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Abstract: The purpose of this study is to introduce the new class of Hermite–Hadamard inequality for
LR-convex interval-valued functions known as LR-interval Hermite–Hadamard inequality, by means
of pseudo-order relation (≤p ). This order relation is defined on interval space. We have proved that if
the interval-valued function is LR-convex then the inclusion relation “⊆ ” coincident to pseudo-order
relation “ ≤p ” under some suitable conditions. Moreover, the interval Hermite–Hadamard–Fejér
inequality is also derived for LR-convex interval-valued functions. These inequalities also generalize
some new and known results. Useful examples that verify the applicability of the theory developed
in this study are presented. The concepts and techniques of this paper may be a starting point for
further research in this area.
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1. Introduction

In the development of pure and applied mathematics [1,2] convexity has played a
key role. Due to their resilience, convex sets and convex functions have been refined
and expanded in many mathematical fields; see [3–8]. Convexity theory may be used to
generate numerous inequalities in the literature. Integral inequalities [9] have uses in linear
programming, combinatory, orthogonal polynomials, quantum theory, number theory,
optimization theory, dynamics, and the theory of relativity. Researchers have given this
problem a lot of attention [10–14], and it is now regarded an integrative topic involving
economics, mathematics, physics, and statistics [15,16]. The Hermite–Hadamard inequality
(HH-inequality) is, to the best of my knowledge, a well-known, ultimate, and broadly
applied inequality. Other classical inequalities, such as the Oslen and Gagliardo–Nirenberg,
Oslen, Opial, Hardy, Young, Linger, Ostrowski, levison, Arithmetic’s-Geometric, Ky-fan,
Minkowski, Beckenbach–Dresher, and Holer inequality, are closely linked to the classical
HH-inequality [17–20], and it can be put in the following manner.

Let S : K → R be a convex function on a convex set K and t, υ ∈ K with t ≤ υ . Then,

S

(
t + υ

2

)
≤ 1

υ− t

∫ υ

t
S(ω)dω ≤ S(t) +S(υ)

2
. (1)

In [21], Fejér looked at the key extensions of HH-inequality, dubbed Hermite–Hadamard–
Fejér inequality (HH-Fejér inequality).
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Let S : K → R be a convex function on a convex set K and t, υ ∈ K with t ≤ υ . Then,

S

(
t + υ

2

)
≤ 1∫ υ

t D(ω)dω

∫ υ

t
S(ω)D(ω)dω ≤ S(t) +S(υ)

2

∫ υ

t
D(ω))dω. (2)

If D(ω) = 1 then, we obtain (1) from (2). Many classical inequalities may be derived
by specific convex functions with the help of inequality (1). Furthermore, in both pure
and industrial mathematics, these inequalities play a crucial role for convex functions.
We encourage readers to go more into the literature on generalized convex functions and
HH-integral inequalities, particularly [22–29] and the references therein.

Interval analysis, on the other hand, was mostly forgotten for a long time due to a lack
of applicability in other fields. Moore [30] and Kulish and W. Miranker [31] introduced and
researched the notion of interval analysis. It is the first time in numerical analysis that it is
utilized to calculate the error boundaries of numerical solutions of a finite state machine.
Since then, a number of analysts have focused on and studied interval analysis and interval-
valued functions (I.V-Fs) in both mathematics and applications. As a result, various
writers looked into the literature and applications of neural network output optimization,
automatic error analysis, computational physics, robotics, computer graphics, and a variety
of other well-known scientific and technology fields. We encourage readers to conduct
more research into essential aspects and applications in the literature (see [32–40] and the
references therein).

The theory of fuzzy sets and systems has progressed in a number of ways from its
introduction five decades ago, as seen in [41]. As a result, it is useful in the study of a variety
of issues in pure mathematics and applied sciences, such as operation research, computer
science, management sciences, artificial intelligence, control engineering, and decision sci-
ences. Convex analysis has contributed significantly to the advancement of several sectors
of practical and pure research. Similarly, the concepts of convexity and non-convexity are
important in fuzzy optimization because we obtain fuzzy variational inequalities when
we characterize the optimality condition of convexity, so variational inequality theory and
fuzzy complementary problem theory established powerful mechanisms of mathematical
problems and have a friendly relationship. Costa [42], Costa and Roman-Flores [43], Flores-
Franulic et al. [44], Roman-Flores et al. [45,46], and Chalco-Cano et al. [47,48] have recently
generalized several classical discrete and integral inequalities not only to the environment
of the I.V-Fs and fuzzy I.V-Fs, but also to more general set valued maps by Nikodem et al.
Zhang et al. [49] used a pseudo order relation to establish a novel version of Jensen’s inequal-
ities for set-valued and fuzzy set-valued functions, proving that these Jensen’s inequalities
are an expanded form of Costa Jensen’s inequalities [42]. Zhao et al. [50], inspired by the
literature, introduced

Fractal Fract. 2022, 5, x FOR PEER REVIEW 3 of 18 
 

 

2. Preliminaries 
Let 𝒦஼  be the collection of all closed and bounded intervals of ℝ that is 𝒦஼ =ሼ[𝒵∗, 𝒵∗]: 𝒵∗, 𝒵∗ ∈ ℝ and 𝒵∗ ≤  𝒵∗ሽ. If 𝒵∗ ≥ 0, then [𝒵∗, 𝒵∗] is named as positive interval. 

