimensions [33]
with and without shifting boxes, the improved differential box-counting method for color
images based on square cut-outs [34] and based on original image dimensions.
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Figure 2. Box-counting with FRACAM.

The additionally implemented methods of color analysis are important in order to
determine influences caused by photography (e.g., brightness and color influenced by the
date, season and possible background containing vegetation or blue sky). These methods
use the average color of the image (original code see [35]), the prominent colors (see
“vibrant.js” [36]), the dominant color palette (see “color-thief.js” [37]), the color count, the
saturation count and the lightness count from an image according to fixed intervals.

2.4. Redundancy of Proportions, Gradient Analysis and Grid Analysis

The coordinate-based analysis of proportional redundancy is another concept to
analyze and characterize complexity in architecture and can be applied in the areas of
eurythmia and symmetria as described by Vitruvius (see e.g., [38]). As one of those methods,
the gradient analysis explores the repetition of proportions within a 2-dimensional design
such as façades. It measures the proportions as ratios or gradients and calculates the amount
of repetition to identify dominant ratios [4,39]. Redundancy of proportions reduces the
complexity of an objects’ appearance (see e.g., [40]) and through the use of the gradient
analysis this certain redundancy is quantified. Another example of coordinate-based
evaluation of proportional redundancy is the grid analysis [41]. This article is focused on
the gradient analysis regarding redundancy while including certain aspects of the grid
analysis into the discussion of the main thesis.
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Described here in further detail, redundancy of proportion as measured with the gra-
dient analysis method is merely a part of a holistic strategy aimed at an overall comparison
of balance of the aesthetic characteristics of an object. The gradient analysis algorithm
considers all possible connections of a list of given coordinates, including proportions not
directly identifiable by visible lines, and measures the amount of repetitions of the gradi-
ents of all possible pairs of coordinates within a given set. This corresponds to perception
based on cognitive theory and probable original artistic conscious or intuitive intention in
regards to the object under scrutiny. The underlying hypothesis of the implementation of
the box-counting method and this form of proportion analysis is that enhanced redundancy
enhances object readability on part of the viewer (see e.g., [42]). Thus, it is argued here,
that the readability of an object as a dimension, which potentially leads to a more pleasant
visual perception experience if balanced properly with other layers of aesthetic complexity
(for a multilayered complexity analysis within the box-counting method see [5]), may be
digitally measured to an increasingly significant extent, described in multidimensional
detail and therefore be made more and more tangible for conscious evaluation and design.

Implementation of the Gradient Analysis

Since the conception of gradient analysis [4] as a method to measure complexity in the
area of eurythmia, the approach has undergone several refinements first described here.

Architectural Scale: All given coordinates are rounded to represent one tenth of a
millimeter in the real world, which also serves to reduce calculation time.

Deep gradient analysis: To take all areas e.g., of a façade of a building represented
by a list of coordinates into consideration, all intersection points on an orthogonal grid
which can be derived from the original coordinate list are calculated. This includes e.g., the
proportion of an area between a window and the edge of a façade (see Figure 3).
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Figure 3. Calculation of intersection points on the orthogonal grid derived from original points.

Tolerance in horizontal and vertical positioning: The list of all possible intersection
points is recalculated to assign the same x-value to all x-values whose difference is within
a previously given range. This method is then applied also to all y-values in the same
manner.

Centered Calculation of Local Maxima: Previous versions of the gradient analysis
calculated local maxima in a top down fashion, starting with the 90 degree gradient
and assigning all following gradients within a predefined tolerance to this gradient. The
algorithm presented in this paper puts a calculation of local maxima first and assigns values
within a given range to the values in a gradient list re-sorted accordingly (see Figure 4).
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Figure 4. Calculation of distinct gradients based on local maxima within a given range.

