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Abstract: Fractals are geometric shapes and patterns that may repeat their geometry at smaller or
larger scales. It is well established that fractals can describe shapes and surfaces that cannot be
represented by the classical Euclidean geometry. An eclectic survey of fractals is presented in two
parts encompassing applications of fractals in a variety of diverse and innovative fields. The goal of
the first part is to focus on the glossary of fractals, their mathematical description, aesthetic, artistic,
and architectural applications, while the second part is focused on engineering, industry, commercial,
and futuristic applications of fractals.
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1. Introduction

Fractal geometry addresses itself to questions that many people have been asking them-
selves. It concerns an aspect of Nature that almost everybody had been conscious of, but
could not address in a formal fashion. Fractal geometry seems to be the proper language
to describe the complexity of many very complicated shapes around us.

Mandelbrot, (1990).

The term ‘Fractal’ was coined by Mandelbrot in 1975 to describe irregular geometries
in nature and in mathematics that contain self-similarity. The name Fractal comes from the
Latin word fractus, which means “broken” or “fractured”, and justified from the fact that
there are self-similar parts within fractals.

Classical geometry is sufficient to understand many geometries in nature, but what
about a fern, the silhouette of a tree covered in ice on a hill, the veins in a leaf, the intricate
branching of our lungs, brain, or the geometric irregularity of a coastline? Euclidean
geometry cannot provide simple descriptions of these shapes, but that does not mean
they are without any intrinsic order. Most of them share a common property called self-
similarity i.e., every small piece contains a copy of the whole shape, or at least a part of the
whole that looks like it, and every smaller piece contains still smaller copies of the whole,
and so on. With simple geometry we will learn how to grow basic fractals and how to
understand the surprisingly simple rules that define the infinitely complex Mandelbrot set.
We will see how to quantify the roughness of fractals and in what sense an object can have
a fractal (non-integer) dimension. A crucial distinction between ‘mathematical fractals’ and
‘natural fractals’ is that it is possible to zoom in indefinitely on a mathematical fractal (e.g.,
Mandelbrot set, Julia sets, etc.) whereas in the case of natural fractals, a fractal description
is valid only over a small range of scales (e.g., coastlines, clouds, etc.).
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Broadly speaking, fractals are geometric shapes and patterns that may repeat their
geometry at smaller (or larger) scales due to the inherent self-similarity present in the shape.
This survey explores mathematical and natural fractals with the goal of providing an
extensive review and state-of-the-art research, developments, and applications of fractals in
two parts. The first part focuses on the glossary of fractals, their mathematical description,
aesthetic, artistic, and architectural applications, while the second part is focused on
engineering, industry, commercial, and futuristic applications of fractals. These applications
range from aesthetic designs in art, fashion designing, landscape generation, tessellations,
fractal image compression, design of fractal shaped antennas to other innovative and
evolving fields of scientific and engineering research. We will explore several examples of
fractals that are making a remarkable impact into technologies of today and will continue
to contribute to the future.

Fractals can be generated using various algorithms and deals with objects that do not
have integer dimensions. The earliest and standard examples of deterministic (mathemati-
cal) fractals include the Cantor set, the Koch curve, the Sierpinski triangle, the Mandelbrot
set, and Julia sets. Contrary to their complicated geometry and infinitely complex patterns,
fractals have found lot of use in real life applications over the past 2–3 decades.

We shall begin with the introduction to the most famous and iconic fractal, namely the
Mandelbrot set, in Section 2. Basic mathematical concepts and the space in which fractals
live are introduced to ensure that the reader is aware of the mathematics behind fractals,
though the readers without decent mathematical background would also be able to follow
the article without difficulties.

In Section 3, we consider the fractal dimension (which is a non-integer number for
many fractal objects in contrast to the integer dimension of usual Euclidean objects), which
provides a relative measure of the density of a fractal with respect to the space in which it
lives. Several types of fractal dimensions existing in the literature are described here along
with examples. The application of the fractal dimension to many diverse fields including
coastlines and other natural objects is also discussed.

A tessellation or tiling is a collection of figures that fills the plane with no overlaps and
no gaps. Fractals possess space filling properties, i.e., they can fill the spaces without gaps
by placing self-similar copies together. Tilings have a long history and they appeared for
decorations in many civilizations and cultures as the earliest examples. The classical text
book by B. Grünbaum and G. C. Shephard [1] is by far one of the richest source on tilings
containing a great deal of information. In Section 4, we provide a brief overview of the
simple mathematics behind fractal tilings along with examples that can tile the Euclidean
planes R2 and R3.

Section 5 is dedicated to artistic applications of fractals namely, fractal art. Fractal art
is a genre of algorithmic art and digital art in which the results resemble the fractal objects
or obey fractal properties. Fractal arts are also found in ancient times in manuscripts, hand-
painted images, rugs, domes of mosques, and sculptures in old temples have patterns that
are reminiscent of fractal art. So, fractals were designed even before they were discovered
by Mandelbrot in 1970s and 1980s. We consider several application areas of the fractal art
in coloring books, art galleries, ceramics, screensavers, calendars, and most excitingly in
exploring infinity.

A recent application of fractals is seen in fractal clothing. Clothing is one of the most
important factors for human survival and many clothing styles have emerged with improve-
ments in technology. Clothing has huge market demand and a number of fashion brands
have evolved over the years. Use of fractals in art grabbed the attention of researchers
for their inherent features such as self-similarity, symmetry, pattern regularity, etc., and
artists and designers started using fractal art in the designing of clothes. In Section 6, we
discuss algorithms for generating fractal garment patterns and designs. Fractal clothing is
becoming popular and in future it will open high avenues for research and development,
investments, and styling.
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In Section 7, we present flying fractals! The fractal-shaped hot air balloons were first
designed and built by Jonathan Wolfe, executive director of the Fractal Foundation, an
organization dedicated to inspiring interest in math and science through fractals. Two
fractal balloons took to the sky at the Albuquerque International Balloon Fiesta in October
2013. Since then a number of fractal hot air balloons have been manufactured, which are
also some of the largest fractals ever printed—they are discussed in Section 7 in more detail.

Short notes on applications of fractals in other emerging fields such as econophysics
and military (for defense purposes) are given in brief in Sections 8 and 9, respectively.

Several books and monographs are available on fractal geometry, its mathematical
development, and applications. We particularly refer to the monograph entitled “Benoît
Mandelbrot: A Life In Many Dimensions” [2], which is a collection of articles written by
researchers who worked with Mandelbrot including mathematicians, physicists, biologists,
economists, engineers, artists, musicians, and teachers, memorializing the remarkable
breadth and depth of his work and accomplishments in science, engineering, and arts.
Some articles in this monograph are very technical while others are entirely descriptive and
every article include stories about Mandelbrot. We also refer to The Fractalist. Memoirs of a
Scientific Maverick [3], the memoirs started by Mandelbrot and published later in the year
2012 post his demise. The book is oriented towards a narrative of Mandelbrot’s life and the
amazing journey on how from a child in Warsaw he became a scientist at Yale University.
For a unified list of almost all the works by Mandelbrot and others on fractal geometry we
refer to [4]. Some additional book recommendations and fractal generating software are
discussed in Section 10.

The entire manuscript is organized keeping in mind a wider spectrum of readers from
academia and industry. This eclectic survey will enthrall and entertain the readers with the
infinite complexity, beauty, and applications of fractals.

2. Space of Fractals and Iterated Function Systems
2.1. Space of Fractals

To understand fractals mathematically, we need some basic background. Let X be a
non-empty set. Define a distance function d : X× X → R+ (which measures the distance
between pairs of points x and y in X) by:

(i) d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y, ∀ x, y ∈ X
(ii) d(x, y) = d(y, x), ∀ x, y ∈ X
(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.

The function d is called a metric on X and (X, d) is called a metric space. Fractal
geometry is the description, classification, analysis, and observations about subsets of
metric spaces.

Definition 1. A metric space (X, d) is said to be complete if every Cauchy sequence {xn}∞
n=1 of

points in X has a limit in x ∈ X, i.e., xn → x in X.

Definition 2. Let S ⊂ X be a subset of a metric space (X, d). S is compact if every infinite sequence
{xn}∞

n=1 ∈ S has a convergent subsequence in S.

Definition 3. Let (X, d) be a complete metric space and H(X) be the set of non-empty compact
subsets of X. H(X) is called space of fractals equipped with the Hausdorff metric h defined by:
For any A, B ∈ H(X), distance between A and B is given by

h(A, B) = max{d(A, B), d(B, A)}

where, d(A, B) = supx∈A infy∈B{d(x, y)}.

Any element of H(X) is a mathematical fractal and although classical Euclidean
objects such as spheres, cubes are not considered as fractals but mathematically they are
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elements ofH(X) and if there is no confusion likely to occur we can still consider them as
fractals. We refer the reader to Barnsley (Chapter 2, [5]) for a proof of the fact that the space
(H(X), h) is a complete metric space.

2.2. Iterated Function Systems and Attractors

Definition 4. A transformation w : X → X on the metric space (X, d) is called contractive or a
contraction mapping if there is a constant 0 ≤ α < 1 such that

d(w(x), w(y)) ≤ α d(x, y) ∀x, y ∈ X. (1)

α is called contractivity factor of w.

