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Abstract: In this paper, a dissipative version of the Benjamin–Ono dynamics is shown to faithfully
model the collective evolution of swarms of scalar Cauchy stochastic agents obeying a follow-the-leader
interaction rule. Due to the Hilbert transform, the swarm dynamic is described by nonlinear and
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1. Introduction

The dynamic of a Markov process Xt ∈ R is fully characterised by its transition
probability density (TPD) P(z, t|y, 0), solving a differential Chapman–Kolmogorov (DCK) [1]:

∂tP(x, t|y, 0) = −∂x{A(x, t)P(x, t|y, 0)}+ B∂xxP(x, t|y, 0)+

D
∫
R[W(x|z, t)P(z, t|y, 0)−W(x|z, t)P(x, t|y, 0)]dz,

P(x, t|y, 0) ≥ 0 and
∫
R P(x, t|y, 0)dz = 1,

P(x, 0|y, 0) = δ(x− y),

(1)

where t ∈ R+ and δ(x− y) is the Dirac probability mass at x = y. In Equation (1), the first
two terms describe the diffusive component of the stochastic motion (i.e., continuous, yet
not differentiable, random trajectories). The integral term takes into account the presence
of random jumps. At time t, the kernel W(x|z, t) characterises the distribution of jumps
from position z to position x. In close relation with Equation (1), this paper will focus on
nonlinear integro-differential PDEs :

∂tu(x, t) = −∂x{F [u(x, t), x, t]u(x, t)}+ B∂xxu(x, t)+

D
∫
R[W(x|z, t)u(z, t)−W(z|x, t)u(x, t)]dz,

u(x, t) ≥ 0 and
∫
R P(x, t)dz = 1,

u(x, 0) = u0(x).

(2)

Equations (1) and (2) describe the evolution of probability densities P(x, t|y, 0) and
u(x, t), respectively. However, as discussed by T. Frank [2], the nonlinear Equation (2)
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does not allow the interpretation of u(x, t) as the TPD of an underlying Markov process.
The details of the inter-connection between Equations (1) and (2) will be reviewed in
Section 3. In Equation (2), the functional F [u(x, t), x, t] introduces a feedback-type u(x, t)
dependence of the drift, and this clearly generates a nonlinear evolution.

For the purely diffusive regimes that appear when D = 0, Equation (2) yields well-
known specific illustrations of Equation (2). As one of the simplest examples of these, let us
mention the Burgers–Kortweg de Vries dynamics (BKDV) (omitting the (x, t) arguments):

∂tu = −∂x{F [u]u}+ B∂xxu u := u(x, t),

F [u] := Au− C ∂xxu
u , u > 0.

(3)

Equation (3) is known to possess soliton wave solutions. Specifically, for A 6= 0 and
B = C = 0, we have the Euler dynamics, which are solved by δ-type solitons [3]. When
A 6= 0 and B 6= 0 but C = 0, the standard Burgers’ dynamics follow, which can be solved
by linearisation [4]. With A 6= 0, B = 0, and C 6= 0, Equation (3) is the Kortweg de
Vries (KDV) and admits symmetric positive definite solitons [4]. Finally, for non-vanishing
A,B, C, the BKDV is solved by positive asymmetric solitons [5–8]. All BKDV soliton-type
densities exhibit rapidly decreasing tails and arbitrarily high moments. For the case where
D > 0, the resulting dynamics have been far less explored, and the goal of this paper is to
focus on this aspect. Thus, instead of Equation (3), in the following, we will consider the
class of dynamics:

∂tu = −∂x{F [u]u}+D
∫
R
[W(x|z, t)u(x, t)−W(z|x, t)u(x, t)]dz, (4)

In this, the diffusion component of Equation (2) has been removed to focus on pure
jump dynamics. Several types of jump kernels W(z|x, t) can be implemented. For exam-
ple, nonlinear dynamics driven by compound Poisson processes were recently investi-
gated in [9–11]. In the following, we will select Cauchy processes characterised by the
jump kernel:

W(z|x, t) = W(z|x) = 1
π(z− x)2 . (5)

Using Equation (5), one can rewrite Equation (4) using one of the alternative represen-
tations (Appendix A gives details regarding the following notations):