The set of all positive interval is denoted by 𝒦஼ା and defined as 𝒦஼ା = ሼ[𝒵∗, 𝒵∗]: 𝒵∗, 𝒵∗ ∈𝒦஼ and 𝒵∗ ≥ 0ሽ. 
If [𝔄∗, 𝔄∗], [𝒵∗, 𝒵∗] ∈ 𝒦஼ and 𝚜 ∈ ℝ, then arithmetic operations are defined by [𝔄∗, 𝔄∗] + [𝒵∗, 𝒵∗]  = [𝔄∗ + 𝒵∗, 𝔄∗+𝒵∗], [𝔄∗, 𝔄∗] × [𝒵∗, 𝒵∗] = [minሼ𝔄∗𝒵∗, 𝔄∗𝒵∗, 𝔄∗𝒵∗, 𝔄∗𝒵∗ሽ, maxሼ𝔄∗𝒵∗, 𝔄∗𝒵∗, 𝔄∗𝒵∗, 𝔄∗𝒵∗ሽ], 

𝚜. [𝔄∗, 𝔄∗] = ቐ  [𝚜𝔄∗, 𝚜𝔄∗] if 𝚜 > 0ሼ0ሽ               if 𝚜 = 0,[𝚜𝔄∗, 𝚜𝔄∗]  if 𝚜 < 0. 
For [𝔄∗, 𝔄∗], [𝒵∗, 𝒵∗] ∈ 𝒦஼, the inclusion “ ⊆ ” is defined by [𝔄∗, 𝔄∗] ⊆ [𝒵∗, 𝒵∗], if and only if 𝒵∗ ≤ 𝔄∗, 𝔄∗ ≤ 𝒵∗. 

Remark 1 [49]. (i) The relation “ ≤௣ ” defined on 𝒦஼ by [𝔄∗, 𝔄∗] ≤௣ [𝒵∗, 𝒵∗] if and only if 𝔄∗ ≤ 𝒵∗, 𝔄∗ ≤ 𝒵∗,  for all [𝔄∗, 𝔄∗], [𝒵∗, 𝒵∗] ∈ 𝒦஼,  it is a pseudo-order relation. The relation [𝔄∗, 𝔄∗] ≤௣ [𝒵∗, 𝒵∗] coincident to [𝔄∗, 𝔄∗] ≤ [𝒵∗, 𝒵∗] on 𝒦஼. 
(ii) It can be easily seen that “ ≤௣ ” looks similar to “left and right” on the real line ℝ, so 

we call “ ≤௣ ” is “left and right” (or “LR” order, in short). 

The concept of Riemann integral for I.V-F first introduced by Moore [30] is defined 
as follow: 

Theorem 1 [30]. If 𝔖: [𝚝, 𝜐] ⊂ ℝ → 𝒦஼  is an I.V-F on such that 𝔖(𝜔) = [𝔖∗(𝜔), 𝔖∗(𝜔)]. 
Then 𝔖 is Riemann integrable over [𝚝, 𝜐] if and only if, 𝔖∗ and 𝔖∗ both are Riemann integra-
ble over [𝚝, 𝜐] such that (𝐼𝑅) ׬ 𝔖(𝜔)𝑑𝜔 జ𝚝 =  ൣ(𝑅) ׬ 𝔖∗(𝜔)𝑑𝜔జ𝚝 , (𝑅) ׬ 𝔖∗(𝜔)𝑑𝜔జ𝚝 ൧. 

The collection of all Riemann integrable real valued functions and Riemann integra-
ble I.V-F is denoted by ℛ[𝚝,జ] and ℐℛ[𝚝,జ], respectively. 

Definition 1. The real mapping 𝔖: [𝚝, 𝜐] → ℝ is named as convex function if for all 𝜔, 𝑦 ∈ [𝚝, 𝜐] 
and 𝜍 ∈ [0, 1] we have 𝔖(𝜍𝜔 + (1 − 𝜍)𝑦 ) ≤ 𝜍𝔖(𝜔) + (1 − 𝜍)𝔖(𝑦), (3)

If inequality (3) is reversed, then 𝔖 is named as concave on [𝚝, 𝜐]. A function 𝔖 is named 
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is valid. If inequality (4) is reversed, then 𝔖 is named as concave on [𝚝, 𝜐]. A I.V-F 𝔖 is named 
as affine if 𝔖 is both convex and cocave I.V-F. The set of all convex (concave, affine) I.V-Fs is 
denoted by 

-convex I.V-Fs and established that the HH-inequality for
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-convex
I.V-Fs. Yanrong An et al. [51] took a step forward by introducing the class of (
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2) -convex I.V-Fs.
This research is structured as follows: preliminary and novel notions and results in

interval space and interval-valued convex analysis are presented in Section 2. Section 3
uses LR-convex I.V-Fs to generate LR-interval HH-inequalities and HH-Fejér inequalities.
In addition, several intriguing cases are provided to support our findings. Conclusions and
future plans are presented in Section 4.

2. Preliminaries

Let KC be the collection of all closed and bounded intervals of R that is
KC = {[Z∗, Z∗] : Z∗, Z∗ ∈ R and Z∗ ≤ Z∗}. If Z∗ ≥ 0 , then [Z∗, Z∗] is named
as positive interval. The set of all positive interval is denoted by K+

C and defined as
K+

C = {[Z∗, Z∗] : Z∗, Z∗ ∈ KC and Z∗ ≥ 0}.
If [A∗, A∗], [Z∗, Z∗] ∈ KC and s ∈ R , then arithmetic operations are defined by

[A∗, A∗] + [Z∗, Z∗] = [A∗ +Z∗, A∗ +Z∗],
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[A∗, A∗]× [Z∗, Z∗] = [min{A∗Z∗, A∗Z∗, A∗Z∗, A∗Z∗}, max{A∗Z∗, A∗Z∗, A∗Z∗, A∗Z∗}],

s.[A∗, A∗] =


[sA∗, sA∗] if s > 0
{0} if s = 0,
[sA∗, sA∗] if s < 0.

