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Abstract: The purpose of the current investigation is to find the numerical solutions of the novel
fractional order pantograph singular system (FOPSS) using the applications of Meyer wavelets as a
neural network. The FOPSS is presented using the standard form of the Lane–Emden equation and
the detailed discussions of the singularity, shape factor terms along with the fractional order forms.
The numerical discussions of the FOPSS are described based on the fractional Meyer wavelets (FMWs)
as a neural network (NN) with the optimization procedures of global/local search procedures of
particle swarm optimization (PSO) and interior-point algorithm (IPA), i.e., FMWs-NN-PSOIPA. The
FMWs-NN strength is pragmatic and forms a merit function based on the differential system and the
initial conditions of the FOPSS. The merit function is optimized, using the integrated capability of
PSOIPA. The perfection, verification and substantiation of the FOPSS using the FMWs is pragmatic for
three cases through relative investigations from the true results in terms of stability and convergence.
Additionally, the statics’ descriptions further authorize the presentation of the FMWs-NN-PSOIPA in
terms of reliability and accuracy.

Keywords: fractional order pantograph singular system; Meyer wavelets; shape factors; neural
networks; interior point; particle swarm optimization

1. Introduction

The differential systems signified with fractional and integer orders are used exten-
sively in several applications of physics, engineering and mathematics. Fractional calculus
operators (FCOs) have been famous for scientists during the last three to four decades [1].
Some noteworthy applications of the FCOs are Weyl–Riesz [2], Grnwald–Letnikov [3],
Riemann–Liouville [4] and Erdlyi–Kober [5]. Many scientists have described the im-
portance of FCOs in diverse areas of fractional viscoplasticity models [6], Earth-based
dynamical investigations [7], reaction networks of surface–volume [8], electromagnetic
studies [9], detection of road edges [10], comprehensive performances in authentic sup-
plies [11], mathematical nanofluids [12], viscoelastic systems [13] and LC-electric fractal
circuit systems [14].

It is always considered tough to solve singular models with the use of numerical or
analytical approaches. Singular models arise in spherical surfaces of gas clouds, astro-
physics studies and quantum mechanics and are always considered difficult for researchers
due to the harder nature and the occurrence of singular points. A variety of deterministic
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schemes have been executed to solve singular based models [15–18]. The literature form of
the singular second-order system is described as [19–21]:{

d2k
dη2 +

γ
η

dk
dη + g(k) = h(η), γ ≥ 1

k(0) = i1, k′(0) = i2,
(1)

where γ represents the shape vector value in Equation (1), the singularity arises at η = 0,
h(η) is the forcing term and g(k) is some known function of k, while i1 and i2 are the
constants representing the initial conditions.

The differential form of the pantographs is a specific state of the functional model that
contains proportional delay factors. Tayler and Ockendon introduced the “pantograph”
word in the 7th decade of the 19th century by working on the collection of the pantograph
electric head [22]. The pantograph differential system (PDS) has achieved huge importance
due to its well-known applications in the biological system of cell growth [23], asymptotic
constancy characteristics [24] and control networks [25]. A number of approaches have
been applied to solve singular models, e.g., the Chebyshev spectral method [26], spectral
tau technique [27], intricate homotopy optimal method [28], Genocchi scheme of operation
matrix [29], Epsilon–Ritz-based least-square approach [30] and Taylor method [31]. The
novelty of this study is described in two steps as follows:

1. The design of a novel fractional order pantograph singular system (FOPSS) is pre-
sented using the suitable derivation process.

2. The computing process based on machine learning or soft computing knacks is
implemented to solve the novel FOPSS using the applications of the Meyer wavelets
based fractional neural network.