Definition 5. Let (X, d) be a complete metric space. An iterated function system (in short IFS) is a
finite set of contraction mappings wi : X → X, having contractivity factors αi, for i = 1, 2, . . . , m.
The number

α = max
1≤i≤m

αi

is called contractivity factor of the IFS.

Theorem 1. Let {X, wi : i = 1, 2, . . . , wm} be an IFS with contractivity factor α. Then the
transformation W : H(X)→ H(X) defined by

W(B) =
m⋃

i=1

wi(B) (2)

for all B ∈ H(X) is a contraction mapping onH(X, h(d)) with contractivity factor α. That is

h(W(B), W(C)) ≤ α h(B, C) for all B, C ∈ H(X).

Moreover, by contraction mapping theorem it has a unique fixed point A ∈ H(X), which
satisfies

A = W(A) =
m⋃

i=1

wi(A) (3)

and is given by A = limn→∞ W◦n(B) for any B ∈ H(X). Here, W◦k(B) denotes the usual k−fold
composition of W.

Definition 6. The fixed point A described in Theorem 1 is called the attractor of the IFS. Since
A ∈ H(X), therefore, it is a fractal.

All examples of natural and manufactured fractals presented in this article are geo-
metrically complex subsets of simple spaces such as R2 or R3 that belong to H(X) with
X = R2(or R3).

2.3. Mandelbrot Set

Commenting on the sublime and geometrical complexity present in nature, in his
famous book The Fractal Geometry of Nature (1982), Mandelbrot quoted, “Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor
does lightning travel in a straight line” [6].

Before we explore fractals and their diverse applications, let us look at Benoît Mandel-
brot’s eponymous set, which is the most iconic, complex, and visually entrancing fractal,
popularly known as the Mandelbrot set (Figure 1) whose boundary is not only a fractal
but much beyond our imagination (see Section 5 for more details).
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Figure 1. The Mandelbrot Set, first image (1978) (on left) and the image created by Mandelbrot (on
right) at IBM (1980).

Robert Brooks and Peter Matelski published the first image (Figure 1a) of the Man-
delbrot set in 1978 describing it as the set of complex numbers c such that the function
f (z) = z2 + c has a stable periodic orbit. However, it was Mandelbrot who plotted the
modern day image of Mandelbrot set with detailed geometry on 1 March 1980 at IBM
(Figure 1b). This set is determined entirely by iterating the map

fc(z) = z2 + c

where c is a complex number. The Mandelbrot set is the set of complex numbers c such
that the sequence of numbers

fc(0) = c, f 2
c (0) = fc( fc(0)) = c2 + c, f 3

c (0) = fc( fc( fc(0))) = (c2 + c)2 + c, · · ·

remains bounded (does not escape to infinity). If after computing some terms we obtain
a number big enough then we can stop. If after n steps, we have | f n

c (0)| > 2 then the
sequence of numbers f n

c (0) escapes to infinity and c does not belong to the Mandelbrot set.
The Mandelbrot set is considered as one of the most engrossing discoveries of mathe-

matics and the best known examples of mathematical visualization, self-similarities, beauty,
and captivating patterns when we zoom on it. The Mandelbrot set has appeared on coffee
mugs, T-shirts, tiles, balloons, utensils, and even in cinema and television commercials.
More details on this exotic set will follow in later sections. The reader may refer to the
book The Beauty of Fractals by Peitgen and Richter published by Springer (1986) specifically
written for promoting the Mandelbrot set. There are many online videos available today,
which gives incredible zooms on this set and we refer to [7] for a very interesting zoom.

3. Fractal Dimension

In classical Euclidean geometry, shapes are assigned integer dimension also called
topological dimension. For instance, a line is a 1-dimensional object, a square is 2 dimen-
sional, and a cube is a 3-dimensional object; however, this definition is not adequate to
describe fractal objects. Fractal dimension is a (typically non-integer) number that can be
associated with every natural, random, and manufactured fractal to measure or quantify
the complexity of the fractal relative to the space in which it lives [5,8–11].

As mentioned before fractals model broken, complex, and irregular geometries; how-
ever, some shapes are more complex and irregular (e.g., coastlines) than others. The fractal
dimension is used to quantify this complexity and roughness. There are many different
variants of the fractal dimension such as the Hausdorff dimension (based on measures and
the earliest also), similarity dimension (works well for self-similar objects), box-counting
dimension (works for arbitrary objects and easy to implement on computers), and the
divider dimension. They all are equal for exactly self-similar fractals such as the Koch
curve, Sierpinski triangle, etc.

Mandelbrot conjectured in 1985 that the Hausdorff dimension of the boundary of the
Mandelbrot set is 2, which was proved by Shishikura [12] using the concept of bifurcation
of parabolic periodic points. For a complete treatment of Hausdorff dimension we refer to
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the book by Edgar [13]. Hausdorff dimension is the best way to measure fractal dimension
of a bounded subset of Rn since it considers all the possible coverings (of a given diameter)
that the bounded subset may admit, and it possesses better analytical properties than the
box dimension. We refer to the works of Fernández-Martínez et al. [14–17] who proposed
a way to deal with the calculation of Hausdorff dimension in applications for compact
Euclidean subsets including the higher dimensional case in more general settings. Their
approach combines both theoretical results along with techniques from machine learning,
thus leading to the first-known attempt to calculate Hausdorff dimension in applications.
The reader may also refer to the classical text books by Barnsley [5], Falconer [8], and the
book by Frame et al. [9] for a collated study of various types of fractal dimensions.

3.1. Basic Definitions and Results

Definition 7. Let (X, d) be a metric space and A be a compact subset of X. Let ε > 0, (a small
number) is given, define

Nε(A) = minimum number of closed balls which covers A

i.e., A ⊂
Nε⋃
i=1

Bε(xi), where Bε(xi) is a ball of radius ε centered at xi. We say that A has fractal

dimension D(A) or simply D if

D = lim
ε→0

log(Nε(A))

log
(

1
ε

) (4)

provided the limit exists.

We cite two important results from Barnsley [5]. The first theorem replaces the con-
tinuous variable ε in Equation (4) by a discrete variable to simplify computations and the
second theorem is an existence result on fractal dimension.

Theorem 2 (Theorem 1.1, Chapter 4 [5]). Let A be a compact subset of a metric space (X, d). Let
εn = Crn for each real number 0 < r < 1 and C > 0. Then A has fractal dimension D given by

D = lim
n→∞

 log(Nεn(A))

log
(

1
εn

)
. (5)

Theorem 3 (Theorem 2.1, Chapter 4 [5]). Let m be a positive integer. Consider the space
(Rm, Euclidean). Then D(A) exists for all A ∈ H(Rm). If B ∈ H(Rm) such that A ⊂ B, then
0 ≤ D(A) < D(B) ≤ m. Here,H(Rm) is the set of all non-empty compact subsets of Rm.

3.2. Similarity Dimension

Definition 8. For self-similar fractals made of N copies, each scaled by the same factor r < 1, the
similarity dimension Ds is given by

Ds =
log(N)

log( 1
r )

. (6)

The Sierpinski gasket (Figure 2a) is a well-known self-similar fractal made up of 3
copies of itself each scaled by a factor 1

2 . Therefore, Ds =
log(3)
log (2) = 1.58496.
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(a) (b) (c)

Figure 2. (a) Sierpinski gasket, (b) and (c) two members from its family.

The fractals in Figure 2b,c also consist of N = 3 pieces each scaled by r = 1
2 , so they

have the same similarity dimension as that of Sierpinski gasket; however, neither looks like
the gasket, nor do they look like one another. This shows that the similarity dimension
does not fully characterize all fractals.

Table 1 summarizes the similarity dimensions (in increasing order of magnitude) of
some important fractals studied in the literature.

Table 1. Similarity dimensions of some well-known fractals.

S. No. Fractal Name Similarity
Dimension

No. of Copies (N)
and Scaling Factor
(r)

1 Straight
line 1.00000 N = 1, r = 1

2 Cantor set 0.63100 r = 1
n at the nth step

of construction

3 Koch
curve 1.26186 N = 4, r = 1

3

4 Box fractal 1.46497 N = 5, r = 1
3

5 Sierpinski
Triangle 1.58496 N = 3, r = 1

2

6 Sierpinski
pentagon 1.67228 N = 5, r = 1

2−
√

5

7 Sierpinski
carpet 1.89279 N = 8, r = 1

4

8 Twin
dragon 2.00000 N = 2, r = 1√

2

9 Terdragon 2.00000 N = 3, r = 1√
3
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Table 1. Cont.

S. No. Fractal Name Similarity
Dimension

No. of Copies (N)
and Scaling Factor
(r)

10 Eisenstein
fractions 2.00000 N = 4, r = 1

4

11 Koch
snowflake 2.00000

N = 7, six copies
scaled by 1

3 and one
by 1√

3

12 Lévy
dragon 2.00000 N = 2, r = 1√

2

There is another definition of the similarity dimension for exactly self-similar objects,
which is more inclusive and take into account fractals with different scaling factors.