Thus, the steps of an up to date gradient analysis of a set of 2-dimensional coordinates
may be described as follows (Figure 5):

• rounding the values of a given set to represent coordinates on an architecturally
relevant scale;

• calculating all points on an orthogonal intersectional grid derived from the given set;
• repositioning of the intersectional grid on the x- and y-axis according to a chosen

vertical and horizontal tolerance value (as a percentage of maximum x- and y- distance
within the given set);

• calculating all gradients of all possible connections between points;
• calculating local maxima of the gradients according to a chosen tolerance value;
• assigning neighboring values within that chosen range to the gradients representing

local maxima;
• listing the remaining gradients and their weight according to the local maxima calcu-

lation;
• counting the remaining gradients and forming the quotients of the number of remain-

ing gradients and the possible number of connections based on the original coordinate
list as well as the list of all points on the intersectional grid.
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The setting of the tolerances is still undergoing a continuous refinement process. It is
safe though to say, that these settings are very likely decisively linked to the complexity
of the given objects measurable in different realms of aesthetic analysis, one being the
box-counting dimension.

3. Results and Discussion
3.1. Box-Counting: Verification of the Data

As a first step, the authors undertake a verification process by analyzing fractals
with known self-similarity dimensions and simple test cases. The next steps consist of
measurements of iconic architectures and their comparison with results published in
previous papers by the authors and by other scientists using slightly other algorithms; this
time with the aim for an application including several methods for measuring aesthetic
complexity in one system simultaneously. This means to supply architectural education
and practice with yet another digital tool for the aesthetic perfection e.g., of a building
façade as well as its sculpture and serves as a basis for a critique aimed at modern investor-
driven buildings that argue with a modernist canon of form. It brings to light crucial
differences in dealing with smoothness and modern style elements.

3.2. Box-Counting Applied to Fractal Curves

Strictly self-similar objects–in which even the smallest details are exact reductions of
the whole–show a clear connection between the scaling factor si and the number of parts
Ni for a certain iteration i. The value that characterizes this relation is the so-called self-
similarity dimension Ds. Therefore, Ds serves as a reference value for other measurement
methods. However, since box-counting cannot measure self-overlapping, only self-similar
curves that do not overlap themselves are suitable for this reference measurement. This
is due to the fact that the box-counting method measures boxes at a maximum of one
time only [20]. The Koch curve, named after the mathematician Helge Koch serves as test
case. First published in 1904 [43], it is one of those curves that are continuous everywhere
but differentiable nowhere. With self-similar structures, such as the Koch curve, there
exists a relationship between the scaling factors and the number of parts N of reduced
components [20]. The power law below gives this relationship:(

1
s

)Ds

= N (2)

with Ds being the self-similar dimension. Solved for Ds results in:

Ds =
log N

log
(

1
s

) =
log 4

log(3)
= 1.2619 (3)

The construction rule from before shows an angle of 60 degrees between the first
segment and the second. However, other angles are conceivable as well. If the angle is
changed, the calculation has to consider this angle in the following way:

Ds =
log 2

log
(
2× cos

(
α
2
)) (4)

which results in 1.2619 for 60 degree, 1.0986 for 40 degree and 1.6247 for 80 degree. With
knowing these results, all three variants of the Koch curve with seven iterations each serve
as test case for the authors’ implementation. The aim is to find the most consistent settings
by changing the parameters.

3.3. Optimized Settings

In order, to clarify the optimal setting and to identify the influencing factors, the
authors carried out 99 series of measurements for well-known fractal curves, including
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Koch curve (D = 1.26) and its variants with 40 (D = 1.1) and 80 (D = 1.62) degrees, the
Minkowski curve (D = 1.50), the Sierpinski gasket (D = 1.58), the Hilbert curve (D = 2) and
the Peano curve (D = 2). The calculated values served as comparison data.

In order to obtain the standard settings for further investigations, the authors tested
the influence of the number of iterations together with the enlargement factor first. In doing
so, 3, 5, and 7 iterations were examined, each with an enlargement factor of 1 (means no
enlargement) and in 5 steps up to 1.9. On the one hand, it became apparent that the number
of iterations affects the result, with 3 iterations leading to the highest deviations and
7 iterations to the lowest. A higher number of iterations is not necessary as the results are
already close to the calculated self-similar dimensions. If this parameter were to exceed a
certain limit value, the data curve in the logarithmic graph would flatten and the coefficient
of determination would decrease (Figure 6). On the other hand, it turned out that too much
white additional space around the object under investigation worsens the result as well.
This especially holds true for a medium-height dimension as for Minkowski curve. In this
case, the deviation increases up to minus 13% (DB = 1.3).
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Figure 6. Hilbert Curve, measurement with 7 iterations showing flattening of the data curve.