The current investigations are relevant to design a novel FOPSS using the applications
of Meyer wavelets as a neural network by implementing the concepts of the traditional
singular second-order differential equation and pantograph differential model [32]. The
numerical discussions of the FOPSS are provided based on the fractional Meyer wavelets
(FMWs) as a neural network (NN) with the optimization procedures of global/local search
procedures of particle swarm optimization (PSO) and interior-point algorithm (IPA), i.e.,
FMWs-NN-PSOIPA. The stochastic schemes based on numerical measures is applied to
solve a variety of applications [33–40], and a few potential recently reported applications
include the solution of nonlinear Lane–Emden multi-pantograph delay based ordinary
differential equations (ODEs) [41], Gudermannian neural networks for sODEs [42], neuro-
swarming approach to singular with multiple delay ODEss [43], intelligent backpropagated
networks for solving Lene–Emden singular ordinary differential systems with pantograph
delays [44], novel design of Morlet wavelet neural networks for solving singular panto-
graph nonlinear differential models [45], third kind of multi-singular nonlinear systems [46],
novel design of evolutionary integrated heuristics for singular systems [47], Morlet wavelet
neural networks for solving higher order singular nonlinear ODEs [48] and wavelet anal-
ysis on some surfaces of revolution [49]. All these applications inspire the authors to
investigate the design of FOPSS, which has never been implemented nor treated, by using
the proposed heuristics of FMWs-NN-PSOIPA.

FMWS-NN-PSOIPA is implemented to solve the novel FOPSS using the applications of
Meyer wavelets as neural networks. The FOPSS is stiff in nature, involving singular points,
pantographs and fractional order nature. A few novel features of the FMWs-NN-PSOIPA
are provided as follows:

• A novel FOPSS is presented using the pantograph differential system (PDS) and
fundamental form of the second-order singular model.

• The numerical performance of the novel FOPSS is obtained by using the designed
approach FMWs-NN-PSOIPA, which is used to compare the obtained results and to
perform the values of the absolute error (AE).

• The Meyer computing solvers via FMWs-NN-PSOIPA is applied to solve three exam-
ples based on the novel FOPSS to authenticate the convergence, precision and stability.
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• The reliability of the proposed FMWS-NN-PSOIPA is accessible using the statistical
procedures in terms of semi-interquartile range (S.I.R), Theil’s inequality coefficient
(T.I.C) and variance account for (VAF).

Alongside the precise performance of the novel FOPSS, its easy understandable
process, smooth operations, steadiness and sturdiness are other valued compensations of
the fractional Meyer intelligent computing solver.

The other paper parts are presented as follows: Section 2 represents the design of
the novel FOPSS using the applications of Meyer wavelets as a neural network. Section 3
presents the proposed procedure using the FMWs-NN-PSOIPA. Section 4 indicates the sta-
tistical performance. Section 5 defines the concluding remarks and future research reports.

2. Construction of the Novel FOPSS

This part of the study shows the construction of the novel FOPSS along with the
comprehensive details of the shape factor (SF), singular point and fractional order factor.
The necessary procedural steps to construct the novel FOPSS are drawn on the flow chart,
while the construction of the novel FOPSS is provided as:

η−p dr

dηr

(
ηp du

dηu

)
k
(η

2

)
+ g(k) = h(η), (2)

For the novel FOPSS, the values of p and r are provided as follows:

r = 1, u = <, where 0 < < < 1. (3)

The restructured form for the above two systems is given as:

η−p d
dη

(
ηp d<

dη<

)
k
(η

2

)
+ g(k) = h(η). (4)

The simplification of Equation (4) is written as:

d
dη

(
ηp d<

dη<

)
k
(η

2

)
= ηp d<+1

dη<+1 k
(η

2

)
+ pηp−1 d<

dη<
k
(η

2

)
. (5)

The achieved form of the novel FOPSS is provided as:{
d<+1

dη
<+1 k

( η
2
)
+ p

η
d<

dη<
k
( η

2
)
+ g(k) = h(η),

k(0) = 0, k(1) = 0.
(6)

The novel FOPSS is achieved above in Equation (6) with the singular point occurring
at η = 0; The fractional terms are noticed as < and <+ 1, respectively, whereas the SF
is at p = 1. The flow chart based on the novel FOPSS describing the essential phases is
provided in the block structure in Figure 1. These procedures are used to design a novel
FOPSS system described in terms of mathematical relation given in Equations (2)–(6).
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Figure 1. Flow-chart diagram using the essential steps of the novel FOPSS.