• Hilbert transform:
∂tu = −∂x{F [u]u} −D∂xH[u], (6)

H[·] standing for the Hilbert transform:

H[ f (x)] :=
1
π

pv
∫
R

f (ξ)
x− ξ

dξ, (7)

In this, pv
∫
[·] means the Cauchy principal part of the integral. For u > 0, we further

focus the discussion on the specific nonlinear functional F [u] := Au − C H{∂xu}
u ,

with the constant parameters A and C. With this, Equation (6) reads:

∂tu = −A∂x

[
u2
]
+ CH[∂xxu]−D∂xH[u]. (8)

• Riesz fractional derivative:
Here, instead of Equation (8), we can write:

∂tu(x, t) = −∂x{F [u]u}+
√
−∆[u(x, t)] (9)

where the formal root of the Laplacian operator ∆[·] is a Riesz fractional derivative [12].
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From now on, we shall only use the Hilbert transform representation. The nonlinear
PDE Equation (8) is known as the Landau dissipative Benjamin–Ono (BO) dynamic; it was
recently introduced in [13]. With D = 0, Equation (8) is the standard (i.e., conservative) BO
dynamic, which has itself been extensively discussed (without attempting to be exhaustive,
see, for example, [14–16]).

At first sight, Equations (3) and (8) appear to be drastically different. However, they
share a couple of fundamental characteristics: (i) they can be rewritten in the form of
continuity equations, namely, ∂tu + ∂xJ1,(2)[u] = 0, with J1,(2)[u] being transport currents,
and (ii) their drift dynamics:

∂tu = −∂xJ1[u] = −A∂x
{

u2}+ C∂xxxu,

∂tu = −∂xJ2[u] = −A∂x
{

u2}+ CH∂xx[u],
(10)

are both fully integrable nonlinear Hamiltonian field dynamics [14,17] .
Besides the fluid domain, where Equations (3) and (8) play a central role, these

also enter into the realm of mean-field (MF) multi-agent (swarms) dynamics. This is the
aspect that will be discussed here. For Equation (3), the diffusive dynamics are used to
model Brownian agents. These enable us to stylise the emergence of macroscopic spatio-
temporal patterns for microscopic agents driven by sources of Gaussian white noise [2,18,19].
In this context, the nonlinearity Au∂xu describes mutual interactions via a follow-the-leader
algorithm. Along similar lines, our paper explores the swarm dynamics of agents driven
by Cauchy processes. With such jump noise sources and a follow-the-leader type algorithm,
we will show the emergence of fat-tail solitons at the macroscopic level.

This paper is organised as follows: In Section 2, we calculate a single decaying soliton
solution solving the dissipative BO Equation (8). In Section 3, we expose the multi-agent
modelling for agents driven by Cauchy jump processes. Then, we implement follow-the-
leader mutual interactions and use the MF procedure. Then, we show that the resulting
Cauchy swarm behaviour can be faithfully modelled by the dissipative BO dynamics
discussed in Section 2. Finally, in Section 4, inspired by Brownian agents we conclude by
listing a few open questions that remain to be discussed for Cauchy swarms. Everything in
this program can be worked out exactly, and specific technical details are listed in a couple
of appendices.

2. Non-Conservative Benjamin–Ono (BO) Dynamics and Fat-Tail Solitons

Consider the dissipative BO dynamics [13] :
∂tu(x, t) = −A∂x

{
u(x, t)2}− C(t)∂xx{H[u(x, t)]} −D(t)∂xH[(u(x, t)],

u(x, 0) = u0(x), and u(|∞|, t) = 0,
(11)

where D(t) is a smooth function of time t ∈ R+. In [13], several dissipation mechanisms
are studied and this specific dissipation is called the Landau dissipation. Equation (11)
is a non-conservative extension of the BO equation (dissipation occurs when D(t) > 0).
The standard BO equation is obtained when D ≡ 0 and C(t) = const [14–16].