For [A∗, A∗], [Z∗, Z∗] ∈ KC, the inclusion “ ⊆ ” is defined by

[A∗, A∗] ⊆ [Z∗, Z∗], if and only if Z∗ ≤ A∗, A∗ ≤ Z∗.

Remark 1. [49]. (i) The relation “ ≤p ” defined on KC by [A∗, A∗] ≤p [Z∗, Z∗] if and only if
A∗ ≤ Z∗, A∗ ≤ Z∗, for all [A∗, A∗], [Z∗, Z∗] ∈ KC, it is a pseudo-order relation. The relation
[A∗, A∗] ≤p [Z∗, Z∗] coincident to [A∗, A∗] ≤ [Z∗, Z∗] on KC.

(ii) It can be easily seen that “ ≤p ” looks similar to “left and right” on the real line R, so we
call “ ≤p ” is “left and right” (or “LR” order, in short).

The concept of Riemann integral for I.V-F first introduced by Moore [30] is defined
as follow:

Theorem 1. [30]. If S : [t, υ] ⊂ R→ KC is an I.V-F on such that S(ω) = [S∗(ω), S∗(ω)].
Then S is Riemann integrable over [t, υ] if and only if, S∗ and S∗ both are Riemann integrable
over [t, υ] such that

(IR)
∫ υ

t
S(ω)dω = [(R)

∫ υ

t
S∗(ω)dω, (R)

∫ υ

t
S∗(ω)dω].

The collection of all Riemann integrable real valued functions and Riemann integrable
I.V-F is denoted byR[t, υ] and IR[t, υ], respectively.

Definition 1. The real mapping S : [t, υ]→ R is named as convex function if for all ω, y ∈ [t, υ]
and ς ∈ [0, 1] we have

S(ςω + (1− ς)y ) ≤ ςS(ω) + (1− ς)S(y), (3)

If inequality (3) is reversed, then S is named as concave on [t, υ] . A function S is named as
affine if S is both convex and cocave function. The set of all convex (concave) functions is denoted by

SX([t, υ], )
(
SV
(
[t, υ], R+

)
, SA

(
[t, υ], R+

))
.

Definition 2. [50]. The I.V-F S : [t, υ]→ R+
I is named as convex I.V-F if for all ω, y ∈ [t, υ]

and ς ∈ [0, 1], the coming inequality

S(ςω + (1− ς)y ) ⊇
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(1− ς)S(y), (4)

is valid. If inequality (4) is reversed, then S is named as concave on [t, υ] . A I.V-F S is named as
affine if S is both convex and cocave I.V-F. The set of all convex (concave, affine) I.V-Fs is denoted by

SX
(
[t, υ], K+

C
) (

SV
(
[t, υ], K+

C
)
, SA

(
[t, υ], K+

C
))

.

Definition 3. [49]. TheI.V-F S : [t, υ]→ K+
C is named as LR-convex I.V-F if for all ω, y ∈ [t, υ]

and ς ∈ [0, 1] , the coming inequality

S(ςω + (1− ς)y ) ≤p ςS(ω) + (1− ς)S(y), (5)

is valid. If inequality (5) is reversed, then S is named as LR-concave on [t, υ] . A I.V-F S is named
as LR-affine if S is both LR-convex and LR-cocave I.V-F. The set of all LR-convex (LR-concave)
I.V-Fs is denoted by

LRSX
(
[t, υ], K+

C
)(

LRSV
(
[t, υ], K+

C
)
, LRSA

(
[t, υ], K+

C
))

.



Fractal Fract. 2022, 6, 6 4 of 16

Theorem 2. [49]. Let S : [t, υ]→ K+
C be an I.V-F defined by S(ω) = [S∗(ω), S∗(ω)], for all

ω ∈ [t, υ] . Then S ∈ LRSX
(
[t, υ], K+

C
)

if and only if, S∗, S∗ ∈ SX([t, υ]) .

Example 1. We consider the I.V-F S : [1, 4]→ K+
C defined by S(ω) =

[
2ω, 2ω2 ] . Since end

point functions S∗(ω) and S∗(ω) are convex functions. Hence S(ω) is LR-convex I.V-F.

Remark 2. By using our Definition 3 and Example 1, it can be easily observed that the concept
of set inclusion “ ⊇ ” coincident to relation “ ≤p ” (or “ ≤p ” coincident to “ ⊇ ” ) when one
of the end point function S∗ or S∗ is affine function such that “If S ∈ SX

(
[t, υ], K+

C
)

then
S ∈ LRSV

(
[t, υ], K+

C
)

if and only if S∗ ∈ SA([t, υ], R+) and S∗ ∈ SX([t, υ], R+) ”.
Similarly, “If S ∈ SV

(
[t, υ], K+

C
)

then S ∈ LRSX
(
[t, υ], K+

C
)
, if and only if S∗ ∈ SV

([t, υ], R+) and S∗ ∈ SA([t, υ], R+) ”.

Remark 3. From Theorem 2, it can be easily seen that if S∗(ω) = S∗(ω) then, LR-convex I.V-Fs
becomes classical convex functions.

Example 2. We consider the I.V-F S : [1, 4]→ K+
C defined by S(ω) =

[
2ω2, 2ω2 ] . Since end

point functions S∗(ω), S∗(ω), are equal and convex functions. Hence, S(ω) is a convex function.