3. Methodology: FMWs-NN-PSOIPA

This section shows the proposed methodology using the FMWs as a NN along with
the optimal methods of PSOIPA for solving the novel FOPSS. The process flow diagram of
FMWs-NN-PSOIPA is portrayed in Figure 2 in terms of five blocks for the problem, model-
ing, learning, storage and results. The error function is constructed using the differential
form and boundary conditions (BCs) together with the optimization procedure of PSOIPA
provided here.

3.1. Objective Function: FMWs-NN

The ANNs systems are familiar to obtain the numerical performances of numerous
systems based on the fractional order [42,43]. In the below system, k̂(η) is the proposed
solution form of the network, D(n) k̂(η) and D< k̂(η) indicate the nth order derivative and the
fractional order form, respectively. These systems’ terminologies take the following forms:

k̂(η) =
z
∑

m=1
rm p(cmη + bm),

D(n) k̂(η) =
z
∑

m=1
rm p(n)(cmη + bm),

D< k̂(η) =
z
∑

m=1
rm p<(cmη + bm)

(7)

where z represents the neurons. Similarly, r, c and b represent the components of weight
vector (W), shown as:

W = [r, c, b], for r = [r1, r2, . . . , rz], c = [c1, c2, . . . , cz] and b = [b1, b2, . . . , bz] .
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Figure 2. Design procedures of the FMWs-NN-PSOIPA for solving the novel FOPSS.

The mathematical representations the activation kernel based on the Meyer wavelet
function is shown as:

p(η) = 35η4 − 84η5 + 70η6 − 20η7. (8)

The combination of the network (7) and (8) becomes:

k̂(η) =
z
∑

m=1
rm

(
35(cmη + bm)

4 − 84(cmη + bm)
5+

70(cmη + bm)
6 − 20(cmη + bm)

7

)
,

D(n) k̂(η) =
z
∑

m=1
rm

(
35D(n)(cmη + bm)

4 − 84D(n)(cmη + bm)
5

+70D(n)(cmη + bm)
6 − 20D(n)(cmη + bm)

7

)
,

D< k̂(η) =
z
∑

m=1
rm

(
35D<(cmη + bm)

4 − 84D<(cmη + bm)
5+

70D<(cmη + bm)
6 − 20D<(cmη + bm)

7

)
.

(9)

The procedures of the arbitrary FMWs-NN are implemented for the novel FOPSS
associated to the obtainability of suitable W. To assess the weights of FMWs-NN, one may
calculate the theory of approximation with the mean squared error terminology to find an
error function εFit, given as:

εFit = εFit−1 + εFit−2. (10)
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where εFit−1 and εFit−2 are the error functions related to the differential system and its BCs,
shown as:

εFit−1 =
1
N

z

∑
m=1

(
d<+1

dη
<+1 k̂m +

p
ηm

d
<

dη<
k̂m + g(k̂m)− hm

)2

, (11)

εFit−2 =
1
2

(
(k̂0)

2
+ (k̂N)

2
)

, (12)

for Nh = 1, k̂m = k̂
( ηm

2
)
, hm = h(ηm), ηm = mh.

3.2. Optimization of the Network

In this section, the parameter optimization procedures for the FMWs-NN are consid-
ered using the computing constructions of PSOIPA for solving the novel FOPSS.