Definition 9. Let n be the number of scaled down pieces in the construction of a self-similar fractal
and let r1, · · · , rn be the scaling factors (some of them can be equal). Then, the similarity dimension
Ds is the solution of

n

∑
i=1

rDs
i = 1. (7)

This definition allow us to compute fractal dimension by solving the purely alge-
braic Equation (7) also known as the Moran’s equation. For the Koch curve, the similarity
dimension is the solution of

4

∑
i=1

(
1
3

)Ds

= 1,

which gives Ds = 1.26186, same as calculated earlier. The similarity dimension works
well for exactly self-similar fractals, but many objects including coastlines, borders are not
self-similar.

There are some other dimensions such as packing dimension (based on packing
measure), mass dimension, covering or Lebesgue dimension, Miknowski dimension, and
few others and most of these provide different means of approaching and computing fractal
dimension, and each type of dimension can yield a slightly different value. Nevertheless,
they satisfy some standard relationships, for example

Dh ≤ Db, and Dh ≤ Ds

where Dh denotes the Hausdorff dimension with equality possible if the open set condi-
tion (OCS) holds (see Section 4.1 for definition of OSC). Some other properties such as
monotonicity, stability, invariance, etc., are also satisfied by all of these and we refer to [13]
(Chapter 6) for more details and results on these dimensions.
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3.3. Fractal Dimension of Coastlines

The standard approach for measuring the length L of a curve C is to approximate the
curve by line segments of length r. If there are N of these segments at this scale, the length
of the curve is L = N × r. For example, the three images in Figure 3 show approximations
of the circumference of the unit circle by 3, 6, and 8 segments of equal length. It is clear that
as the number of segments increases, the line segments approximate, 2π very closely, the
actual circumference of the circle.

Figure 3. Approximation of circumference of unit circle using line segments.

This method works for smooth curves, but the problem is that natural fractals such as
coastlines and rivers are not made up of smooth Euclidean curves that can be approximated
in this way.

The divider (or compass) dimension is another fractal dimension that examines both
the relationship between scaling size and the length of a curve and the relationship between
scaling size and the number of segments that are needed to cover the curve at a given
size. This dimension is useful for calculating fractal dimension and the length of coastlines,
rivers, and other natural objects.

Suppose we wish to find the fractal dimension of a coastline (an irregular curve).
Choose a step length ε and is walked along the coastline until the end is reached. Let
N(ε) be the number of steps taken to reach the end. The length of the coastline is then
L(ε) = ε · N(ε). For a large ε, this method skips many irregularities along the coastline, but
as ε decreases, the finer features of the coastline are also included, and the overall length
increases. Richardson was the first to use the divider method in his work on coastlines [18]
and showed that this behavior is a power law defined by

L(ε) = k× εα where k, α are constants. (8)

Mandelbrot [19] later discovered that α = 1− D where D is the similarity dimension.
Thus, L(ε) = k× ε1−D. Upon taking the logarithm of both sides, we obtain

log L(ε) = log k + (1− D) log ε. (9)

A plot between log(ε) and log L(ε) results in a line with approximate slope 1− D.
These plots of coastline length versus the step length are called Richardson plots. Thus, the
power law behavior results in linearity on a double logarithmic plot (also called as log− log
plot). The resulting value of D is called the divider dimension.

Though, the data from length measurements of natural fractals are not exactly linear,
but the approximation is good enough to use the least squares or regression method for
a very good linear fit. Richardson used this technique when he observed the power–law
behavior with the coastline of Great Britain [18].

It follows that ε× N(ε) = k× ε1−D so that N(ε) = k× ε−D. This gives

log N(ε) = log k− D log ε. (10)

When using a double logarithmic plot, the slope of the resulting line will be ap-
proximately −D. Thus, there are two ways to calculate the divider dimension from
Equations (9) and (10), and the values of D are still roughly the same although there can be
some deviation because of the different methods used.
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Coastlines (such as clouds, river networks) exhibit self-similarity over a range of scales,
which is expected because the forces that shape coastlines, e.g., wind, tides, erosion, etc.,
operate in approximately the same way over a wide range of scales. Figure 4 shows some
coastlines and borders (created in QGIS software, Pi-version) which have been focus of
interest by several authors. For clarity, we have marked the border/coastline of interest
with thick black color.

(a) (b) (c)

(d) (e) (f)

Figure 4. Some coastlines and borders. (a) Coastline of Great Britain, (b) Land frontier of Germany,
(c) Land frontier of Portugal, (d) Coastline/border of Australia, (e) Coastline of South Africa, and
(f) Coastline of Norway.

The fractal dimension D of a coastline measures the geometric irregularity and extent
of coastlines and its value increases (but remain between 1 and 2) with increasing irregu-
larity. The coastline with lower D value are more smoother. Different methods have been
proposed in the literature to estimate the fractal dimension of coastlines, including the di-
vider method, the box-counting method, the stochastic noise method, etc., (see [10,11,18,19]
and reference therein).

Richardson was the first to observe and described the coastline paradox (which states
that the length of a coastline depends directly on the length of the scale used for the
measurement) between the length of coastlines and scale size [18]. Richardson noticed that
the Spanish/Portuguese border was stated as 1214 km by Portugal 987 km by Spain, a
difference of 227 km. This dispute could now be explained by the fact that the two countries
measured their border using different measurement scales. This was the beginning of
coastline paradox.

Richardson plotted log(L) vs. log(r), obtaining points approximately along straight
lines with slopes given in Table 2. Richardson wrote that the slopes of the log− log plots
“may be expected to have some positive correlation with one’s immediate visual perception
of the irregularity of the frontier”. The slope of the line was found 1− D (by Mandelbrot),
which on solving for D, gives the values in Table 2.
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Table 2. Slopes obtained by Richardson (1961) and fractal dimension (D) calculated by Mandelbrot
(1967).

S. No. Coastline Slope Fractal Dimension (D) Reference Figure

1 West coast of Britain −0.25 1.25 Figure 4a

2 Land frontier of Germany −0.15 1.15 Figure 4b

3 Land frontier of Portugal −0.14 1.14 Figure 4c

4 Coastline of Australia −0.13 1.13 Figure 4d

5 Coast of South Africa −0.02 1.02 Figure 4e

For Great Britain, 1− D = −0.25, so that the fractal dimension of Great Britain is 1.25.
For the coastline of South Africa D = 1.02 and so on. Mandelbrot interpreted this value of
D as fractal dimension in [11].

In general, a more irregular coastline will give rise to a steeper slope, which results in
a large value of the fractal dimension as compared to a regular coastline that will have a
comparatively small dimension. Indeed, as seen in the same-scale Google Maps images of
Figure 5, the coast of South Africa is very smooth and the west coast of Britain is very rough.
This was one of the first instances where physical objects were seen to have non-integer
dimensions.

(a) (b)

Figure 5. Coastlines geometry at the same scale (Image source: GADM maps, available at https:
//gadm.org/maps.html, accessed on 20 October 2021). (a) Smooth South Africa, (b) Rough Great
Britain.

3.4. Box-Counting Dimension

A major difficulty in working with the divider method is that a coastline (or curve)
may have multiple forward intersections at a particular stepsize, so how to cover those
and there are always some leftover portions of the coastline (or curve) that have length less
than the chosen scale. When the scale is is small, so is the error, but at large scales we will
make greater errors.

To circumvent these difficulties another variant of fractal dimension known as the box-
counting dimension Db can be used. Db is also an exponent in a power–law relation exactly
as the similarity dimension Ds. This is one of the most popular and commonly dimension
because of its implementation simplicity and it can be applied to any object in nature. It
is a simplification of the Hausdorff dimension, and for many fractals the box-counting
dimension is equal to the other fractal dimensions; however, there are objects for which it
can differ from other fractal dimensions. For example, the box-counting dimension of the
set of rational numbers is 1 whereas the Hausdorff dimension is 0 [8].

https://gadm.org/maps.html
https://gadm.org/maps.html
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Different versions of the box-counting dimension are defined in the literature and we
start with a particular case of Theorem 2, we have the box-counting theorem (Barnsley [5]).

Theorem 4 (The Box Counting Theorem). Let A be a closed and bounded subset of R2(R3).
Cover R2(R3) by square boxes of side length 1

2n . Let Nn(A) be the number of boxes that intersect
A. Then the box counting dimension of A is given by

Db(A) = lim
n→∞

{
log(Nn(A))

log(2n)

}
. (11)

A novel theory that generalizes the classical box-counting dimension and fractal
dimension to any space equipped with a fractal structure is given by Fernández-Martínez
and Sánchez-Granero (2014), which include Theorem 4 as a particular case. The reader may
also refer to the book by Frame et al. [9] for a summary and many examples of various
types of fractal dimensions.

(a) (b)

Figure 6. Approximating box-counting dimension of the Koch curve. (a) Grids of different sizes on
the Koch curve, (b) double logarithmic plots.