3. Interval Inequalities

In this section, we present two classes of HH-inequalities and discuss some related
results, and verify with the help of use examples. First of all, we derive HH-inequality for
LR-convex I.V-F.

Theorem 3. Let S : [t, υ]→ K+
C be an I.V-F such that S(ω) = [S∗(ω), S∗(ω)] for all

ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX
(
[t, υ], K+

C
)
, then

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
. (6)

If S ∈ LRSV
(
[t, υ], K+

C
)

, then

S

(
t + υ

2

)
≥p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≥p

S(t) +S(υ)

2
.

Proof. Let S ∈ LRSX
(
[t, υ], K+

C
)

convex I.V-F. Then, by hypothesis, we have

2S∗
( t+υ

2
)
≤ S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ),

2S∗
( t+υ

2
)
≤ S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ).

Then

2
∫ 1

0 S∗
( t+υ

2
)
dς ≤

∫ 1
0 S∗(ςt + (1− ς)υ)dς +

∫ 1
0 S∗((1− ς)t + ςυ)dς,

2
∫ 1

0 S∗
( t+υ

2
)
dς ≤

∫ 1
0 S∗(ςt + (1− ς)υ)dς +

∫ 1
0 S∗((1− ς)t + ςυ)dς.

It follows that
S∗
( t+υ

2
)
≤ 1

υ−t

∫ υ
t S∗(ω)dω,

S∗
( t+υ

2
)
≤ 1

υ−t

∫ υ
t S∗(ω)dω.

That is[
S∗

(
t + υ

2

)
, S∗

(
t + υ

2

)]
≤p

1
υ− t

[∫ υ

t
S∗(ω)dω,

∫ υ

t
S∗(ω)dω

]
.

Thus,

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω. (7)
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In a similar way as above, we have

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
. (8)

Combining (7) and (8), we have

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
.

Hence, the required result. �

Remark 4. If S∗(ω) = S∗(ω), then Theorem 3, reduces to the result for convex function:

S

(
t + υ

2

)
≤ 1

υ− t
(R)

∫ υ

t
S(ω)dω ≤ S(t) +S(υ)

2
.

It is easy to see that due to the convexity of end point functions S∗(ω) and S∗(ω) have
following two possibilities to satisfy (1) either both are convex or affine convex functions.
However, in the case of interval inclusion both functions S∗(ω) and S∗(ω) has only one
possibility to satisfy (1) such that both end point functions should be affine convex because
in interval inclusion S∗(ω) is convex and S∗(ω) is concave, see [50].

Example 3. We consider the function S : [t, υ] = [0, 2]→ K+
C defined by, S(ω) =

[
ω2, 2ω2].

Since end point functions S∗(ω) = ω2, S∗(ω) = 2ω2 LR-convex functions. Hence S(ω) is
LR-convex I.V-F. We now compute the following

S∗

(
t + υ

2

)
≤ 1

υ− t

∫ υ

t
S∗(ω)dω ≤ S∗(t) +S∗(υ)

2
.

S∗

(
t + υ

2

)
= S∗(1) = 1,

1
υ− t

∫ υ

t
S∗(ω)dω =

1
2

∫ 2

0
ω2dω =

4
3

,

S∗(t) +S∗(υ)

2
= 2.

That means
1 ≤ 4

3
≤ 2.

Similarly, it can be easily show that

S∗
(

t + υ

2

)
≤ 1

υ− t

∫ υ

t
S∗(ω)dω ≤ S∗(t) +S∗(υ)

2
.

such that
S∗
( t+υ

2
)
= S∗(1) = 2,

1
υ−t

∫ υ
t S∗(ω)dω = 1

2

∫ 2
0 2ω2dω = 8

3 ,

S∗(t)+S∗(υ)
2 = 4,

from which, it follows that

2 ≤ 8
3
≤ 4,

that is

[1, 2] ≤
[

4
3

,
8
3

]
≤ [2, 4].
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Hence,

S

(
t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p

S(t) +S(υ)

2
.

Theorem 4. Let S : [t, υ]→ K+
C be an I.V-F such that S(ω) = [S∗(ω), S∗(ω)] for all

ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX([t, υ], KC
+), then

S

(
t + υ

2

)
≤p 32 ≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p 31 ≤p

S(t) +S(υ)

2
,

where

31 =
S(t)+S(υ)

2 +S
( t+υ

2
)

2
, 32 =

S
( 3t+υ

4
)
+S

( t+3υ
4
)

2
and 31 = [31∗, 31

∗], 32 = [32∗, 32
∗].

Proof. Take
[
t, t+υ

2
]
, we have

2S

(
ςt + (1− ς) t+υ

2
2

+
(1− ς)t + ς t+υ

2
2

)
≤p S

(
ςt + (1− ς)

t + υ

2

)
+S

(
(1− ς)t + ς

t + υ

2

)
.

From which, we have

2S∗
(

ςt+(1−ς) t+υ
2

2 +
(1−ς)t+ς t+υ

2
2

)
≤ S∗

(
ςt + (1− ς) t+υ

2
)
+S∗

(
(1− ς)t + ς t+υ

2
)
,

2S∗
(

ςt+(1−ς) t+υ
2

2 +
(1−ς)t+ς t+υ

2
2

)
≤ S∗

(
ςt + (1− ς) t+υ

2
)
+S∗

(
(1− ς)t + ς t+υ

2
)
.

In consequence, we obtain

S∗( 3t+υ
4 )

2 ≤ 1
υ−t

∫ t+υ
2

t S∗(ω)dω,
S∗( 3t+υ

4 )
2 ≤ 1

υ−t

∫ t+υ
2

t S∗(ω)dω.