Particle swarm optimization is a global search approach implemented to solve optimiza-
tion problems. It is applied as an alternate of the genetic algorithm approach introduced
at the end of the 19th century. PSO is a nature-based metaheuristic due to its immense
optimization abilities in the large search spans. PSO executes efficiently as compared to the
genetic algorithm due to its small amount of memory. In the process of PSO, the primary
swarm escalates in the substantial domain. For the PSO improvement, the procedure
produces iteratively optimal outcomes Ph−1

LB for swarm’s position and Ph−1
GB for swarm’s

velocity, given as:
Xh

i = Xh−1
i + Vh−1

i , (13)

Vh
i = <Vh−1

i + h1(Ph−1
LB −Xh−1

i )r1
+h2(Ph−1

GB −Xh−1
i )r2,

(14)

where the inertia vector based on weight is <, the position is Xi and the velocity is Vi, while,
h1 and h2 are acceleration constant factors. A few prominent applications of the PSO are
optimal reactive power dispatch [50], fusion of features for detection of brain tumor [51],
energy-efficient routing mechanism for mobile sink in wireless sensor networks [52], opti-
mal power flow problems [53], dynamic service composition focusing on quality-of-service
evaluations under hybrid networks [54] and enhancing the production of biodiesel from
Microalga [55].

The convergence of the PSO scheme is more reliable using the hybridization process
with the local search interior-point algorithm, which is used to find the fine-tuning of the
outcomes. IPA is a valued approach, which is used to confine the system for improved
understanding together with the optimization procedures of the designed system. In recent
decades, IPA has been applied in optimal operation of interconnected energy hubs [56],
economic load dispatch [57], a nonlinear well-determined model for power system observ-
ability [58] and power control of multiple interfering D2D communications underlaying
cellular networks [59].

3.3. Performance Indices

In this work, the mathematical formulations of the performances based on the TIC,
ENSE and EVAF along with the global illustrations of these indices to solve the novel
FOPSS are provided as:  VAF =

(
1− var(kj−k̂j)

var(kj)

)
× 100,

EVAF = |VAF− 100|.
(15)

T.I.C =

√√√√ 1
n

q
∑

j=1

(
k j − k̂ j

)2

(√
1
n

q
∑

j=1
k2

j +

√
1
n

q
∑

j=1
k̂2

j

) , (16)
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NSE =

1−

q
∑

j=1
(kj−k̂j)

2

q
∑

j=1
(kj−kj)

2 , kj =
1
n

q
∑

j=1
k j

ENSE = 1− NSE,

(17)

where k̂ and k are the proposed and exact solutions. The necessary comparison of the
proposed FMWs-NN-PSOIPA is conducted with respect to magnitudes of VAF, TIC and
NSE for perfect modeling scenarios with values 100, 0 and 1, respectively.

4. Simulations and Results

In this section, the numerical implementations to solve three examples of the novel
FOPSS are provided. The proposed outcomes along FMWs-NN-PSOIPA that depend upon
40 executions to solve the novel FOPSS are provided with essential graphical and numerical
depictions to evaluate the accurateness and convergence.

Suppose a novel FOPSS is shown as:{
η d<+1

dη<+1 k
( η

2
)
+ d<

dη<
k
( η

2
)
+ ηg(k) = ηh(η) = F(η),

k(0) = k(1) = 0,
(18)

where

F(η) = η

( √
(1+w)√

1−<+w

( η
2
)w−< −

√
1+y√

1−<+y

( η
2
)z−<

)
+
√

w+1√
w−<+1

( η
2
)w−< −

√
1+y√

1−<+y

( η
2
)z−<

+ ηw+1 − ηy+1
(19)

where w and y are selected as positive. The modernized form using the above equations is
given as: 

η d<+1

dη<+1 k
( η

2
)
+ d<

dη<
k
( η

2
)
+ ηh(k) = η


√

(1+w)√
1−<+w

( η
2
)w−<

−
√

1+y√
1−<+y

( η
2
)z−<


+
√

w+1√
w−<+1

( η
2
)w−< −

√
1+y√

1−<+y

( η
2
)z−<

+ ηw+1 − ηy+1,

k(0) = k(1) = 0.