Proposition 1 (Cauchy-type soliton). For constant C = A
2π , the nonlinear PDE Equation (11)

is solved by a fat-tail decaying soliton:

u(x, t) =
ϕ(t)

π
[

ϕ2(t) + [x + φ(t)]2
] , t ∈ R+, (12)
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where ϕ(t) and φ(t) solve the set of coupled odes:
ϕ̇(t) = D(t),

φ̇ = − 3A
2πϕ(t) .

(13)

Proof. By direct verification using the list of identities in Appendix B.

For D(t) > 0, Equation (13) forces ϕ(t) to strictly increase, and u(x, t) is therefore
a time-evanescent soliton that travels with a non-constant velocity φ(t). The case D =
constant is also discussed in [13]. We emphasise that the soliton amplitude depends
exclusively on the parameter D(t). However, both D(t) and C = A

(2π)
determine the soliton

velocity φ(t). For D = 0⇒ D(t) = ϕ0, u(x, t) is a constant ϕ0-amplitude soliton travelling
with a φ0-constant velocity where φ0 = −3t[ϕ0]

−1 showing that the amplitude and velocity
of the soliton are interdependent.

Remark 1. The solution of Equation (13) involves two integration constants: ϕ0 and φ0. These
can be fixed by the initial profile u0(x), which itself reads as

u0(x) =
ϕ0

π[ϕ2
0 + (x + φ0)2]

. (14)

Mixed-Canonic Dissipative Dynamics

From Appendix B, it can be verified that for the u given by Equation (12), we have
∂xu + 2π(uH[u]) = 0. This immediately implies:

Corollary 1. The generalised dissipative BO equation is as follows:
∂tu(x, t) = −A∂x

{
u(x, t)2, x, t

}
− A

2π ∂xx{H[u(x, t)]} −D(u, x, t)∂xH[(u(x, t)],

D(u, x, t) := D(t) + [∂xu(x, t) + 2π(u(x, t)H[u(x, t)])],
(15)

is solved by u(x, t) given by Equations (12) and (13).

It is important to point out that Equation (15) cannot be written as a continuity equation.
Hence, Equation (15) fundamentally differs from Equation (11). Along the same lines of
Corollary 1, we can now construct soliton amplitude selection mechanisms. For this, recall
that for D(t) = 0 with C as a constant, the BO evolution Equation (11), is a fully integrable
Hamiltonian field dynamic [17]. The Hamiltonian H and an infinite set of constants of
motion {I1, I2, · · · } are explicitly known [15,17]. In particular, we know that

H[u(x, t)] = A
∫
R

{
1
3

u3(x, t) +
1
π

u(x, t)H∂xu(x, t)
}

dx. (16)

is a constant of the motion. For u0(x), as in Equation (14) and with D = 0, Proposition 1
implies that u(x, t) = u0(x− 3A

2πϕ0
t) and E(ϕ0) := H[u0(x− 3A

2πϕ0
t)] is time-independent.

Now, consider the non-conservative dynamics:
∂tu(x, t) = −A∂x

{
u(x, t)2, x, t

}
− A

2π ∂xx{H[u(x, t)]} −DH(u, x, t){H[u(x, t)]}

DH(u, x, t) := −κ{H[u(x, t)]− E(ϕ0)}∂xH[(u(x, t)],
(17)

where κ ∈ R+ is a constant. As long asDH(u, x, t) > 0, Equation (17) describes a dissipative
dynamic that persists as long as the system’s energy exceeds the level E(ϕ0). Conversely,
when the energy is less than E(ϕ0), we have D < 0, implying that energy is fed into
the system. Once the system’s E(ϕ0) is reached, the evolution is Hamiltonian, and we
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have u(x, t) = u0(x− 3A
2πϕ0

t). Accordingly, DH(u, x, t) creates an attractor that drives the
dynamics towards a conservative orbit with energy E(ϕ0). Along the same lines, more
general regulators based on the other constants of the motion {I1, I2, · · · } can be similarly
constructed. Note that for finite dimensional systems, a similar type of regulator was
implemented for diffusive dynamics in [20].