That is[
S∗
( 3t+υ

4
)
, S∗

( 3t+υ
4
) ]

2
≤ 1

υ− t

[∫ t+υ
2

t
S∗(ω)dω,

∫ t+υ
2

t
S∗(ω)dω

]
.

It follows that
S
( 3t+υ

4
)

2
≤p

1
υ− t

(IR)
∫ t+υ

2

t
S(ω)dω. (9)

In a similar way as above, we have

S
( t+3υ

4
)

2
≤p

1
υ− t

(IR)
∫ υ

t+υ
2

S(ω)dω. (10)

Combining (9) and (10), we have[
S
( 3t+υ

4
)
+S

( t+3υ
4
)]

2
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω.

By using Theorem 3, we have

S

(
t + υ

2

)
= S

(
1
2

.
3t + υ

4
+

1
2

.
t + 3υ

4

)
.
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From which, we have

S∗
( t+υ

2
)
= S∗

(
1
2 . 3t+υ

4 + 1
2 . t+3υ

4

)
,

S∗
( t+υ

2
)
= S∗

(
1
2 . 3t+υ

4 + 1
2 . t+3υ

4

)
,

≤
[

1
2S∗

( 3t+υ
4
)
+ 1

2S∗
( t+3υ

4
)]

,

≤
[

1
2S
∗( 3t+υ

4
)
+ 1

2S
∗( t+3υ

4
)]

,

= 32∗,

= 32
∗,

≤ 1
υ−t

∫ υ
t S∗(ω)dω,

≤ 1
υ−t

∫ υ
t S∗(ω)dω,

≤ 1
2

[
S∗(t)+S∗(υ)

2 +S∗
( t+υ

2
)]

,

≤ 1
2

[
S∗(t)+S∗(υ)

2 +S∗
( t+υ

2
)]

,

= 31∗,

= 31
∗,

≤ 1
2

[
S∗(t)+S∗(υ)

2 + S∗(t)+S∗(υ)
2

]
,

≤ 1
2

[
S∗(t)+S∗(υ)

2 + S∗(t)+S∗(υ)
2

]
,

= S∗(t)+S∗(υ)
2 ,

= S∗(t)+S∗(υ)
2 ,

that is

S

(
t + υ

2

)
≤p 32 ≤p

1
υ− t

(IR)
∫ υ

t
S(ω)dω ≤p 31 ≤p

S(t) +S(υ)

2
,

hence, the result follows. �

Example 4. We consider the function S : [t, υ] = [0, 2]→ K+
C defined by, S(ω) =

[
ω2, 2ω2],

as in Example 3, then S(ω) is LR-convex I.V-F and satisfying (10). We have S∗(ω) = ω2 and
S∗(ω) = 2ω2 . We now compute the following

S∗(t)+S∗(υ)
2 = 2,

S∗(t)+S∗(υ)
2 = 4,

31∗ =
S∗(t)+S∗(υ)

2 +S∗( t+υ
2 )

2 = 3
2 ,

31
∗ =

S∗(t)+S∗(υ)
2 +S∗( t+υ

2 )
2 = 3,

32∗ =
S∗( 3t+υ

4 )+S∗( t+3υ
4 )

2 = 5
4 ,

32
∗ =

S∗( 3t+υ
4 )+S∗( t+3υ

4 )
2 = 5

2 ,

Then we obtain that
1 ≤ 5

4 ≤
4
3 ≤

3
2 ≤ 2,

2 ≤ 5
2 ≤

8
3 ≤ 3 ≤ 4,

Hence, Theorem 4 is verified.
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Theorem 5. Let S, g : [t, υ]→ K+
C be two I.V-F such that S(ω) = [S∗(ω), S∗(ω)] and

g(ω) = [g∗(ω), g∗(ω)] for all ω ∈ [t, υ] andSg ∈ IR([t, υ]) . If S, g ∈ LRSX
(
[t, υ], K+

C
)
, then

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω ≤p

B(t, υ)

3
+

C(t, υ)

6
,

whereB(t, υ) = S(t)g(t)+S(υ)g(υ),C(t, υ) = S(t)g(υ)+S(υ)g(t), andB(t, υ) = [B∗((t, υ)),
B∗((t, υ))] and C(t, υ) = [C∗((t, υ)), C∗((t, υ))].

Proof. Since S, g ∈ IR([t, υ]) , then we have

S∗(ςt + (1− ς)υ) ≤ ςS∗(t) + (1− ς)S∗(υ),

S∗(ςt + (1− ς)υ) ≤ ςS∗(t) + (1− ς)S∗(υ).

And
g∗(ςt + (1− ς)υ) ≤ ςg∗(t) + (1− ς)g∗(υ),

g∗(ςt + (1− ς)υ) ≤ ςg∗(t) + (1− ς)g∗(υ).

From the definition of LR-convex I.V-Fs it follows that 0 ≤p S(ω) and 0 ≤p g(ω) , so

S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

≤
(

ςS∗(t) + (1− ς)S∗(υ)
)(

ςg∗(t) + (1− ς)g∗(υ)
)

= S∗(t)g∗(t)ς2 +S∗(υ)g∗(υ)ς2 +S∗(t)g∗(υ)ς(1− ς) +S∗(υ)g∗(t)ς(1− ς)

S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

≤
(

ςS∗(t) + (1− ς)S∗(υ)
)(

ςg∗(t) + (1− ς)g∗(υ)
)

= S∗(t)g∗(t)ς2 +S∗(υ)g∗(υ)ς2 +S∗(t)g∗(υ)ς(1− ς) +S∗(υ)g∗(t)ς(1− ς),

Integrating both sides of above inequality over [0, 1] we obtain∫ 1
0 S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ) = 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω

≤ (S∗(t)g∗(t) +S∗(υ)g∗(υ))
∫ 1

0 ς2dς

+(S∗(t)g∗(υ) +S∗(υ)g∗(t))
∫ 1

0 ς(1− ς)dς,∫ 1
0 S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ) = 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω

≤ (S∗(t)g∗(t) +S∗(υ)g∗(υ))
∫ 1

0 ς2dς

+(S∗(t)g∗(υ) +S∗(υ)g∗(t))
∫ 1

0 ς(1− ς)dς.