(20)

The true solution is given as:

k(η) = ηw − ηy (21)

For the specific performances of w = 3 and y = 2, the true solution is accomplished as:

k(η) = η3 − η2. (22)

An error function is given as:

εFit =
1
N

z
∑

m=1



ηm
d
<+1

dη
<+1
m

k̂
( ηm

2
)
+ d

<

dη
<
m

k̂
( ηm

2
)
+ ηmh(k̂m)

−ηw+1
m + ηz+1

m − ηm

√
w+1

w−<+1

( ηm
2
)w−<

+ηm

√
y+1

y−<+1

( ηm
2
)y−< −

√
w+1

w−<+1

( ηm
2
)w−<

+
√

y+1
y−<+1

( ηm
2
)y−<



2

+ 1
2

((
k̂0

)2
+
(

k̂N

)2
)

.

(23)

Three different types of the novel FOPSS are provided using the α values, respectively
given as α = 0.2, 0.4 and 0.6.
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In order to examine the performance of each type of novel FOPSS, optimization is
performed using the local and global search techniques, i.e., PSOIPA. The entire procedure
is repeated for 40 independent runs to create a larger dataset of the parameters of FMWs-
NN. These trained FMWs-NN weights are given in Equation (9) to evaluate the outcomes
of the novel FOPSS. The mathematical form of the FMWs-NN-PSOIPA for each type of
novel FOPSS is provided as:

k̂E−1 = −0.113

(
35(−0.971η + 0.570)4 − 84(−0.971η + 0.5708)5

+70(−0.971η + 0.5708)6 − 20(−0.971η + 0.5708)7

)

+0.3448

(
35(0.0641η + 1.0772)4 − 84(0.0641η + 1.0772)5

+70(0.0641η + 1.0772)6 − 20(0.0641η + 1.0772)7

)
+ · · ·

+0.0267

(
35(0.2990η + 1.2633)4 − 84(0.2990η + 1.2633)5

+70(0.2990η + 1.2633)6 − 20(0.2990η + 1.2633)7

)
,

(24)

k̂E−2 = −0.426

(
35(0.430η − 0.4234)4 − 84(0.4300η − 0.4234)5

+70(0.4300η − 0.4234)6 − 20(0.4300η − 0.4234)7

)

+ 2.1279

(
35(−0.117η − 0.028)4 − 84(−0.117η − 0.0284)5

+70(−0.117η − 0.0284)6 − 20(−0.117η − 0.0284)7

)
+ · · ·

−0.5029

(
35(0.950η − 0.2247)4 − 84(0.95000η − 0.2247)5

+70(0.9500η − 0.2247)6 − 20(0.9500η − 0.2247)7

)
,

(25)

k̂E−3 = −0.2573

(
35(0.304η − 0.2064)4 − 84(0.3041η − 0.2064)5

+70(0.3041η − 0.2064)6 − 20(0.3041η − 0.2064)7

)

−0.1217

(
35(0.0244η + 1.3782)4 − 84(0.0244η + 1.3782)5

+70(0.0244η + 1.3782)6 − 20(0.0244η + 1.3782)7

)
+ · · ·

+0.406

(
35(−0.2985η − 0.046)4 − 84(−0.5903η − 0.5980)5

+70(−0.5903η − 0.598)6 − 20(−0.590η − 0.598)7

)
.

(26)

The estimated results through the FMWs-NN are indicated in systems (24)–(26) with
the graphical plots illustrated in Figure 3a–c for each class of novel FOPSS. The mean, best
and worst results comparison is drawn in Figure 3d–f for each class of novel FOPSS. It is
observed that these outcomes are matched to each other. This accuracy of the numerical
results shows the quality of the designed FMWs-NN-PSOIPA. The AE performance is
obtained in Figure 3g for each class of novel FOPSS. It is observed that the performance
of AE is calculated around 10−1 to 10−3, 10−2 to 10−3 and 10−1 to 10−3 for Examples 1,
2 and 3, respectively. The convergence is assessed using the FIT, ENSE, TIC and EVAF
measures, drawn in Figure 3h for each class of novel FOPSS. It is indicated that the best
performance instances of the FIT measure are found around 10−5–10−6, 10−4–10−5 and
10−3–10−5 for each example of the novel FOPSS. The EVAF performance instances are
calculated around 10−4 to 10−5 for each example of the novel FOPSS. The TIC measures’
performance instances are calculated around 10−3 to 10−5 for each example of the novel
FOPSS. The ENSE is calculated around 10−4 to 10−5 for each variant of the novel FOPSS.