3. Interactive Multi-Agent Dynamics with Fat-Tail Solitons

Consider a swarm of N indistinguishable agents
{

aj
}

j=1,2,··· ,N with individual dynam-

ics described by N independent scalar Cauchy process X(t) := (X1(t), X2(t), · · · , XN(t))
solutions of stochastic differential equations:

dXk(t) = D(t)dCk(t), k = 1, 2, · · · , N, (18)

where Ck(t) stands for the Cauchy processes, and D(t) ∈ R+ is an amplitude modulation.
At time t = 0, we assume the initial positions

{
Xj(0)

}
to be drawn at random from a

probability law u0(x). Let us define the empirical distribution ũ(~X(t), x, t):

ũ(~X(t), x, t) :=
1
N

N

∑
j=1

δ[x− Xj(t)], ũ(~X(0), x, 0) = u0(x), (19)

where ~X(t) := (X1(t), X2(t), · · · , XN(t)). In Equation (18), let us now include mutual
agents interactions by rewriting the dynamics as

dXk(t) = J [Xk(t), ũ(~X(t), x, t)]dt +D(t)dCk(t), k = 1, 2, · · · , N. (20)

The interaction kernel J [Xk(t), ũ(~X(t), x, t)] indicates, via ũ(~X(t), x, t) dependence,
that an arbitrary agent ak interacts with all other fellows within the swarm. For a large popu-
lation N, we can adopt a mean-field (MF) description of the dynamics. In a nutshell, the MF
approach consists of assuming that (i) the empirical distribution ũ(x, t) can be approxi-
mated by a smooth function u(x, t) and that (ii) the swarm behaviour can be characterised
by single representative agents interacting with their fellows via an external effective field
(i.e., the mean field). Following the procedure exposed for Brownian agents in [2], the MF
approach adapted to the Cauchy dynamics in Equation (20) can be summarised as

∂tP(x, t|y, t0) = −∂x{u(x, t)P(x, t|y, t0)} −D(t)H[∂xP(x, t|y, t0)

∂tu(x, t) = −∂x{J [u(x, t), x, t]u} −D(t)H[∂xu(x, t)]

P(x, t|y, t0) ≥ 0 and u(x, t) ≥ 0,

P(x, t0|y, t0) = δ(x− y),∫
R P(x, t|y, t0)dx =

∫
R u(x, t)dx = 1,

(21)

In Equation (21), we have the following:

• P(x, t|y, t0) is the TPD of the MF representative agent. This agent evolves as a Markov
process with Cauchy jumps and effective MF drift u(x, t). This drift encapsulates the
effective influence of the whole swarm on a randomly chosen representative agent
(it is necessary to remember that the agents are indistinguishable). As is required for
master-type equations, the evolution of P(x, t|y, t0) is linear.

• The swarm collective behaviour is itself described by u(x, t). The functional J [u(x, t), x, t]
encapsulates the effective result of mutual interactions. Here, we point out that u(x, t)
obeys a nonlinear PDE. Note that u(x, t) is a density but itself is not the TPD of a
Markov process.
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• P(x, t|y, t0) and u(x, t) are connected via a self-consistent constraint:
u(x, t) =

∫
R P(x, t|y, t0)u0(y)dy,

u0(x) = δ(x) ⇒ P(x, t|0, 0) = u(x, t).
(22)

There are very few multi-agents models for which Equations (21) and (22) can be
analytically solved. An example of where this procedure is feasible is the Shimizu–Yamada
model, which describes Brownian agents. In this case, the solution is based on the Gaussian
properties of the Ornstein–Uhlenbeck process [2]. In Section 3.1 below, we show that this
MF procedure can also be analytically solved for Cauchy jump processes.

3.1. Follow-the-Leader Interactions

Inspired by [19], let us now introduce the “follow-the-leader” (FLA) interaction kernel
and discuss the corresponding Equation (20). The FLA algorithm assumes that agents
permanently observe the relative positions of R of their fellows. Based on these real-time
observations, each agent dynamically updates their drift. The update depends on the
number of leaders L̂(λ; x, t) detected within a range λ. For agent ak, this is achieved by an
empirical counting operation:

L̂k,λ(x, t) =
1
N ∑

j 6=k
δ(x− Xj(t))I

[
0 ≤ (Xj(t)− Xk(t)) ≤ λ

]
, (23)

where I[·] is the indicator function. For large swarms, (i.e., N → ∞), one uses the density
function u(x, t) to rewrite Equation (23) as:

lim
N→∞

L̂k,λ(x, t) '
∫ x+λ

x
u(ξ, t)dξ := Lk,λ(u, x, t) ∈ [0, 1]. (24)

With Equation (24), the FLA algorithm can now be defined by the rules:

A1: each agent implements an extra drift ΓLλ(u, x, t) (for the MF description, we drop
the index k of the representative agent), thus describing a follow-the-leader tendency.
This introduces nonlinearity into the dynamic.
A2: in the absence of jumps—i.e., when D(t) = 0—we impose the relative ranking of
agents to be unchanged. To this end, we introduce an extra operatorR[u], for which
an explicit form will be given shortly.

In terms of the rules A1 and A2, Equation (20) becomes:
∂tXk(t) =

{
J [Lk,λ(u, x, t)]u

}
dt−D(t)dCk(t),

J [Lk,λ(x, t)] = ΓLk,λ(u, x, t) + R[u]
[u] , u > 0.

(25)

Since agents are assumed to be indistinguishable, we drop index k. Hence, in the MF
limit with Equation (25), the swarm dynamics u(x, t) given by Equation (21) take the form:

∂tu = {Γ∂x[uLλ(u, x, t)] +R[u]} −D(t)H[∂xu], (26)

For an arbitrary observation range λ and with the presence of the Hilbert transform,
Equation (26) is a non-local and nonlinear PDE for which analytic solutions are generally
not known. To progress further, let us focus on limiting situations:

short observation range : Lλ(u, x, t) ' λu(x, t) +O(λ2),

infinite observation range : lim
λ→∞

Lλ(u, x, t) =
∫ ∞

x
u(ξ, t)dξ := U(x, t).

(27)
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Since u is normalised to unity and, by definition, we have u = −∂xU, Equation (26)
becomes:

short range :
{

∂tu(x, t) = −Γλ∂x
[
u2]+R[u]−D(t)H[∂xu],

u(−∞, t) = u(+∞) = 0.
(28)

infinite range :
{

∂tU(x, t) = −Γ∂x
[
U2]+R[U]−D(t)H[∂xU],

U(−∞, t) = 1, and U(+∞, t) = 0.
(29)

For the short-range regime Equation (28), we have

Proposition 2. In the short range regime Equation (28) and with D(t) = D, the specific choice
R[u] := − Γλ

2πH∂x[u] is sufficient to ensure that the rules A1 and A2 hold and that the swarm
density u(x, t) reads:

u(x, t) = ϕ(t)

π
[

ϕ2(t)+[x+φ(t)]2
] , t ∈ R+,

ϕ(t) = Dt + ϕ0 and φ(t) = − 3Γλ
2πD ln

[
t+ϕ0

ϕ0

]
.

(30)

Proof. (i) By construction, the rule A1 implies the drift nonlinearity in Equation (28).
The choice R[u] = − Γλ

2πH∂x[u] ensures that Proposition 1 holds. Hence, the resulting
swarm’s evolution is given by Equation (30). Note that for D = 0, Equation (13) directly
implies: 

u(x, t) = ϕ0

π
[

ϕ2
0+[x+φ(t)]2

] , t ∈ R+,

φ(t) = − Γλ
2πϕ0

t.

(31)

Equation (31) shows that u(x, t) = u(x − Γλ
2πϕ0

t). Such pure translation behaviour
excludes a shock formation during the evolution. Hence, the operator R[u] is sufficient
to guarantee that A2 is fulfilled. Indeed, in the absence of jumps, the pure translation
behaviour indicates that agents do not overtake; thus, A2 is satisfied.

From Equation (31), we have

lim
t→0

u(x, t) =
ϕ0

π
[
ϕ2

0 + x2
] so that lim

ϕ0→0

ϕ0

π
[
ϕ2

0 + x2
] = δ(x) (32)

where u(x, 0) = P(x, t|0, 0) = δ(x), as imposed by Equation (22). Note that with u(x, t)
given by Equation (31), we are unable to explicitly solve the linear Equation (21) for
P(x, t|y, 0) for arbitrary y (only P(x, t|0, 0) = u(x, t) is explicitly known). Proposition 2
therefore shows that the dissipative BO dynamic faithfully describes the dynamics of a
swarm of Cauchy agents with mutual interactions.