In Figure 6, the box counting method is applied to calculate the fractal dimension of
the Koch curve with squares of four sizes and the box counting dimension turns out to be
Db = 1.2486. Using five levels of box size (Figure 6b) gives Db ≈ 1.2545; however, since
the Koch curve is self-similar we should expect Db to be exactly same as Ds = 1.26186
(computed before). This can be achieved using one or two more levels of smaller boxes as
they can detect more details.

Box-counting involves covering the object with the minimum number of boxes of
side length ε and finding how the number of boxes N(ε) scales with ε. We now focus
on box-counting dimension (log− log approach) of rough or complex geometries (say)
for example, a GoogleMap view of a coastline or a river. A step size ε is chosen and a
grid with boxes of size ε × ε is drawn on the given curve. The number of boxes N(ε),
which intersect the curve are counted for decreasing values of ε. A plot of N(ε) vs. ε on a
double logarithmic scale is typically linear with slope −Db. The number Db is called the
box-counting dimension. The scaling hypothesis is that N(ε) is related to ε by a power law,

N(ε) = k · (1/ε)Db (12)

which gives,
log(N(ε)) = Db log((1/ε)) + log k. (13)

Thus, there are two ways for computing Db, depending on the kind of information
we have about N(ε). For some objects (self-similar or not), we can find an exact formula
for N(ε). In this case, Db is computed using Theorem 4. For physical fractals and random
mathematical fractals, an exact formula for N(ε) may not be available. In such cases, Db
can be computed by measuring the slope of the line in Equation (13). The later approach is
used for computing fractal dimension of natural objects.
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Recently, a multicore parallel processing algorithm has been proposed by Husain et
al. and implemented to compute the fractal dimension of Australia [10] and India [20]
using the box-counting method. This algorithm is the first to compute fractal dimension of
coastlines in a parallel environment and can be used in computing fractal dimension of
large coastlines (e.g., Canada, Indonesia, etc.) by exploiting the scalable, parallel structure
of the algorithm. Applications of fractals dimensions have also been investigated by a
number of researchers and we refer to the papers [10,21,22] and references therein for
detailed analysis of various methods proposed for calculating fractal dimension in many
other exciting fields of research.

3.5. Summary

We summarize this section with a brief note on important applications of fractal
dimension. Several real world phenomenon exhibit statistical fractal properties and fractal
dimension estimation has found applications in astronomy (e.g., in observing and analyzing
turbulence in terrestrial bodies), acoustics (e.g., in automatic speech recognition using
fractal dimension of speech sounds), earth sciences (e.g., in predicting compressive strength
of volcanic welded bimrocks), diagnostic imaging (e.g., in characterizing cells and tissues,
ophthalmology), electrochemistry (e.g., in the study of electrochemical reactions), image
analysis, biology and medicine, neuroscience (e.g., in treatment of Alzheimer’s and brain
related diseases), physics (e.g., in evaluating fractal dimension of profiles), and network
analysis.

4. Fractals in Tessellation

A tessellation or tiling (also called rep tile) of the plane is the covering of the plane
using one or more geometric shapes, called tiles, with no overlaps and no gaps. Tilings
appear among the earliest decorations in many civilizations and cultures.

(a) (b)

(c)

Figure 7. Some examples of early tessellations. (a) Sky and Water I (M.C. Escher), (b) Dragon
tessellation (Robert Fathauer), (c) Penrose tiling (R. Penrose).
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Notable tessellations artists M. C. Escher (also known as the King of Tessellations), Robert
Fathauer (an electrical engineer) and Roger Penrose (a geometer, recreation mathematician,
and the Physics Nobel prize winner (2020)) have fascinated people all over the world by
their work on tessellations. A few examples of tessellations by these artists are shown
in Figure 7. We also refer the reader to the classical text book by B. Grünbaum and G. C.
Shephard [1] for an extensive study of tilings and patterns.

Tessellations can be broadly classified into fractal and non-fractal tessellations. Non-
fractal tessellations are more closely related to the artistic world (for example, Figure 7a,b
and designs in tile flooring, designs on furniture, etc.) whereas fractal tessellations are
mathematical in nature and involve art as well (for example, Figure 7c, manmade fractals,
etc.). Both the tessellations fill shapes using self-similarity. Major difference between the
two types of tessellations is that non-fractal tessellations repeat geometric shapes that touch
each other on a plane whereas fractal tessellations repeat shapes that have hundreds and
thousands of different shapes of complexity. The space around the shapes sometimes
(but not always) become shapes in the design. The space around shapes in non-fractal
tessellations become repeating shapes themselves and play a major part in the design.
Thus, a non-fractal tessellation is more closely linked to the artistic world, whereas a fractal
tessellation is more mathematical in nature.

Rep tiles were introduced in 1963 as recreational objects by Gardner (1963) and Golomb
(1964). In the 1980s they became interesting as models of quasicrystals [1], and as examples
of self-similar fractals [5].

Fractal rep tiles are simply the rep tiles with fractal boundary. Computer generated
drawings of tilings of the plane by self-similar fractal rep tiles appeared in the papers
beginning 1980s and 1990s, for example the lattice tiling of the plane by copies of the
twindragon. We refer to the works of several authors [23–31] for the study of fractal rep
tiles.

We also refer to the recent works on fractal tilings by Bandt and Mekhontsev [32–35]
for a comprehensive summary and current state of the art in the subject. The use of the
inverses of integer matrices in the study of tilings is well-established, and can be found in
particular in many of the references cited above.

Despite plenty of research on fractal tilings in 2D, very limited work is focused on
the geometry of fractal rep tiles in 3D. In 3D, visualization is difficult and various topo-
logical properties of 3D fractal rep tiles such as interior points, boundaries, connected-
ness, simple connectedness, self-similarity, etc., cannot be answered simply looking at
the pictures. Some of these properties in two dimensions are already discussed by many
authors [28,29,31,36–38]. We refer to the pioneering work by Bandt [39] for the correspond-
ing partial answers in 3D and directions for further research using the universal tool of
neighbor graph.

4.1. Mathematics of Tiling

Paul Lévy tiled the plane with the classical fractal namely the Lévy dragon shown in
Figure 8. This is indeed intriguing that the Euclidean plane can be tiled by this exotic curve
having infinitely many holes, and from the picture, it is not obvious that it has any interior
points.

Figure 8. The Lévy Dragon.
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Let us recall from Section 2, that by H(X) we mean the space of fractals containing
non-empty compact subsets of X.

Definition 10. A covering of a subset A ∈ X is a set of open sets C = {C1, C2, . . . , Cn} ∈ X
whose union contains A., i.e.,

A ⊂
n⋃

i=1

Ci. (14)

Definition 11. A tiling of the plane is a countable family Ai of compact sets that covers the plane
with int(Ai) ∩ int(Aj) = ∅ for i 6= j. Here, int(·) denotes the interior of a set. Thus, the interior
of any set in a tiling does not intersect the interior of any other set, i.e., tilings will have no overlap.

A chessboard is an elementary example of a self-similar tiling, which is composed of
smaller tiles (called fractiles or rep tiles) of the same size, each having the same shape as the
whole. Each tile in the chessboard is the scaled and translated image of the entire board.

Definition 12. A closed set A in Rd(d = 2, 3) with nonempty interior is called an m−rep tile if
there are sets A1, . . . , Am congruent to A, such that intAi ∩ intAj = ∅ for i 6= j and

g(A) = A1 ∪ A2 ∪ . . . Am,

where g is a similarity mapping.

An important property of an IFS is the open set condition, briefly denoted as OSC,
which controls the overlap of the sets Ai.

Definition 13. Let {X, wi : i = 1, 2, . . . , m} be an IFS. The IFS is said to satisfy open set condition,
if there exists a non-empty open set U ⊂ Rn such that

m⋃
i=1

wi(U) ⊆ U, wi(U) ∩ wj(U) = ∅ for i 6= j. (15)

When the OSC holds and A has non-empty interior then A is a tile. Thus,

Rn = A1 ∪ A2 ∪ A3 ∪ . . .

where each Ai = hi(A) is a copy of A by some affine map hj, and the intersection Ai ∩ Aj
of any two different copies has empty interior. The OSC has many equivalent formulations
and is accepted as a natural separation condition for self-similar fractals [40].

For the Lévy curve in Figure 8, we have m = 2, and the mappings are w1 =
g−1h1, w2 = g−1h2 where

g(x) = Mx, M =

[
1 −1
1 1

]
, h1(x) = x +

[
0
0

]
, h2(x) =

[
−1 0
0 1

]
x +

[
1
1

]
, x =

[
x1
x2

]
.

The Lévy dragon in Figure 8 fulfills the OSC and is a 2−rep tile but this was not so
obvious even to its discoverer Paul Lévy. It was only after the year 2000 that the dimension
of its boundary was calculated as 1.97.

‘Rep’ stands for ‘replication’, and the sets are called tiles since they can tile the whole
plane. For the plane, plenty of m−rep tiles are known for every m. Figure 9 shows some
examples of m−rep tiles for different values of m [35,41].
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Figure 9. m−rep tiles of the plane rendered by IFSTile [41] package, available online from https:
//ifstile.com/ (accessed on 20 October 2021).