The TIC, ENSE, FIT and EVAF performance instances with the histogram and boxplots
are drawn in Figures 4–7 for each class of the novel FOPSS. It is demonstrated that the
FIT performance is calculated around 10−3 to 10−6, 10−4 to 10−5 and 10−3 to 10−5 for
Examples 1, 2 and 3. TIC lies around 10−3 to 10−5 for Example 1, whereas the other two
examples of TIC values are found around 10−3 to 10−5. The EVAF and ENSE values for
each case of the novel FOPSS lie in the ranges of 10−1 to 10−2 and 10−2 to 10−3, respectively.
These best measures, calculated through statistical gages, authenticate the correctness
of FMWs-NN-PSOIPA.
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(c) best weights, Example 3; (d) FOPSS results for Examples 1, 2 and 3; ((e) AE performance instances 
for each class of the novel FOPSS; (f) performance instances for each example of the novel FOPSS. 

Figure 3. Graphical illustrations are provided in (a–c), best weights in (d–f), AE in (e) and perfor-
mance in (f) for solving the novel FOPSS. (a) Best weights, Example 1; (b) best weights, Example 2;
(c) best weights, Example 3; (d) FOPSS results for Examples 1, 2 and 3; ((e) AE performance instances
for each class of the novel FOPSS; (f) performance instances for each example of the novel FOPSS.
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Figure 4. Statistics values through FMWs-NN-PSOIPA for FIT performance with histogram/box-
plots for the novel FOPSS. (a) FIT investigations for each example; (b) histograms for 1st example; 
(c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) 
boxplots for 2nd example; and (g) boxplots for 3rd example. 

Figure 4. Statistics values through FMWs-NN-PSOIPA for FIT performance with histogram/boxplots
for the novel FOPSS. (a) FIT investigations for each example; (b) histograms for 1st example; (c)
histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) boxplots
for 2nd example; and (g) boxplots for 3rd example.
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Figure 5. Statistics values through FMWs-NN-PSOIPA for TIC performance with histogram/box-
plots for the novel FOPSS. (a) TIC investigations for each example; (b) histograms for 1st example; 
(c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) 
boxplots for 2nd example; and (g) boxplots for 3rd example. 

Figure 5. Statistics values through FMWs-NN-PSOIPA for TIC performance with histogram/boxplots
for the novel FOPSS. (a) TIC investigations for each example; (b) histograms for 1st example; (c)
histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) boxplots
for 2nd example; and (g) boxplots for 3rd example.
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Figure 6. Statistics values through FMWs-NN-PSOIPA for EVAF performance with histogram/box-
plots for the novel FOPSS. (a) EVAF investigations for each example; (b) histograms for 1st example; 
(c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) 
boxplots for 2nd example; and (g) boxplots for 3rd example. 

Figure 6. Statistics values through FMWs-NN-PSOIPA for EVAF performance with his-
togram/boxplots for the novel FOPSS. (a) EVAF investigations for each example; (b) histograms for
1st example; (c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st
example; (f) boxplots for 2nd example; and (g) boxplots for 3rd example.
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Figure 7. Statistics values through FMWs-NN-PSOIPA for ENSE performance with histogram/box-
plots for the novel FOPSS. (a) ENSE investigations for each example; (b) histograms for 1st example; 
(c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st example; (f) 
boxplots for 2nd example; and (g) boxplots for 3rd example. 
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Figure 7. Statistics values through FMWs-NN-PSOIPA for ENSE performance with his-
togram/boxplots for the novel FOPSS. (a) ENSE investigations for each example; (b) histograms for
1st example; (c) histograms for 2nd example; (d) histograms for 3rd example; (e) boxplots for 1st
example; (f) boxplots for 2nd example; and (g) boxplots for 3rd example.