Equation (30) explicitly shows how from microscopic interactions a fat-tail decaying
soliton emerges. The median of the soliton evolves logarithmically over time. This
nonlinear behaviour with time can be heuristically understood directly from rule A1.
The normalised decaying soliton density Equation (31) generates a dispersion enhancement.
Hence, for a fixed λ, the short-range regime implies a decreasing number of observed
leaders. As a consequence, the amplitude of the nonlinear drift component decreases,
which produces the logarithmic behaviour.

Let us emphasise that it is truly remarkable that the nonlinearity together with the
nonlocal character (Hilbert transform) of the swarm dynamics still allow exact results to
be obtained in the short-range interaction regime. Hence, the dissipative BO enriches the
very short list of nonlinear dynamics of the Equation (21) for which explicit solutions can
be expressed. Despite the fact that Equations (29) and (28) differ only by their boundary
conditions, solving Equation (29) remains an open challenge.
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4. Conclusions and Perspectives

Besides the fundamental relevance of the BO in fluid dynamics, it is remarkable that
adding an extra dissipative term enables us to describe the collective motion of swarms of
Cauchy processes. This statistical mechanics point of view offers a heuristic interpretation
of the role played by Hilbert transform in the BO dynamics. This contributes to building a
complementary understanding of the physical meaning of BO. Inspired by the rich corpus
of results already derived for Brownian agents, the new interpretation of the dissipative
Benjamin–Ono dynamics leaves several open questions that still need to be addressed:

• Long-range agent interactions. For short-range observations (λ infinitesimal), a de-
caying soliton Equation (12) emerges. Short-range interactions are not sufficient to
sustain a constant-amplitude soliton. For long-range interactions λ → ∞, the solu-
tion U(x, t) in Equation (29) is yet unknown. One might infer whether the λ → ∞
regime sustains a steady-amplitude soliton, which does actually occur for Brownian
agents [19].

• Optimal control and mean-field games. Does a utility function L for which the
dissipative BO dynamics can be seen as the Hamilton–Jacobi–Bellman of the resulting
optimal control problem exist? This happens to be the case for Brownian and two-state
Markov chains (i.e., random telegraph) agents [21].

• Multi-solitons and agent clustering. The standard BO (i.e., conservative) dynamics
are well known to possess multi-soliton solutions. Similar decaying multi-solitons also
exist for the dissipative BO. Do such multi-soliton evolutions describe non-overlapping
clusters of Cauchy agents? Such a possibility does not exist for Brownian clusters [22].
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of the paper.
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Appendix A. Master Equation and Hilbert Transformation

Let us recall some basic properties of the Cauchy process Pc(x, t). This is a pure jump
Markov process that is fully characterised by the master equation:

∂tPc(x, t|y, 0) = pv
∫
R

{
Pc(z,t|y,0)
π(x−z)2 −

Pc(x,t|y,0)
π(z−x)2

}
dz,

Pc(x, 0|y, 0) = δ(x− y),
(A1)

with pv
∫
R standing for the Cauchy principal value integral. Equation (A1) is solved by the

Cauchy probability density:

Pc(z, t|y, 0) =
t

π[t2 + (z− y)2]
⇒ lim

t→0

t
π[t2 + (z− y)2]

= δ(x− y). (A2)

Lemma A1. The master equation Equation (A1) can alternatively be written as:

∂tPc(x, t|y, 0) = −∂xH[Pc(x, t|y, 0)], (A3)

whereH[·] stands for the Hilbert transform Equation (7).

Proof of Lemma A1. The right-hand-side of the master Equation (A1) is the difference
between two integrals:
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Iin(x, t) :=

∫
R

P(z,t|y,0)
π(x−z)2 dξ =

∫
R

P(η,t|0,0)
π(z−η)2 dη, (η := ξ − y),

Iout(x, t) := −P(x, t|y, 0)
∫
R

1
π(ξ−z)2 dξ.