With this knowledge, the authors tested the influences of different enlargement factors
against changing intermediate steps. This confirmed the trend from before, in which the
deviation increases with the degree of magnification. It was also observed that intermediate
steps only partially improve the results (1 × 1, 2 × 2 and 4 × 4 steps in between were
considered; Figure 7a,c: compare single columns, which include different enlargement
factors). Figure 7 also shows that the influence of the enlargement factor is in any case
higher than the influence of intermediate steps. This holds true for fractal curves of higher
fractal dimension (Hilbert Curve with a fractal dimension of 2.0) and those with a lower
dimension (Koch Curve with a fractal dimension of 1.26). The next step was an analysis
with the same settings, but with 3 × 3 additional offsets (Figure 7b,d). This led to slightly
better results, especially for curves with a fractal dimension above 1.5–it had a greater
effect on the higher enlargement factors, which otherwise led to larger deviations (compare
corresponding columns of different enlargement factors in Figure 7a,b).
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Figure 7. (a) Hilbert Curve without offsets; (b) Hilbert Curve with 3 offsets; (c) Koch Curve without
offsets; (d) Koch Curve with 3 offsets.

The test series was then continued with magnification factors of 1.1, 1.2 and 1.3 with
different iterations (5, 6, 7), offsets (without or 10 × 10) and intermediate steps (0, 6 and
10). The results were consistently promising with a deviation of less than 5% (with the
exception of complex curves with fractal dimensions of 2). An increase in the number of
start boxes for the shortest side from 3 to 5 led to a further improvement, especially for
curves with either smaller or larger fractal dimensions. However, with the Hilbert curve, it
turned out that the data curves flatten out at the end, indicating that the smallest box sizes
do not cover any new turns of the curve. That means the scale of the grid size no longer
corresponds to the scale of the smallest details of the curve. Hence, with a higher number
of initial boxes of the smallest side, the number of iterations must be reduced for this curve.
This particularly shows the influence of the number of initial boxes and of the number of
iterations (or in other words the influence of the choice of the largest and smallest box size).
In general, it can be deduced that a size of four boxes for the smallest side is a good choice
in most cases. This corresponds with the findings of Fourtan-Pour et al. [26].

The pre-defined settings, including variations for the enlargement factors of 1.1, 1.15
and 1.2%, show a clear trend. While fractals with a small fractal dimension close to Ds = 1
(self-similar dimension) almost reach or only slightly exceed the calculated value, fractals
with a high fractal dimension deviate more clearly from the expected value. In addition,
the latter fall below the value in any case. It also shows that these observations hold true
for both the median and the calculated average value (Figure 8a). The measured value
(DB), which considers the smallest possible number of covered boxes, shows a similarly
high positive deviation (by +3%) for fractals with low self-similar dimensions, as show
a negative deviation (by −3%) for fractals with high values (Figure 8b). In any case,
the enlargement factors of 1.1% gives the most accurate results for all fractals in the test
series. Since analyzes of façades only rarely exceed the value of 1.7 or fall below 1.3, the
following measurements will use an enlargement factor of 1.15%, and above all the median
is considered. This also corresponds more precisely with the statistical analysis of accuracy
as shown by the quartiles.
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Figure 8. Results with pre-defined settings showing the difference for 1.1, 1.15 and 1.2% enlargement
factor, with (a) showing the medians and (b) showing the results for only smallest number of
covering boxes.

Finally, the values that led to the best results for all curves, considering an acceptable
performance, were:

• Enlargement factor: 1.15
• Number of boxes for the shortest side: 4 (here the authors made a compromise between

the two test series of 3 and 5 starting boxes; during the verification phase it turned
out that the former worked well for less complex curves, while the latter gave better
results for more complex curves)

• Offsets: 5 × 5 (the authors reduced this number due to performance reasons)
• Steps in between: 5 (this value divides the box size in the x-direction between the

largest and the next smaller one, whereby the latter is not allowed to be undercut;
hence, it defines a maximum value that can change depending on the proportion of
the bounding box; e.g., for a square shape and 4 starting boxes for the smallest side,
the next smaller grid size equals 8; accordingly, there are only 3 intermediate steps
possible; such an adjustment is automatically done by the program)