In order to check the precision and exactness, the statistical measures, through stan-
dard deviation (STD), minimum (Min), S.I.R, mean, maximum (Max) and median (MED),
are found for 40 accomplishments of FMWs-NN-PSOIPA as shown in Table 1 for solving
the novel FOPSS. The Max and Min values indicate the worst and best executions, while
S.I.R represents one half of the 3rd minus 1st quartiles. The values based on Min, Max,
MED, Mean, S.I.R and S.T.D for Example 1 are found around 10−3–10−5, 10−2–10−3, 10−2–
10−3, 10−2–10−4, 10−2–10−3 and 10−3–10−5. In Example 2, the performance lies around
10−2–10−6, 10−1–10−2, 10−2–10−4, 10−2–10−3, 10−2–10−3 and 10−2–10−4. Likewise, in
Example 3, the performance lies around 10−3 to 10−5, 10−1 to 10−3, 10−2 to 10−3, 10−2 to
10−3, 10−2 to 10−3 and 10−2 to 10−5. These calculated consistent and small performance
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instances of each operative authenticate the accuracy and constancy of FMWs-NN-PSOIPA
for solving the novel FOPSS.

Table 1. Statistics illustrations through FMWs-NN-PSOIPA for solving the novel FOPSS.

Index Mode
Proposed Outcomes k(η)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

Min 4 × 10−4 3 × 10−4 1 × 10−3 8 × 10−4 4 × 10−3 4 × 10−4 1 × 10−3 1 × 10−2 3 × 10−3 3 × 10−5

Max 4 × 10−2 3 × 10−2 3 × 10−2 3 × 10−2 4 × 10−2 6 × 10−2 8 × 10−2 9 × 10−2 7 × 10−2 5 × 10−3

MED 6 × 10−3 1 × 10−2 1 × 10−2 2 × 10−2 3 × 10−2 4 × 10−2 5 × 10−2 5 × 10−2 3 × 10−2 1 × 10−3

Mean 4 × 10−3 1 × 10−2 1 × 10−2 2 × 10−2 3 × 10−2 5 × 10−2 6 × 10−2 6 × 10−2 3 × 10−2 3 × 10−4

S.I.R 6 × 10−3 6 × 10−3 6 × 10−3 7 × 10−3 8 × 10−3 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−3

STD 1 × 10−3 2 × 10−3 3 × 10−3 4 × 10−3 4 × 10−3 5 × 10−3 6 × 10−3 7 × 10−3 5 × 10−3 8 × 10−5

2

Min 3 × 10−4 8.7 × 10−5 1 × 10−3 2 × 10−3 8 × 10−3 2 × 10−2 2 × 10−2 2 × 10−2 8 × 10−3 6 × 10−6

Max 7 × 10−2 8 × 10−2 8 × 10−2 8 × 10−2 7 × 10−2 7 × 10−2 8 × 10−2 1 × 10−1 9 × 10−2 1 × 10−2

MED 9 × 10−3 1 × 10−2 1 × 10−2 2 × 10−2 3 × 10−2 4 × 10−2 6 × 10−2 6 × 10−2 4 × 10−2 1 × 10−4

Mean 7 × 10−3 6 × 10−3 1 × 10−2 2 × 10−2 3 × 10−2 4 × 10−2 6 × 10−2 6 × 10−2 3 × 10−2 1 × 10−3

S.I.R 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 2 × 10−2 2 × 10−3

STD 2 × 10−3 6 × 10−3 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 6 × 10−4

3

Min 1 × 10−5 4 × 10−5 2 × 10−3 3 × 10−3 1 × 10−2 9 × 10−3 6 × 10−3 3 × 10−2 1 × 10−2 7 × 10−4