The standard carpet (box) tile is shown in Figure 10a. By removing the middle square
from the box tile and repeating the same procedure recursively to the remaining eight
subsquares we obtain the well known Sierpinski carpet in Figure 10b as the limiting
set. Rather than removing the middle square, if we replace it with an image and iterate
then we obtain the mathematical complement (inverse image) of the Sierpinski carpet.
The Mandelbrot image carpet in Figure 10c is obtained by this procedure created in four
iterations, resulting in 1 + 8 + 82 + 83 + 84 = 4681 copies of the Mandelbrot image in the
picture. Usually a circular or square logo or any other image, which fits in place of the
removed square from the center of the Sierpinski Carpet will produce the best result for
viewing.

(a) (b) (c)

Figure 10. (a) Carpet tile, (b) Sierpinski carpet, and (c) Mandelbrot image carpet.

Some more examples of well known as well as new fractal rep tiles are shown in
Figure 11. All these rep tiles are obtained using the IFS construction kit package [42]. The
interested reader may explore the IFS Kit for constructing exotic examples of fractal and
rep tiles in R2 and the IFSTile package [41] for fractal and rep tiles in R2 and R3.

https://ifstile.com/
https://ifstile.com/
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 11. Examples of fractal rep tiles rendered by IFS Construction Kit [42] package. (a–c) 2−rep
tiles, (d–f) 3−rep tiles, (g) 4−rep tile, (h,i) 5−rep tiles, (j,k) 7−rep tiles, and (l) 9−rep tiles.
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4.2. Fractal Rep Tiles in R3

The topological structure of fractal tilings in R3 can be very complex. Another chal-
lenge is that the OSC (a natural separation condition, which expresses geometric as well
as measure-theoretic properties of tilings, see Definition 7), which controls the overlap of
the Ai may not hold for attractors that are made up of Ai, 1 ≤ i ≤ m even if there is a one
point intersection [40]. Moreover, it is not easy to generate self-similar tilings in R3 and
visualization of 3D fractals is also difficult.

Unlike tilings of the plane R2, there are only few m−rep tiles known for m < 8 in the
3-dimensional space. Even for m = 8, not too many examples are known (see Figure 12 for
some examples of polyhedral tiles). We refer to the papers [39,43,44] for important results
and examples on the existence and non-existence of three-dimensional m−rep tiles and
also to [45,46] for 3D tilings with large values of m. The rep tiles presented in these papers
are produced using the similarity maps of the form g(x) = mx, and the IFS mappings have
the form f j(x) = qj(x) + rj where rj denotes an integer translation and qj a symmetry map
of the unit cube with center 0.

In three-dimensions, a tetrahedral m−rep tile can exist only for cubic numbers m ≥
8 [44]. For m = 8, the cube is a standard rep tile, and the notched cube (‘chair’) tile in
Figure 12 is another example. The regular tetrahedron or octahedron is not a 8−rep tile. A
special tetrahedra, which is an 8−rep tile, was found by Hill in 1895 and the conjecture that
there are no further 8−rep tile tetrahedra [43,44] seems true till date.

(a) (b) (c)

Figure 12. Polyhedral rep tiles for m = 8. (a) Cube, (b) Chair tile, (c) A cube tile.

Sometime ago, it was not known whether three dimensional m−rep tiles can have
holes. In [45] an example with m = 24 was given and in [46] a more sophisticated and
interesting example with very large m is discussed. An interesting example of a new 8−rep
tile with a hole was found very recently by Bandt and Mekhontsev in [33] (see Figure 13).

Figure 13. Three dimensional 8−rep tiles with a hole.

A tile T is called a self-affine lattice tile if there is an affine expanding mapping g and
a lattice L such that g preserves L and maps T to a union of tiles T + ki with ki ∈ L. With
respect to the standard basis vectors ei, the map g has a matrix representation g(x) = Mx
where M is an integer matrix. We now state two important result of Bandt [39]. The first
gives an algebraic criterion for a self-affine lattice tile and second implies that there are very
few self-similar lattice tiles in R3.
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A tile T is said to be conjugate to a self-similar tile if there is a linear map h so that
˜T̃ = h(T) is a self-similar tile.

Proposition 1 (Proposition 2.2 [39]). A self-affine lattice tile with respect to g(x) = Mx is
conjugate to a self-similar tile if and only if all eigenvalues of M have the same modulus.

Theorem 5 (Theorem 2.3 [39]). If a self-affine lattice tile with respect to g(x) = Mx in R3 is
conjugate to a self-similar tile, then either m = |det(M)| is a cubic number (in particular m ≥ 8)

or M is conjugate to the matrix

0 0 ±m
1 0 0
0 1 0

.

The geometries in 3D fractal tiles are caused by the self-affine fiber structure of the
boundary, which makes the topology complicated. Apparently, the different eigenvalues
of the generating matrix produce long and thin fibers, which can pierce the interior of
neighboring tiles, or distort the boundary structure.

(a) (b)

(c)

Figure 14. Non polycube 8−rep tiles. (a) Tetrahedron tile, (b) Snake tile, and (c) Notched prism tile.

Bandt [39] developed algebraic tools which describe the geometry of a self-affine tile
in arbitrary dimension, in a similar way as homotopy and homology groups describe the
geometry of manifolds. The basic concept is the neighbor graph, which can be considered
as a blueprint containing all information about the topology of a tile.

The recently developed software package IFSTile [41] is a good tool for computer-
assisted mathematical analysis of three dimensional tilings and fractals. Figure 14 displays
examples of non polycube 8−rep tiles generated using IFSTile. the IFStile offers improved
graphic and visualizations of fractal tilings with much greater functionalities. It can
construct and search large families of self-similar tiles and fractals, and analyze them
automatically in different ways. A lot of new examples with extraordinary properties can
be found by the software. It can do rigorous and very fast calculations due to the use of
integer arithmetics for rendering fractals. If the input data consist of real numbers then
the package uses numerical approximation for rendering images. With IFStile package,
structure and boundary of complex fractals and fractal rep tiles can now be computed
within milliseconds specially in 3D case.
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5. Fractals in Arts

The mathematical beauty of fractals lies at the intersection of generative art and
computer art. Fractal art is a genre of algorithmic art and digital art in which the results
resemble the fractal objects or obey fractal properties. Fractal arts are also found in ancient
times in manuscripts, hand-painted images, rugs, domes of mosques, and many more
(see Figure 15 for some examples). Sculptures in temples built-in 15th–17th century have
patterns which are reminiscent of fractal art so fractals were designed even before they
were discovered. After the introduction of the Mandelbrot set in 1980s and the pioneering
work by Mandelbrot in the classical book “The Fractal Geometry of Nature” [6], fractals
have found applications in many areas and fractal arts is one of them.

(a) (b) (c)

Figure 15. Some fractal designs of ancient times. Image source: Wikipedia. (a) Main dome of
Selimiye Mosque (Edirne, Turkey), (b) Hand painted rugs, and (c) Temple Design, available at
https://en.wikipedia.org/wiki/Fractal_art (accessed on 20 October 2021).

Unlike other arts and paintings, the fractal arts are rarely designed by hands. They can
be generated by many fractal generating computer software. Many artists modify the gen-
erated fractal images by adding non-fractal designs to make the image attractive. Though
many new fractals are being discovered, yet Mandelbrot and Julia sets are considered as
the benchmark icons in fractal art.

Fractals are generated by computer programs because of their complexity and numer-
ous iterations to capture finer details. Popularity has been on the rise for fractal arts in the
past few years. Many geometric patterns are being rapidly replaced by fractal arts, the
prime reason being the aesthetic structure and self-similarity of fractals.

5.1. Fractal Art Galleries

The first fractal image that appeared as an art work was probably on the cover page of
Scientific American (August, 1985).

This image showed a landscape formed from the potential function on the domain
outside the (usual) Mandelbrot set (see Figure 16); however, as the potential function grows
fast near the boundary of the Mandelbrot set, it was necessary for the creator to let the
landscape grow downwards, so that it looked as if the Mandelbrot set was a plateau atop a
mountain with steep sides. The same technique was used a year after in some images in
the book The Beauty of Fractals by Peitgen and Richter. They provided a formula to estimate
the distance from a point outside the Mandelbrot set to the boundary of the Mandelbrot
set (and a similar formula for the Julia sets). Landscapes can be formed from the distance
function for a family of iterations of the form z2 + az4 + c.

One of the first exhibitions to display fractal art was the “Map Art” (an exhibition of
works from University of Bremen). Nowadays, fractal arts are being displayed in most of
the international art galleries. Viewers of these galleries have showed interest in knowing

https://en.wikipedia.org/wiki/Fractal_art
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the science behind fractals [47,48]. We also refer to the recent paper by Friedenberg et
al. [49] for the aesthetic beauty and symmetry in exact and random fractals.

Artists generate fractal arts using fractal software which are processed further for
enhancing the image quality and appearance. The fractal art images are usually printed
using a DPI (Density Per Inch) ranging between 250–300 for capturing minute details of the
image.

Figure 16. First fractal art image: Cover page Scientific American (August, 1985), available from
https://www.scientificamerican.com/magazine/sa/1985/08-01/ (accessed on 20 October 2021).