It follows that,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω ≤ B∗((t, υ))

∫ 1
0 ς2dς + C∗((t, υ))

∫ 1
0 ς(1− ς)dς,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω ≤ B∗((t, υ))

∫ 1
0 ς2dς + C∗((t, υ))

∫ 1
0 ς(1− ς)dς,

that is

1
υ− t

[∫ υ

t
S∗(ω)g∗(ω)dω,

∫ υ

t
S∗(ω)g∗(ω)dω

]
≤p

[
B∗((t, υ))

3
,
B∗((t, υ))

3

]
+

[
C∗((t, υ))

6
,
C∗((t, υ))

6

]
.

Thus,
1

υ− t
(IR)

∫ υ

t
S(ω)g(ω)dω ≤p

B(t, υ)

3
+

C(t, υ)

6
,

and the theorem has been established. �
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Theorem 6. Let S, g : [t, υ]→ K+
C be two I.V-Fs such that S(ω) = [S∗(ω), S∗(ω)] and

g(ω) = [g∗(ω), g∗(ω)] for all ω ∈ [t, υ] andSg ∈ IR([t, υ]) . If S, g ∈ LRSX
(
[t, υ], K+

C
)
, then

2 S

(
t + υ

2

)
g
(

t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω +

B(t, υ)

6
+

C(t, υ)

3
,

where B(t, υ) = S(t)g(t) + S(υ)g(υ), C(t, υ) = S(t)g(υ) + S(υ)g(t), and B(t, υ) =
[B∗((t, υ)),B∗((t, υ))] and C(t, υ) = [C∗((t, υ)), C∗((t, υ))].

Proof. By hypothesis, we have

S∗
( t+υ

2
)

g∗
( t+υ

2
)

S∗
( t+υ

2
)

g∗
( t+υ

2
)

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗(ςt + (1− ς)υ)g∗((1− ς)t + ςυ)

]

+ 1
4

[
S∗((1− ς)t + ςυ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]
,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗(ςt + (1− ς)υ)g∗((1− ς)t + ςυ)

]

+ 1
4

[
S∗((1− ς)t + ςυ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]
,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
4


(ςS∗(t) + (1− ς)S∗(υ))

((1− ς)g∗(t) + ςg∗(υ))
+((1− ς)S∗(t) + ςS∗(υ))

(ςg∗(t) + (1− ς)g∗(υ))

,

≤ 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
4


(ςS∗(t) + (1− ς)S∗(υ))

((1− ς)g∗(t) + ςg∗(υ))
+((1− ς)S∗(t) + ςS∗(υ))

(ςg∗(t) + (1− ς)g∗(υ))

,

= 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
2

 {
ς2 + (1− ς)2

}
C∗((t, υ))

+{ς(1− ς) + (1− ς)ς}B∗((t, υ))

,

= 1
4

[
S∗(ςt + (1− ς)υ)g∗(ςt + (1− ς)υ)

+S∗((1− ς)t + ςυ)g∗((1− ς)t + ςυ)

]

+ 1
2

 {
ς2 + (1− ς)2

}
C∗((t, υ))

+{ς(1− ς) + (1− ς)ς}B∗((t, υ))

.
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IR -Integrating over [0, 1], we have

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
≤ 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω + B∗((t,υ))

6 + C∗((t,υ))
3 ,

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
≤ 1

υ−t

∫ υ
t S∗(ω)g∗(ω)dω + B∗((t,υ))

6 + C∗((t,υ))
3 ,

that is

2 S

(
t + υ

2

)
g
(

t + υ

2

)
≤p

1
υ− t

(IR)
∫ υ

t
S(ω)g(ω)dω +

B(t, υ)

6
+

C(t, υ)

3
.

Hence, the required result. �

Example 5. We consider the I.V-Fs S, g : [t, υ] = [0, 1]→ K+
C defined by S(ω) =

[
2ω2, 4ω2]

and g(ω) = [ω, 2ω]. Since end point functions S∗(ω) = 2ω2, S∗(ω) = 4ω2 and g∗(ω) = ω,
g∗(ω) = 2ω are convex functions. Hence S, g both are LR-convex I.V-Fs. We now compute
the following

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 1

2 ,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 2,

B∗((t,υ))
3 = 2

3 ,

B∗((t,υ))
3 = 8

3 ,

C∗((t,υ))
6 = 0,

C∗((t,υ))
6 = 0,

that means
1
2 ≤

2
3 + 0 = 2

3 ,

2 ≤ 8
3 + 0 = 8

3 ,

Consequently, Theorem 5 is verified.
For Theorem 6, we have

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
= 1

2 ,

2 S∗
( t+υ

2
)

g∗
( t+υ

2
)
= 2,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 1

2 ,

1
υ−t

∫ υ
t S∗(ω)g∗(ω)dω = 2,

B∗((t,υ))
6 = 1

3 ,

B∗((t,υ))
6 = 4

3 ,

C∗((t,υ))
3 = 0,

C∗((t,υ))
3 = 0,

From which, we have
1
2 ≤

1
2 + 0 + 1

3 = 5
6 ,

2 ≤ 2 + 0 + 4
3 = 10

3 ,

Consequently, Theorem 6 is demonstrated.