We have

Iin(z, t) := −∂z

{
1
π

∫
R

P(η,t|0,0)
(z−η)

dη
}
= −∂zH{P(z, t | 0, 0)}

and
H{P(z, t | 0, 0)} := 1

π

∫
R

P(η,t|0,0)
(z−η)

dη = 1
π2

∫
R

[
t

(t2+η2)(z−η)

]
dη =

1
π2

[∫
R

t
(z−η)(η+it)(η−it)

}
dη = 1

π2

{
2πi
[

t
(z−it)(2it)

]
− iπ

[
t

(z+it)(z−it)

]]
=

1
π

(
1

(z−it) −
it

t2+z2

)
= 1

π

(
z

t2+z2

)
,

(A4)

where in Equation (A4) the integration contour is taken in the upper complex plane (for the
pole on the real axis, only an iπ contribution is subtracted). Hence, we have

−∂zH{P(z, t | 0, 0)} = 1
π

z2 − t2

[t2 + z2]2
= ∂tP(z, t | 0, 0).

Finally, we have Iout(z, t) = P(z,t|0,0)
π ∂z

{∫
R

dξ
ξ−z

}
= ∂z[−iπ] = 0.

Remark A1 (Riesz fractional derivative). In terms of the spatial Fourier transform:

Pc(k, t) :=
∫
R

Pc(z, t|0, 0)eikzdz, z := (x− y), (A5)

Equations (A1) and (A3) can also be formally rewritten as

∂tPc(k, t) = −|k|Pc(k, t) ⇒ Pc(k, t) = e−|k|t, (A6)

showing that we formally have

∂tPc(k, t) =
√
−∆[Pc(k, t)] (A7)

with the operator
√
−∆[·] being a Riesz fractional derivative [12].

Remark A2 (Lévy processes). The jumps of the Cauchy processes are fully characterised by a
Lévy measure [23]:

Wa,b(z) =


a+b
z2 when z < 0,

a−b
z2 when z > 0,

(A8)

where a > b ∈ R+ are two constants. For the jump Lévy measure Equation (A8), the resulting
Lévy Khinchine triplet Ψ(k) = [0, 0, ψa,b(k)] with [24]:

ψa,b(k) :=
∫
R

{
1− eikx + zI(|z| < 1)

}
Wa,b(z)dz = −a|k| − iβ(a, b)k ln(|k|),

ψa,0(k) = −a|k|.
(A9)

In this paper, we focus exclusively on symmetric jumps, for which ψa,0(k) = −a|k|.
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Appendix B. Basic Identities

We define D(x, t) := ϕ2(t) + [x + φ(t)]2 := ϕ2(t) + z2 and d
dt f (t) := ḟ . Omitting the

(x, t) arguments, we have

u(x, t) = ϕ
π[(x+φ)2+ϕ2]

= ϕ

π[z2+ϕ2]
= ϕ

πD , (z := x + φ),

D := ϕ2 + z2 ⇒ Ḋ = 2ϕϕ̇ + 2zφ̇,

∂tu(x, t) = ϕ̇D−ϕ(2zφ̇)−2ϕ2 ϕ̇

πD2 = ϕ̇z2−ϕ2 ϕ̇−2zϕφ̇

πD2 = ϕ̇[z4−ϕ4]−2φ̇[ϕz3+zϕ3]
πD3

∂xu(x, t) = − 2zϕ

πD2 ,

u(x, t)∂xu(x, t) = − 2zϕ2

π2D3 ,

H[u(x, t)] = 1
π

∫
R

u(ξ,t)
x−ξ dξ = 1

π2

∫
R

ϕdξ
(x−ξ)(ξ+φ−iϕ)(ξ+φ+iϕ) =

ϕ

π2

{
2πi

2iϕ(z−iφ)

}
− ϕ

π2

{
πi

z2+φ2

}
= z

πD ,

∂x{H[u(x, t)]} = D−2z2

πD2 = ϕ2−z2

πD2 = ϕ4−z4

πD3 ,

∂xx{H[u(x, t)]} = −2zD2+[ϕ2−z2]4Dz
πD4 = −6z3+2zϕ2

πD3 .
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