5.2. Fractal Art in Coloring Books

A coloring book is a book containing line arts that are intended to be filled with colors
with no rules and regulations. The intention is to make them beautiful with their creative
combinations of colors. Coloring books were introduced in 1880s by McLoughlin Brothers
who also founded McLoughlin Bros. Inc., a New York based publishing firm and a pioneer
in color printing technologies in children’s books. Figure 17 shows a few pages of the
coloring book by Harrington [50].

(a) (b)

(c)

Figure 17. (a–c) Three coloring pages from Fractal Art Coloring book by Doug Harrington.

Coloring books are used for many educational purposes, they are widely used in
schooling for young children to enhance their fine motor skills and for improving their

https://www.scientificamerican.com/magazine/sa/1985/08-01/
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creativity level. These books are also used for studying graduate level anatomy topics
for better visualization. Adult coloring books are different from children books and have
intricate designs.

Designing complicated and detailed line art is not an easy task, however introduction
of fractal art in coloring books made this easier. Since fractal arts are complex, heavily
detailed and can be produced computationally with lesser human efforts therefore fractal
art became a good fit into this field. In fractal coloring books the blank arts are the line arts
of corresponding fractal arts. Fractal coloring books are very intuitively designed such that
a blank line art is followed by colored image of that particular art and some details of the
art are also mentioned so that a user can use them without difficulties.

Figure 18 shows the shape of a complex-valued function from the coloring book by
Barnes et al. [51]. It comes by composing the function

f (z) = z3 +
−0.2 + 0.11i

z3

with itself three times, computing the real part, and then plotting the level curves of heights
0, and 2. The book contains 18 such images and describes the mathematics in more detail.

Figure 18. A coloring page from Barnes et al. [51] available on https://www.maa.org/press/
periodicals/math-horizons/math-horizons-supplements (accessed on 20 October 2021).

5.3. Fractal Art in Ceramics

Ceramic products are widely used in our daily life. They serve us as teapots, tiles,
bricks, flower vase, and many more. Painting these products with birds, flowers, and trees
with landscapes make them attractive and provide customers a variety of choices.

Fractals art can be used on ceramic products instead of the existing traditional designs
owing to their aesthetic structures and symmetry properties.

(a) (b) (c) (d)

Figure 19. Mandelbrot and Julia fractals on ceramics products. (a) Julia bowl, (b) Julia teapot,
(c) Mandelbrot tile, and (d) Mandelbrot vase.

These patterns convey a sense of natural beauty as many of the natural patterns are
fractals and are different from traditional art. Fractal designs that are printed on ceramic
products are selected very specifically depending on the utility of the product. For instance,

https://www.maa.org/press/periodicals/math-horizons/math-horizons-supplements
https://www.maa.org/press/periodicals/math-horizons/math-horizons-supplements
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the designs used on ceramic bowls are different from those of teapot designs since the
environment and the frequency of usage of bowls is different from teapots (see Figure 19a,b).
Similarly, flower vases are usually painted with fractals that are simple, symmetric, and
resemble flower shapes (see Figure 19d).

Fractal arts are also used in painting tiles, which are now becoming popular. These
fractal designed tiles are sold at much higher cost compared to the regular ones. Self-similar
fractal patterns with vibrant colors and complex designs are preferred by buyers. Modern
printing techniques help in printing the fractal designs on tiles with minute details to
produce fractal designs at greater depths (see Figure 19c). The reader may refer to the
papers by Lin [52] for applications of fractals in ceramic products.

5.4. Fractal Art in Screensavers

A screensaver is a computer program that blanks the screen or displays an image when
computer is kept idle for a specified time. Originally, the screensavers were introduced to
protect the monitor screens from burn-in (discoloration) and password protection. Typically,
moving images, patterns, or animations are used as screensavers. Nowadays, the purpose
of the modern screensavers has shifted to pleasure, entertainment, and advertisement rather
than security and hardware protection. Microsoft introduced, Windows Spotlight in 2015 as
a default screensaver in Windows 10 that displays beautiful pictures and advertisements
from across the world with a customizable user interface.

Use of fractal art in screensavers makes them more attractive, appealing and intense.
Many still and animated fractal screensavers have been designed in which a particular
fractal is formed and then explored or zoomed in for few seconds and then changes to new
one or gets recycled as zooming deep requires higher computational powers. Figure 20
shows still images of an animated screensaver exploring the Mandelbrot set [53] and also
look at Figure 21 for some examples of still screensavers.

(a) (b) (c) (d)

Figure 20. (a–d) Snaps of an animated screensaver exploring details of the Mandelbrot set.

Electric Sheep [54] is a distributed computing project for animating and evolving
fractal flames, which are distributed to the networked computers, to display them as screen
savers (see Figure 21d for an example of a fractal flame).

Fractal screensavers are one of the successful commercial applications of fractal arts.
Heavy purchases are being made for fractal screensavers for commercial, personal use, and
for gift purposes in today’s digital world.
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(a) (b) (c) (d)

Figure 21. Examples of still fractal screensavers (a) Julia, (b,c) Mandelbrot zooms, and (d) a fractal
flame.

5.5. Fractal Art in Calendars

“We made many pictures of it. The first one was very rough. But the very rough pictures
were not the answer. Each rough picture asked a question. So we made another picture,
another picture. And after a few weeks we had this very strong, overwhelming impression
that this was a kind of big bear we had encountered!” (B.B. Mandelbrot quoted about
drawing Mandelbrot set by computers)

The Mandelbrot set is obtained by iterating the simple equation f (z) = z2 + c. The
numbers in the Mandelbrot set equation are coordinates, defining the location of a point in
the complex plane. When the Mandelbrot equation is given a number representing a point
and that number is iterated through the equation then either the number becomes larger
and bigger and escapes to infinity or it shrinks down to zero. Depending upon whatever is
the case, the computer knows which point to plot and which point to leave. This iterative
process yields a map, dividing this world into two distinct territories. Outside it are all the
numbers that have the ‘freedom of infinity’. Inside it, numbers that are prisoners, ‘trapped
and doomed to ultimate extinction’ yielding extraordinary, exciting, and infinite beauty of the
Mandelbrot set.

Figure 22 shows a Mandelbrot calendar designed by David Eck, for January (top-left)
through December (bottom-right) obtained by iterating the Mandelbrot set equation (for
details, number of iterations, etc., the reader may refer to http://math.hws.edu/eck/mb2
1/, accessed on 20 October 2021).

Figure 22. Mandelbrot Calendar 2021. Images courtesy: David Eck, http://math.hws.edu/eck/mb2
1/ (accessed on 20 October 2021).

http://math.hws.edu/eck/mb21/
http://math.hws.edu/eck/mb21/
http://math.hws.edu/eck/mb21/
http://math.hws.edu/eck/mb21/
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5.6. Fractal Art in Exploring Infinity

The Mandelbrot set (see Figure 1) is the most famous fractal among all! Let us discover
the infinite beauty of algebra by exploring the iconic Mandelbrot Set. There are several
codes and software available to explore the details on the Mandelbrot set. We refer the
reader to the Mandelbrot viewer [55] developed by David Eck for its simple interface and
ease of use.

One of the most intriguing discoveries in the Mandelbrot set is that as you zoom
into it, you will find an infinite number of tiny copies of the entire object and countless
examples of self-similar patterns. No matter how much you magnify the set, a million
times, a billion times (until the original set is bigger than the entire Universe!), you would
still see new patterns, new images emerging. You will see shapes that resemble a cat, a
cactus, a cockroach, elephant trunks, tentacles of octopus, sea horses, compound insect
eyes, and so on. It shows us almost anything that we can see in the real world, particularly
living things. There is indeed an infinite variety present in the Mandelbrot set just as is in
nature.

Interestingly, unlike the self-similar IFS fractals, which show the same kind of details
at all scales, the Mandelbrot set is not perfectly self-similar. The shapes of the objects
from different parts of this fractal are dramatically different. Furthermore, the patterns
can gain in complexity and beauty the deeper you explore and each of these replicas is as
complicated as the original, and you could explore the details around the edge of a replica
as well; of course, you can find even smaller replicas, around the replicas, and so on.

The four images in Figure 23 are all inconceivably tiny details from different areas
deep within the Mandelbrot set with a magnification depth range of 1074–10245, and are far
smaller than anything in the real universe and they are all connected!

Let us try to imagine the sizes of these mathematical objects. A reasonable estimate for
the size of the universe is 100 billion light years, or roughly 1027 meters. At the other end of
the range, the smallest theoretical scale (known as the Planck Length) is approximately 10−35

meters; therefore, the entire range of scale from the smallest to the largest in our universe
is 27 − (−35) = 62 orders of magnitude. Clearly, the range of scale between the whole
Mandelbrot set and the zoomed-in detail in Figure 23a (at the top right), which is magnified
1074 times, is 1012, or a trillion times bigger than the whole scale of our universe. Yet these
incredibly tiny images are just a scratch on the surface of the infinite Mandelbrot set!
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(a) (b)

(c) (d)

Figure 23. (a–d) Ultra-deep details from within the Mandelbrot set. Images range from a depth
of 1074 magnification to deeper than 10245 power. Images source: Fractal Foundation, available at
https://fractalfoundation.org/OFC/OFC-3-1.html (accessed on 20 October 2021).