The final settings with 1.15% enlargement factor lead to the following results–with
DMedian, Ds and the corresponding deviation [%] given in brackets:

• Koch curve (DMedian = 1.2639, Ds = 1.2619, 0.16%)
• Koch curve with 40◦ (DMedian = 1.0963, Ds = 1.0986, −0.21%)
• Koch curve with 80◦ (DMedian = 1.6041, Ds = 1.6247, −1.27%)
• Minkowski curve (DMedian = 1.4782, Ds = 1.50, −1.45%)
• Sierpinski gasket (DMedian = 1.5745, Ds = 1.5850, −0.66%)
• Hilbert curve (DMedian = 1.9256, Ds = 2.0, −3.72%)
• Peano curve (DMedian = 1.9238, Ds = 2.0, −3.81%)

3.4. Box-Counting Applied to Test Cases

Some simple designs (Figure 9) already published at eCAADe 2015 again serve as
test cases [4], this time not only for proportion measurement but also for the box-counting
method. Since these are simple geometries without ornamentation, the resulting box-
counting dimensions remain comparatively low. The first four designs (Figure 9) do
not differ in the number of openings, but in their proportions and spacing. As shown
in Figure 10, the results are very similar to each other; especially when all values are
considered (“all values”). “All values” simply states that all results from all iterations are
taken into account. However, the part of the data curve with the smallest deviation counts,
i.e., the range that offers the straightest part of the data curve (Figure 11). This range is
characterized by a coefficient of determination close to one. With the examples presented
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here, the box-counting dimension slightly increases from the first to the fourth example.
This illustrates the importance of defining the data range with the greatest correlation
between the grid size and the number of boxes covered. This example shows a correlating
increase in the box-counting dimension with the complexity of the design.
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3.5. Box-Counting Applied to Iconic Architecture
3.5.1. Settings

The search for the straightest possible section of the data curve also holds true for
façades. This time, however, the smallest and the largest box sizes also depends on the
building size [8]. First, the lowest limit for the smallest box size depends on the smallest
details shown on the plan. This corresponds with the area of sharp vision and the theoretical
distance to the object. Second, the field of vision and fictitious distances to the object define
the range of box sizes (smallest and largest). “Fictitious” because it is a measurement of
the architect’s design intention and not what is actually built. In the latter case, one would
only seldom approach a building in a direction perpendicular to the façade but in line
with the street, in most cases parallel to the building’s front. In [8] a calculation of box
sizes depending on the field of vision and the area of sharp vision was presented, which so
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far has proven to be suitable. There is a relationship between height and viewing angle
through:

Distance = (Building height)/tan (Angle) (5)
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As a result of Maertens [44] und Bovill [23] the authors first defined the angles of
18◦, 27◦ and 45◦ in order to calculate the fictitious distances from the building height:
18◦ corresponds to an overview with the surroundings, 27◦ to an overview and 45◦ to
the representation of individual parts. Finally, the calculated distances together with the
angles 1◦, 7◦26’ and 10◦ give an indication of the range of the boxes. For the smallest line
differences, on the other hand, an angle of 10 min applies in dependence on the distances [8].
Table 1 shows the calculation for the north elevation of the House Steiner. In the range of
box sizes, the straightest section of the data curve is again of interest. Basically three results
are possible:

(1) All data points are very close to the regression line, i.e., there is a clear relation-
ship between box size and number of covered boxes over the entire range under
consideration.

(2) There are two clearly separable intersecting straight segments, with different gradients.
Accordingly, a range with larger boxes can lead to higher fractal dimensions, followed
by a section with a smaller fractal dimension.

(3) The data points show a continuous curve without straight segments.

While the first two cases occurred in the buildings examined so far, the third case has
not yet been observed. The kink in the data curve i.e., the point of intersection of the two
line-segments in case 2, observed mainly in modern buildings, corresponds to the change
in focus from main design on a large scale to the small scale, where the details are missing.
The latter section therefore offers a lower fractal dimension. This also corresponds to the
idea of classical modernism to deliberately avoid ornamentation.

An applicatory novelty of the method presented in this paper is, that a script is
available that can be used directly in a CAD program (Rhinoceros®). Furthermore, the
use of Grasshopper® for an architectural environment is “state of the art” considering the
practical introduction of such analyses into the design process.
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Table 1. Calculation of the box sizes depending on the building height and the distance for the north
view of House Steiner.