We now give HH-Fejér inequalities for LR-convex I.V-Fs. Firstly, we obtain the second
HH-Fejér inequality for LR-convex I.V-F.
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Theorem 7. Let S : [t, υ]→ K+
C be an I.V-F with t < υ, such that S(ω) = [S∗(ω), S∗(ω)] for

all ω ∈ [t, υ] and S ∈ IR([t, υ]). If S ∈ LRSX
(
[t, υ], K+

C
)
, then D : [t, υ]→ R, D(ω) ≥ 0,

symmetric with respect to t+υ
2 , then

1
υ− t

(IR)
∫ υ

t
S(ω)D(ω)dω ≤p [S(t) +S(υ)]

∫ 1

0
ςD((1− ς)t + ςυ)dς. (11)

Proof. Let S ∈ LRSX
(
[t, υ], K+

C
)

. Then we have

S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)

≤ (ςS∗(t) + (1− ς)S∗(υ))D(ςt + (1− ς)υ),

S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)

≤ (ςS∗(t) + (1− ς)S∗(υ))D(ςt + (1− ς)υ).

(12)

And

S∗((1− ς)t + ςυ)D((1− ς)t + ςυ) ≤ ((1− ς)S∗(t) + ςS∗(υ))D((1− ς)t + ςυ),

S∗((1− ς)t + ςυ)D((1− ς)t + ςυ) ≤ ((1− ς)S∗(t) + ςS∗(υ))D((1− ς)t + ςυ).
(13)

After adding (12) and (13), and integrating over [0, 1], we obtain∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς +

∫ 1
0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

≤
∫ 1

0

[
S∗(t){ςD(ςt + (1− ς)υ) + (1− ς)D((1− ς)t + ςυ)}
+S∗(υ){(1− ς)D(ςt + (1− ς)υ) + ςD((1− ς)t + ςυ)}

]
dς,∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς +
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

≤
∫ 1

0

[
S∗(t){ςD(ςt + (1− ς)υ) + (1− ς)D((1− ς)t + ςυ)}
+S∗(υ){(1− ς)D(ςt + (1− ς)υ) + ςD((1− ς)t + ςυ)}

]
dς.

= 2S∗(t)
∫ 1

0
ςD(ςt + (1− ς)υ) dς + 2S∗(υ)

∫ 1
0

ςD((1− ς)t + ςυ) dς,

= 2S∗(t)
∫ 1

0
ςD(ςt + (1− ς)υ) dς + 2S∗(υ)

∫ 1
0 ςD((1− ς)t + ςυ) dς.

Since D is symmetric, then

= 2[S∗(t) +S∗(υ)]
∫ 1

0
ςD((1− ς)t + ςυ) dς,

= 2[S∗(t) +S∗(υ)]
∫ 1

0 ςD((1− ς)t + ςυ) dς.
(14)

Since∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

=
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς = 1
υ−t

∫ υ
t S∗(ω)D(ω)dω∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

=
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς = 1
υ−t

∫ υ
t S∗(ω)D(ω)dω

(15)
From (15), we have

1
υ−t

∫ υ
t S∗(ω)D(ω)dω ≤ [S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ)dς,

1
υ−t

∫ υ
t S∗(ω)D(ω)dω ≤ [S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ) dς,

that is [
1

υ−t

∫ υ
t S∗(ω)D(ω)dω, 1

υ−t

∫ υ
t S∗(ω)D(ω)dω

]
≤p [S∗(t) +S∗(υ), S∗(t) +S∗(υ)]

∫ 1
0 ςD((1− ς)t + ςυ) dς
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hence

1
υ− t

(IR)
∫ υ

t
S(ω)D(ω)dω ≤p [S(t) +S(υ)]

∫ 1

0
ςD((1− ς)t + ςυ)dς.

Next, we construct first HH-Fejér inequality for LR-convex I.V-F, which generalizes
first HH-Fejér inequalities for convex function, see [21]. �

Theorem 8. Let S : [t, υ]→ K+
C be an I.V-F with t < υ, such that S(ω) = [S∗(ω), S∗(ω)] for

all ω ∈ [t, υ] and S ∈ IR([t, υ]) . If S ∈ LRSX
(
[t, υ], K+

C
)

and D : [t, υ]→ R, D(ω) ≥ 0,
symmetric with respect to t+υ

2 , and
∫ υ

t D(ω)dω > 0, then

S

(
t + υ

2

)
≤p

1∫ υ
t D(ω)dω

(IR)
∫ υ

t
S(ω)D(ω)dω. (16)

Proof. Since S ∈ LRSX
(
[t, υ], K+

C
)

, then we have

S∗
( t+υ

2
)
≤ 1

2 (S∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ)),

S∗
( t+υ

2
)
≤ 1

2 (S
∗(ςt + (1− ς)υ) +S∗((1− ς)t + ςυ)),

(17)

By multiplying (17) by D(ςt + (1− ς)υ) = D((1− ς)t + ςυ) and integrate it by ς over
[0, 1], we obtain

S∗
( t+υ

2
) ∫ 1

0 D((1− ς)t + ςυ)dς

≤ 1
2

 ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

+
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

,

S∗
( t+υ

2
) ∫ 1

0 D((1− ς)t + ςυ)dς

≤ 1
2

 ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

+
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

,

(18)