6. Fractals in Fashion Designing

Clothing coexists from the very beginning of human evolution and it is considered as
one of the factors for human survival. Clothing styles have evolved with improvement in
technology and available resources. People have shifted to textiles and have been using
particular fabrics for particular purposes based on some factors such as occasion, locality,
weather conditions, etc. Clothing has a huge demand in the market, which resulted in
many fashion brands emerging in this field. The introduction of fractals in art grabbed
the attention of researchers with its features that have never been seen before such as
self-similarity, symmetry, pattern regularity, etc., and artists started using fractal art in cloth
designing.

Textile designs are very important in the art world. The designs and fabrications
have changed from culture to culture, artist to artist, expressing history and experiences
throughout generations. With the development of algorithms and software for rendering
fractals, fractal-designed textiles are expected to play a key role for new innovations and
ideas in the field of design. Applications of fractals in compressing images by reducing
data redundancies is a perfect platform for textile design (see Section 6). Among many
algorithms for generating fractals, L−system generation algorithm and Julia set generation
algorithms are primarily used for fractal garment pattern generation and textile designs.

Jhane Barnes, a well known textile artist, redefined fashion textiles using weaving
and textile software. Her creative computer-generated fractal designs revolutionizing the
world of textile designs. These fabricated textiles are created for men’s wear, women’s
wear, carpet designs, and home decor. She was featured in a chapter of McDougal Littell’s
textbook entitled ‘Sequences and Series: Fractals for fashions’.

https://fractalfoundation.org/OFC/OFC-3-1.html
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Figure 24. Fractals in a piece of African textile from Ron Eglash’s book, “African Fractals: Modern
computing and indigenous design” available on https://roneglash.org/eglash.dir/afractal/afbook.htm
(accessed on 20 October 2021).

Figure 24 shows the iterative construction of a Fulani wedding blanket on the cover
page of the book entitled “African Fractals: Modern Computing and Indigenous Design” by
Dr. Ron Eglash (see Available from https://roneglash.org/eglash.dir/afractal/afbook.htm
for more, accessed on 20 October 2021). The diamonds in the blanket become smaller as
you move from either side towards the blanket’s center. Eglash wrote “The weavers who
created it report that spiritual energy is woven into the pattern and that each successive iteration
shows an increase in this energy”.

Geometrical design and flower design are common themes in clothing design. We
briefly present standard fractal garment pattern generation algorithms along with examples
and refer the reader to the recent work by Wang et al. [56] for a detailed journey through
applications of fractals into garment designs.

6.1. L−System Garment Pattern Generation Algorithm

The L−system pattern generation method was first introduced as a method to de-
scribe plant morphology and growth process by Danish biologist Aristid Linden-Mayer in
1968 [57], which later developed into a method to simulate natural scenery in computer
graphics. The working of the L−system is simple, it can be operated with very few char-
acters whose function is predefined. The core idea of an L−system is string replacement
where a string pattern is generated, which is expected as output and then the string is
iterated through simple transformations and is converted into a long string generating a
fractal art. In practice, the iteration number is usually kept in the range of 3 to 10.

The string of an L−system is also called turtle graph. A state of turtle is defined as
(x, y, α) where (x, y) is the position of the turtle in the xy−plane and α is the direction that
the turtle face is facing.

The string generated after applying transformations to an initial string turns out to be
a fractal. The parameters such as axiom (initial element), production formula (generator
element), compression factor, iteration number, and angle increment δ are set by the
designer as per requirement. We illustrate the fractal pattern generation using L−system
with an example [56].

Example 6. Assume that the initial angle is 0◦, angle increment δ = 90◦, axiom w : f + f + f + f ,
generating formula p : f → f f − f − f − f − f + f , and the compression factor is 1

3 . Here, f
means move the turtle forward one step along a straight line. This will change the state of the turtle
from (x, y, α) to (x′, y′, α), where x′ = x + δ · cos α, y′ = y + δ · sin α, (δ =angle increment in α).
+ means, rotate the turtle by angle δ in counterclockwise direction. By this command, the turtle’s
state will change from (x, y, α) to (x, y, α + δ) and − means, rotate the turtle by angle δ clockwise.
This will change turtle state from (x, y, α) to (x, y, α− δ).

https://roneglash.org/eglash.dir/afractal/afbook.htm
https://roneglash.org/eglash.dir/afractal/afbook.htm


Fractal Fract. 2022, 6, 89 28 of 35

(a) (b) (c) (d)

Figure 25. Fractal pattern generated through L-system method (Wang et al. [56]). (a) Initial element,
(b) n = 1, (c) n = 2, and (d) n = 3.

The initial element is shown in Figure 25a and Figure 25b–d are generated with the
number of iterations n = 1, 2, and 3, respectively.

The patterns generated by L−system are linear and the graph generated by the
L−system can not only simulate the growth of flowers, plants, and trees, but it can also
generate various geometric figures with fine structures. Combining with computer graphics
technology, a series of geometric patterns can be designed. L−system codes are written in
many latest technologies such as MATLAB, Python, etc., to generate these patterns. For the
flow chart of the L−system pattern generation we refer the reader to [56].

6.2. Garment Pattern Generation through Complex Dynamical System (Julia Sets)

The computer aided pattern technology combined with complex dynamical system
theory can be used to generate fractal art graphics. Designing patterns via complex dynam-
ical systems is indeed the process of generating Julia sets using the escape-time algorithm.

Julia sets are generated using escape time algorithm by iterating the equation z =
zn + c and the shape of the generated Julia sets can be controlled using the parameters c and
n. The triangular and the quadruple pattern are two common types of garment patterns,
which are generated using the Julia set pattern generation method. Figure 26a,b displays
two triangular patterns generated using the Julia set pattern algorithm with the function
z = z3 + c. Figure 26c,d shows two Quadruple four-corner patterns designed using Julia’s
plot program. In these patterns the value of n is either 4 or 6. The value of the parameter c
is indicated below each pattern.

(a) (b) (c) (d)

Figure 26. Triangular and quadruple fractal pattern generated using Julia set (Wang et al. [56]).
(a) c = −2 + 0.49i, (b) c = 0.649 + 0.175i, (c) c = −0.643 + 0.353i, and (d) c = 0.333− 0.172i.

A few basic patterns can be integrated together to amplify the beauty of the pattern.
Two such examples are shown in Figure 27. Figure 27a shows a garment pattern, which is
a combination of basic patterns generated by L−system and Figure 27b displays another
pattern formed by combination of basic patterns from Julia set algorithm.
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(a) (b) (c) (d)

Figure 27. Basic patterns and filling the fabric using these patterns (Wang et al. [56]). (a) L-system
based, (b) Julia set based, (c) basic pattern, and (d) pattern on Fabric.

After integrating these two patterns, the pattern as a whole is also considered as a
basic pattern (see Figure 27c). While designing a garment, a pattern is limited to a particular
size and then repeatedly filled throughout the garment in different orientations based on
beauty principles of clothing designs. The new basic pattern in Figure 27c is used for filling
particular dimensions of the fabric as shown in Figure 27d.

6.3. Fractal Designs on Silk Scarves and Garments

Silk scarves are important clothing accessories, which are equipped with unique
cultural characteristics, influenced by aesthetic taste and customs and the patterns on the
silk scarves are the soul of scarves. The traditional silk scarves designs consist of patterns
based on natural elements such as flowers, plants, sceneries (landscapes), etc. Fractal based
designs for silk scarves are motivated by the intrinsic self-similarity and symmetry present
in fractals, which provides a stable and official look to the designs.

A computer generated square shaped silk scarf is presented in Figure 28 using the
basic pattern diagram from the Julia set in Figure 27c. The individual patterns are arranged
as scattered squares to obtain the silk scarf pattern (see Figure 28a). The contrast and
suitable color configuration produces strong, lively, bright, and eye-catching feeling.

(a) (b) (c)

Figure 28. Silk scarves patterns and design (Wang et al. [56]). (a) Scarf design, (b) physical map, and
(c) wearing chart.

Finally, the silk scarf pattern is made through digital printing, and the real object
diagram and the wearing effect diagram are obtained, which are shown in Figures 28b,c,
respectively. Figure 29a shows another basic pattern for fabric design generated from the
Julia set algorithm. The fabric pattern is digitally printed in Figures 29b,c, which is obtained
through continuous arrangement of the basic pattern.
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(a) (b) (c)

Figure 29. Pattern design of garment fabrics (Wang et al. [56]). (a) Basic pattern, (b) Physical figure 1,
and (c) Physical figure 2.

6.4. Summary

Fractal garment patterns can be generated using computer assisted pattern technology
combined with the dynamical system theory by changing parameters in the escape time
algorithm and using L−systems. As a new design resource, fractal clothing is attracting
attention in the field of design. The fractal pattern generation theory can be applied to
construct appealing designs for garments, scarves, T-shirts, and other fashion costumes.
We refer to the papers [58–61] for further reading into fractal garment pattern designs and
their applications in fashion.