House Steiner:
North Elevation

Angles: 18◦ 27◦ 45◦

Approximate
distances: 40.50 m 25.80 m 13.20 m

Distance
corresponds to: Overview Overview with

environment Single parts

0◦10′ 11.80 cm 7.50 cm 3.85 cm

1◦00′ 0.85 m 0.50 m 0.25 m

7◦26′ 6.35 m 3.60 m 1.75 m

10◦00′ 8.55 m 4.85 m 2.35 m

3.5.2. Measurements

Examples of iconic architecture analyzed in this paper include Robie House by Frank
Lloyd Wright, Villa Savoye and Villa Schwob by Le Corbusier, House Mandl, House Scheu
and House Steiner by Adolf Loos (Figure 12). This is due to the fact that reference data
exist since various scientists have already measured them using box-counting [3,8,45,46].
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Figure 12. Analyzed buildings without scale: (a) Robie House, street view with and without window
design, FL Wright, 1908, (b) House Steiner, north, east, south, west view, Loos, 1910, (c) House Scheu,
north, east, south view, Loos, 1913, (d) Villa Schwob, north-east, north-west, southeast, south-west,
Le Corbusier, 1916, (e) House Mandl, Loos, north, east, south, west view, 1916, (f) Villa Savoye, north,
east, south, west view, Le Corbusier, 1928.

The comparison with previous measurements shows similarities, but also deviations.
It is therefore important to understand the influence of settings, but also to specify the
range of box sizes and the DB as a box plot. While the range defines the validity of the
measurement result, the latter provides information about the spread and thus the accuracy.
In this paper, a more accurate measurement method with the calibration of the parameters
based on several well-known fractals was presented (see Section 3.3 “Optimized Settings”).
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In addition to the calibration using known fractal dimensions, the definition of the range of
the straight section of the data curve is of great importance (i.e., the range of significant
correlation between the grid size and the number of covered boxes). Within the range of
box sizes, depending on the building height and distance, it is possible that there is more
than one straight section (see Figure 13).
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Figure 13. Kink in the data curve between the range of larger and smaller box sizes for House Mandl.

As mentioned before, for interpretation of the results, a box plot of all DB is an
indication for the accuracy and the scattering respectively of all box-counting dimensions
of a series of measurements. Figure 14 shows the results, with the range under consideration
divided into two different straight-line sections (referred to as “first” and “sec”). As can be
seen, the median of the first section (the range of larger box sizes) is always higher than
the second one. This corresponds to the endeavors of classical modernism to consciously
dispense with ornamentation on a smaller scale.
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As Figure 14 indicates, there are clearly different variations in the series of measure-
ments. The percentage at the bottom of the chart gives another indication of the variation; it
is the sum of the two middle quartiles (the interquartile range) in relation to the maximum
dimensional value of two. A very high variance (percentage) indicates a less meaningful
result. This applies, for example, to the north facade (both sections) of the Villa Savoye. In
comparison, all second sections of House Mandl and House Steiner show less variation. In
these cases, moreover, the box-counting dimensions are similarly high and by that indicate
a similar roughness in this range. If, on the other hand, one looks at the first sections of the
House Steiner, there are similarities between the north and south façades or the east and
west façades, with the former showing a lower median than the latter.

Regarding House Mandl, House Scheu, and House Steiner, two different measurement
series were made: on the one hand, including only the main design elements (attached
abbreviation “main”) and on the other hand including the design with window frames
and other secondary elements (attached abbreviation “all”). Figure 15 shows the result for
House Steiner. It can be clearly stated that for the first section there is hardly any difference
between the results for the entire design and the main elements. Only in the second section
are the values for the main design significantly lower than when including secondary
elements. This can be seen as a further indication of the main design focus. On the other
hand, it shows that there are nonetheless additional elements in the small scale, even if
there is no ornament.
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Figure 15. Comparison Main Design and entire design (including e.g., frames of windows).

Figure 16 shows a comparison of previous measurements for House Mandl (Lorenz
2014) with those under usage of the program presented here. As can be seen from the
figure, all results provide similar values for the same range of box sizes (see Figure 16 right;
box size given as a percentage of the height), both in the median and in the box plot (see
Figure 16 left).