Since ∫ 1
0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

=
∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

= 1
υ−t

∫ υ
t S∗(ω)D(ω)dω∫ 1

0 S∗((1− ς)t + ςυ)D((1− ς)t + ςυ)dς

=
∫ 1

0 S∗(ςt + (1− ς)υ)D(ςt + (1− ς)υ)dς

= 1
υ−t

∫ υ
t S∗(ω)D(ω)dω

(19)

From (19), we have

S∗
( t+υ

2
)
≤ 1∫ υ

t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω,

S∗
( t+υ

2
)
≤ 1∫ υ

t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω,

From which, we have[
S∗
( t+υ

2
)
, S∗

( t+υ
2
)]

≤p
1∫ υ

t D(ω)dω

[ ∫ υ
t S∗(ω)D(ω)dω,

∫ υ
t S∗(ω)D(ω)dω

]
,

that is

S

(
t + υ

2

)
≤p

1∫ υ
t D(ω)dω

(IR)
∫ υ

t
S(ω)D(ω)dω.
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This completes the proof. �

Remark 5. If D(ω) = 1 then, combining Theorems 7 and 8, we obtain Theorem 3.
If S∗(t) = S∗(t) then, Theorems 7 and 8 reduces to classical first and second HH-Fejér

inequality for convex function, see [21].
If S∗(t) = S∗(t) with D(ω) = 1 then, Theorems 7 and 8 reduces to classical first and second

HH-Fejér inequality for convex function, see [17,18].

Example 6. We consider the I.V-F S : [t, υ] =
[

π
4 , π

2
]
→ K+

C defined by,

S(ω) = [exp(sin(ω)), 2 exp(sin(ω))]

Since end point functions S∗(ω) = exp(sin(ω)) , S∗(ω) = 2 exp(sin(ω)) convex func-
tions then, by Theorem 2, S(ω) is LR-convex I.V-F. If

D(ω) =

{
ω− π

4 , S ∈
[

π
4 , 3π

8
]
,

π
2 −ω, S ∈

( 3π
8 , π

2
]
.

then, we have

1
υ−t

∫ υ
t [S∗(ω)]D(ω)dω = 4

π

∫ π
2

π
4
[S∗(ω)]D(ω)dω = 4

π

∫ 3π
8

π
4

[S∗(ω)]D(ω)dω + 4
π

∫ π
2

3π
8
S∗(ω)D(ω)dω,

1
υ−t

∫ υ
t [S

∗(ω)]D(ω)dω = 4
π

∫ π
2

π
4
[S∗(ω)]D(ω)dω = 4

π

∫ 3π
8

π
4

[S∗(ω)]D(ω)dω + 4
π

∫ π
2

3π
8
S∗(ω)D(ω)dω,

= 4
π

∫ 3π
8

π
4

[exp(sin(ω))]
(
ω− π

4
)
dω + 4

π

∫ π
2

3π
8

exp(sin(ω))
(

π
2 −ω

)
dω ≈ 63

100π ,

= 8
π

∫ 3π
8

π
4

exp(sin(ω))
(
ω− π

4
)
dω + 8

π

∫ π
2

3π
8

exp(sin(ω))
(

π
2 −ω

)
dω ≈ 63

50π ,
(20)

and
[S∗(t) +S∗(υ)]

∫ 1
0

ςD(t + ς∂(υ, t)) dς

[S∗(t) +S∗(υ)]
∫ 1

0 ςD(t + ς∂(υ, t))dς

= π
2

[∫ 1
2

0 ς2dς +
∫ 1

1
2

ς(1 + ς)dς

]
= 17π

48 ,

= π

[∫ 1
2

0 ς2dς +
∫ 1

1
2

ς(1 + ς)dς

]
= 17π

24 .
(21)

From (20) and (21), we have[
63

100π
,

63
50π

]
≤ p

[
17π

48
,

17π

24

]
.

Hence, Theorem 7 is verified.
For Theorem 8, we have

S∗
( t+υ

2
)
= S∗

( 3π
8
)
≈ 1 ,

S∗
( t+υ

2
)
= S∗

( 3π
8
)
≈ 2 , (22)

∫ υ

t
D(ω)dω =

∫ 3π
8

π
4

(
ω− π

4

)
dω +

∫ π
2

3π
8

(π

2
−ω

)
dω ≈ 4

25
,

1∫ υ
t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω ≈ 1.1

1∫ υ
t D(ω)dω

∫ υ
t S∗(ω)D(ω)dω ≈ 2.1. (23)
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From (22) and (23), we have

[1, 2] ≤ p[1.1, 2.1].

Hence, Theorem 8 is verified.

4. Results and Discussion

For LR-convex I.V-Fs, we find Hermite–Hadamard type inequalities. Our findings not
only improve on Zhao’s work, but they also investigate some of the findings of Sarikaya
et al. We have not looked into inequalities using interval derivatives since there are not any
“interval derivatives” with desirable characteristics.

5. Conclusions

In this paper, HH-inequalities have been investigated for the concept of LR-convex
I.V-Fs. The most important thing in this study is that we have proved that both concepts LR-
convex I.V-F and convex I.V-Fs coincide under some mild conditions when these conditions
are defined on the endpoint functions. As for future research, we try to explore this concept
for generalized LR-convex I.V-Fs and some applications in interval nonlinear programing.
This is an open problem for the readers and anyone can investigate this concept, “the
optimality conditions of LR-convex I.V-Fs can be obtained through variational inequalities”.
We hope that this concept will be helpful for other authors to play their roles in different
fields of sciences. Moreover, in future, we will also start exploring this concept and their
generalizations by using different fractional integral operators.
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