7. Fractals in Hot Air Balloons

The Fractal Foundation [62] announced the first ever digitally printed flying fractals
in the form of fractal art balloons in 2018. These are the first ever balloons of their kind,
fully digitally printed (using advanced dye sublimation printing technology) mathematical
artworks. The images on the balloons are tiny details of the Mandelbrot Set, magnified
billions of times.

The fractal images consist of hundreds of billions of pixels, which can be seen from
either millimeters or miles away! They are manufactured by Kubicek Balloons in the Czech
Republic, and are approved by the FAA as standard certified aircraft (see Figure 30).

Figure 30. Fractal balloons flying over Albuquerque (Fractal Capital of the World) and home of
Fractal Balloons, Image source: Fractal foundation, available from https://fractalfoundation.org/
(accessed on 20 October 2021).

“Infinitude” (Figure 31a) is based in Albuquerque, New Mexico, and “Fibonacci”
(Figure 31b) is based in Pennsylvania. Both balloons bring lots of inspiration among
audiences towards the beauty of math and science. A dedication to Mandelbrot, the
formula f (z) = z2 + c, and the coordinates that generate the image are shown at the mouth
of “Infinitude” balloon. The dedication reads “Infinite Gratitude to Benoît Mandelbrot”.
“Infinite Gratitude” was then renamed to “Infinitude”—which became the name of the
balloon (see Figure 32).

https://fractalfoundation.org/
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(a) (b) (c)

Figure 31. Fractal Balloons: (a) Infinitude, (b) Fibonacci, and (c), a Future balloon.

Figure 32. The mouth of “Infinitude” showing dedication to Mandelbrot.

The fractal is zoomed in 7 billion times from the original Mandelbrot set. The entire
image contains over 100 billion pixels, making it one of the highest resolution fractals ever
made.

“Fibonacci” was named in honor of “Leonardo Bonacci” (13th century Italian math-
ematician) who first brought the Hindu–Arabic numeral system to Europe, including
the concept of Zero, which makes modern arithmetic and algebra possible. The famous
Fibonacci sequence approaches the golden ratio Φ = 1+

√
5

2 , and is found in many nat-
ural fractal patterns (e.g., sunflowers) and which is reflected in the central design motif
of the balloon. “Fibonacci” in Figure 31b is the largest, highest resolution fractal ever
printed, which contains over 340 BILLION pixels! An unnamed future balloon is shown in
Figure 31c.

8. Fractals in Econophysics

The term econophysics was coined by the scientist H. Eugene Stanley from Boston
University (H.E. Stanley [63]). Econophysics is a newly developing field of research, which
is based on probabilistic and statistical physics to understand and solve economic problems
in stock and other markets, especially those with uncertainties, stochastic processes, and
non-linear dynamics. The first econophysics work that gained huge popularity was the
paper by Mantegna and Stanley [64], which essentially developed the idea of Benoît
Mandelbrot concerning the Lévy flight [65]. Ever since, experts are familiar with the
proposition that movements of prices of most financial markets over time and price scales
look self-similar. An observer cannot identify from the shape of the charts if the data
describe weekly, daily, or hourly fluctuations. In the modern terminology of today, the
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indicated self-similarity signifies that financial time series are fractals. Fractal dimension
(D), Hurst exponent (H), and sample entropy (S) are the parameters that help to analyze
the complexity of the time–series signals arising in financial markets. The Hurst exponent
(or more appropriately, the self-similarity index) is used to analyze self-similarity patterns
for financial time series. It allows researchers exploring memory in cryptocurrencies,
identifying bubbles, and even forecasting the behavior of markets, to name a few. For a
self-similar time series, the Hurst exponent H, which is a measure of persistence (long-
term memory) of a time series is related to the fractal dimension by the relation D =
2− H, 1 < D < 2, [66]. The Hurst exponent vary between 0 and 1, with higher values
indicating a smoother trend, less volatility, and less roughness. For more general time
series or multi-dimensional processes, the Hurst exponent and fractal dimension can be
chosen independently, as the Hurst exponent represents structure over asymptotically
longer periods, while fractal dimension represents structure over asymptotically shorter
periods [67]. Similar to fractal dimension, sample entropy is also a measure of complexity
and it is related to the Hurst exponent via two parameters namely the tolerance r and
embedding dimension m, which control, respectively, the level of similarity between
samples (data points) and the length of each template within a sample.

The book by M. Fernández-Martínez et al. [16] provides a novel and robust theory
of fractal dimension for fractal structures with applications to artificial intelligence, and
econophysics. The book contains new algorithms to calculate the Hurst exponent of
(financial) time series. By means of several theoretical results it is shown that the Hurst
exponent is related to a new fractal dimension for curves that count for fractal patterns
in the image set of a curve (resp., a time series) instead of the graph of the curve. The
review paper [68] summarizes the financial models of econophysics arising from fractal
market analysis that are primarily based on the Hurst exponent and highlights some of
the empirical applications within the study of the financial market. For further reading on
fractal analysis of time series in econophysics using fractal dimension and Hurst exponent
we refer to [69,70].

9. Fractals in Military Applications

Antenna is a main contributing source to the overall radar cross-section (RCS) in
military purposes. The RCS reduction is crucial for aircraft, missiles, ships, and other
military vehicles because military vehicles with smaller RCS can evade easy radar detection,
whether it be from land-based installations, guided weapons, or other vehicles. The
development of fractal shaped antenna arrays with miniaturization, ultra-wideband (UWB),
high-gain, and low-scattering characteristics have attracted increasing attention in recent
years in modern communications systems for military applications. These fractal shaped,
small size antennas can operate at multiple frequencies for small satellite communication
terminals, and other wireless applications for use by military. Fractal antenna’s compact
design provides superior wideband performance and being compact they can be mounted
or embedded in a variety of locations without conveying their frequency range. Fractal
antennas can be used for vehicle, marine, airborne, fixed, or personnel-worn applications.
With extreme wideband frequency range, fractal antennas are uniquely suited to enable
leading performance and interoperability between legacy and new radio architectures. A
primary example is the MHA, a wideband colinear antenna developed by Fractal Antenna
Systems with excellent gain and omnidirectional pattern over the UHF and microwave
range, all in an antenna that is only 42 inches long. A microstrip hexagonal fractal antenna
for military applications was proposed in [71]. For a brief introduction to fractal antennas
we refer to the Section 18.4 of Falconer’s book [8].

Fractals are also being used by some armies (e.g., German military troops) to design
their camouflage clothes and equipment. How to generate fractals for such purposes and
what are the advantages of using fractals in this regard are some of the questions that are
still in developmental stages.
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10. Book Recommendations and Fractal Generating Software

Plenty of textbooks and monographs are available on fractals and their applications
and we provide a few for further reading. The classical books of Mandelbrot [3,6,19]
contain a great deal of information and basics about fractals. The monograph [2] is a
collection of articles by researchers and collaborators of Mandelbrot. For graduate level
courses in deterministic fractal geometry and its mathematical foundations we refer to the
popular books by Barnsley [5], Falconer [8], Peitgen et al. [72], and Edgar [13]. The book
by Gulick [73] focuses on chaos and fractals and diverse applications of chaotic dynamics
and fractal geometry within mathematics and in many other disciplines. For concepts and
applications of fractals in geosciences, we refer to [74]. A beautiful collection of computer
generated fractals can be found in [75] with a link to the software for the images, and
for further exploration. For a unified list of almost all the works on fractal geometry by
Mandelbrot and other researchers we refer to [4].

There are several computer software and resources that are available for for rendering
fractals and tilings. Fractint is one of the oldest fractal program written in DOS format,
which was later updated to Winfract. Other advanced fractal rendering software include
IFSTile, IFS Builder 3D, IFS Construction Kit, Fractracer, Chaoscope, Ultra Fractal, Fractal
Explorer, Mandelbulb 3D (MB3D), FractalWorks, FracLac, etc. For creating interactive, real
time zoom on fractals, we refer to XaoS. Most of these software use the random iteration
and deterministic algorithm to generate beautiful, symmetric fractals.

11. Conclusions

An eclectic survey encompassing the mathematics and characterization of fractals
(using IFS, attractors, fractal dimension, etc.), along with applications in a number of
exciting fields including emerging ones has been presented. The article explores both
natural and manufactured fractals from mathematical and technical aspects. Aesthetic
and artistic beauty of fractals is further investigated into arts, fashion designing, and in
tessellations.

In the forthcoming second part of this survey, we shall consider engineering, industrial,
and commercial applications of fractals in many fields ranging from fractal landscape gen-
eration, design of fractal shaped antennas, fractal image compression, fracture mechanics,
and some future applications as well.

Describing fractal geometry in the classic book “Fractals Everywhere”, Michael Barns-
ley wrote, “Fractal geometry will make you see everything differently. There is a danger in reading
further. You risk loss of your childhood vision of clouds, forests, galaxies, leaves, feathers, flowers,
rocks, mountains, torrents of water, carpets, bricks, and much else besides”.
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