The box-counting implementation presented here also takes the smallest number of
covered boxes for each grid size for the first time into account. This means that for each grid
size and its varying positions (due to displacement) the smallest number of covered boxes
is noted for a separate calculation. First results show a good approximation regarding the
medians (Figure 17). In future work, this will be an additional parameter that should be
taken into account.
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Figure 16. Comparison of previous measurements (Lorenz 2014) of House Mandl top: (a,b) with
current method, bottom: (c,d), with (a,c) giving the box plot of DB and (b,d) giving the ranges of box
sizes in relation to the building height.
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The measurement with the differential box-counting method (the measurement of
color images with FRACAM) leads to fractal dimensions approximating the value three.
The interpretation of the measurement is carried out in accordance with the 2D calculation
in a box plot diagram. This time the analysis includes several camera positions around the
building (or inside) that provide different values, but within close range (Figure 18). Even
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if no connection between color and fractal dimension could be established so far [5], the
influence of different weather conditions should be examined, which is a task for future
work. In the meantime, it is recommended that only pictures taken on the same date and
time be included in a calculation. Figure 18 shows such a result for Robie House.
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3.6. Gradient Analysis Applied to Test Cases

The test cases A–D show, as expected and as was the case in earlier observations
using previous gradient analysis algorithms, quotients tending in the direction of 1 as
complexity of the object under scrutiny increases in the realm of the aspect of proportion
labeled eurythmia by Vitruvius [4]. The newly introduced intersectional grid, including
the x- and y-tolerance, however, has revealed that the reduction of complexity in horizontal
and vertical alignment does not necessarily lead to lower values of the overall quotients
in linear tendency. The reduction of complexity of a part of the system thus does not
guarantee the reduction of complexity of the whole system.

3.7. Gradient Analysis Applied to Iconic Architecture

In comparison to the test cases the increase of the number of coordinates in given sets
of iconic architecture shows, that there is a significant decrease of the value of the resulting
quotients. This appears to signify more than a decrease in proportional redundancy, it hints
at the fact an increase of x- and y-values results in an increasingly dense intersectional
grid, which makes the repetition of gradients, in general, more likely. To sensibly compare
complexity on the layer of proportional redundancy this comparison must therefore be
local, i.e., confined to objects with a similar amount of coordinates.

4. Conclusions

The authors showed that fractal geometry based analysis in several methodic layers
enables a detailed qualitative description of visual characteristics. This is e.g., implied
by the range of coherent characteristics, expressed by statistical values when using the
box-counting method. Box-counting thus remains an important quantitative method
for describing complexity in architecture with optimization potential, especially to be
reckoned with in future systems that will integrate several strategies to balance aesthetic



Fractal Fract. 2021, 5, 244 22 of 24

complexity. The consistency of the architectural elements from the whole to the smallest
perceptible detail in the analyses presented here leading to a trend of data points in a
double logarithmic diagram is yet another proof for the relevance of box-counting in this
matter.

The above-mentioned color analysis methods, which form the basis for the mobile
phone application FRACAM, are particularly aimed at measuring correlations with results
of the extended measurement methods for color photos. In [5] several series of measure-
ments were carried out, including the Robie House, whereby no correlation could be found
between the fractal dimension and the mean color value, the predefined color areas, the
saturation or the brightness. From this, it can be inferred that apparently the color of an
image does not influence the result to an extent as significant as the shapes of the objects
under scrutiny, i.e., the building and its surroundings.

The gradient analysis as a coordinate-based method has shown that differences in
complexity may be also a local matter, allowing for a comparison of designs with a certain
number of defining coordinates. Therefore, roughness-evaluation is bound to play an
important role for the optimization for coordinate based proportion analysis.

Although the described methods and algorithms may be integrated into so-called
AI-systems, complexity evaluation as a whole will remain solely a macro-layer within an
overall design or design evaluation process. Even if certain complexity measures can be
identified as clues and even a necessity for good or even responsible design, they are not
likely to be sufficient without for excellent design work without other layers of reflection
beyond the grasp of mere digital algorithmic evaluation. Nonetheless will the digital
algorithms presented in this article further the quality of architectural design and critique
in an age of rising task complexity and global responsibility.
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