Max 7 × 10−2 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 1 × 10−1 4 × 10−3

MED 9 × 10−3 1 × 10−2 2 × 10−2 3 × 10−2 5 × 10−2 6 × 10−2 7 × 10−2 7 × 10−2 5 × 10−2 1 × 10−3

Mean 6 × 10−3 5 × 10−3 1 × 10−2 2 × 10−2 3 × 10−2 5 × 10−2 7 × 10−2 8 × 10−2 6 × 10−2 1 × 10−3

S.I.R 1 × 10−2 2 × 10−2 2 × 10−2 2 × 10−2 2 × 10−2 3 × 10−2 2 × 10−2 1 × 10−2 1 × 10−2 6 × 10−4

STD 2 × 10−3 9 × 10−3 1 × 10−2 1 × 10−2 2 × 10−2 2 × 10−2 1 × 10−2 6 × 10−3 1 × 10−2 1 × 10−5

For the convergence of FMWs-NN-PSOIPA, the global operators using the EVAF,
ENSE, FIT, and TIC for 40 executions for the novel FOPSS are provided below in Table 2.
It is noticeable that the Min global FIT, TIC, ENSE and EVAF values are found around
10−5–10−7, 10−5–10−6, 10−3–10−4 and 10−2–10−3, whereas the S.I.R gages for these mea-
sures are found around 10−5–10−7, 10−7–10−8, 10−4–10−5 and 10−2–10−4 to solve the novel
FOPSS. The classic global performance validates the clarity of FMWs-NN-PSOIPA.

Table 2. Global values through FMWs-NN-PSOIPA for solving the novel FOPSS.

Index
G.FIT G.TIC G.ENSE G.EVAF

Min SI.R Min SIR MIN SI.R Min SI.R

1 2.556 × 10−6 2.285 × 10−5 7.728 × 10−6 2.673 × 10−7 2.291 × 10−3 3.330 × 10−5 1.819 × 10−2 2.636 × 10−2

2 5.527 × 10−7 3.006 × 10−5 1.007 × 10−5 3.272 × 10−7 3.844 × 10−3 6.650 × 10−5 2.938 × 10−2 5.920 × 10−4

3 5.399 × 10−5 7.898 × 10−7 1.130 × 10−5 3.491 × 10−8 2.291 × 10−4 3.330 × 10−4 7.908 × 10−3 7.100 × 10−2

5. Conclusions

A novel design of the fractional order pantograph singular system using the applica-
tions of Meyer wavelets as a neural network is presented using the perceptions of standard
forms of second-order singular and pantograph differential systems. The novel FOPSS
is presented using the standard Lane–Emden equation and detailed discussions of the
singularity, shape factor terms along with the fractional order forms. The singularity
is noticed for a single time at η = 0, while the fractional terms appear twice as < and
<+ 1. The perfection and exactness of the novel FOPSS is described using fractional Meyer
wavelets as a neural network with the optimization procedures of global/local search
procedures of the particle swarm optimization (PSO) and interior-point algorithm. The
proposed FMWs-NN-PSOIPA is generally applied to solve the novel FOPSS to authenticate
the stability, robustness, convergence and accuracy. To authenticate the correctness of
the proposed FMWs-NN-PSOIPA, a comparison of the obtained outcomes with the true
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solutions is performed. The statistics using the operators TIC, Min, EVAF, S.I.R, Max, ENSE,
Mean MED and STD are achieved using 40 executions to authenticate the consistency of the
proposed FMWs-NN-PSOIPA. One can also prove that a variety of trials showed a greater
accuracy level for the novel FOPSS. The novel FOPSS comprises pantographs, fractional
terms and singular points, which shows the stiffness of the system and is considered
complex to solve with conventional schemes. However, FMWs-NN-PSOIPA is an excellent
choice to solve these types of intricate models.

In future, the FMWs-NN-PSOIPA can be implemented to solve fractional systems,
nonlinear models and fluid systems [60–65].
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