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Abstract: In this research article, a modified algorithm for the generation of a fractal pattern resulting
from the iteration of an algebraic function using the numerical iteration method is presented. This
fractal pattern shows the dynamical behavior of the numerical iterations. A nonstandard convergence
test of the displayable fractal pattern was applied.
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1. Introduction

Benoit B. Mandelbrot [1] studied and extended the theory and graphic representations
of iterated functions over the complex plane C.

Let f (z) be a complex-valued function. For a value of an initial complex number z0
(usually 0) in the complex plane, C, the function f (z) is iterated using the iteration formula

zk = f (zk−1), k = 1, 2, 3, . . .

Determine the dynamical behavior of f (z) [2]. The sequence z0, z1, z2, . . . may converge
or diverge depending on the coordinates of z0 [3,4].

If quadratic complex valued-function f (z) has zero-valued α1 and α2 in C and L is the
perpendicular bisector of the line segment from α1 to α2, then when the Newton–Raphson
method is applied to f (z), the half-planes into which L divides the complex plane are B(α1)
and B(α2), the basins of attraction to α1 and α2 [2,3]. The basins are formed from the chaotic
fractal pattern; this is the dynamical behavior of the Newton–Raphson method.

For each complex valued-function f (z), Newton’s method defines a dynamical system
on the complex plane C. In [3], Gilbert discusses the basins of attraction of the roots and
gives an overview of the complex dynamics of Newton’s method for a rational function
such as f (z)

f ′(z) .
Chaos and fractals are interesting fields of scientific research in mathematics, physics,

engineering, and many other disciplines. They provide us with powerful mathematical
tools to analyze and understand the irregularity and complexity of physical and non-
physical phenomena. Fractal geometry is older than chaos theory; however, the mathemati-
cal terms “chaos” and “fractal” are twins. The word “chaos” in 1975 describes an irregular
behavior of certain types of dynamical systems, whereas the term “fractal,” which was
coined by Benoit Mandelbrot [1,2] in the same year, refers to certain geometrical structures
or fractal patterns.

We investigated the basin of attraction of the roots of standard Newton’s iteration
method. Additionally, we analyzed the method’s speed of convergence and explored the
basins of attraction [3,4]. We give a complete description for Newton’s iteration method to
track the dynamical behavior in order to arrive at roots for a better approximation, which
identifies the fractal pattern as the basins of attraction of these roots.

A way to analyze the behavior of iterative complex-valued functions is through the
study of the dynamics of these algebraic functions in the Riemann sphere Ĉ = C ∪ {∞}.
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Some related works can be observed in [2]. The definitions of orbit, fixed points, attracting
fixed point, periodic orbits, and super attractive, among others, can be found in [1–5].

The purposes of this research article are to describe an algorithm that approximates the
roots of the function of a complex variable and pose the problem of determining the basins
of attraction of the different roots as a displayable fractal pattern, which is the dynamical
behavior of the Newton–Raphson method. A non-standard convergence test was applied
for generating the fractal pattern (See Appendix A).

This research paper is organized as follows: Section 1 is an introduction to the topic.
Section 2 introduces mathematical foundations and describes an algorithm that shows the
dynamical behavior of the numerical iteration method. Simulation results for rendering
fractals that show the dynamical behavior of the numerical iteration method are given in
Section 4. Finally, Section 5 is the conclusion, which briefly summarizes the results.

2. Materials and Methods
2.1. A Numerical Iterative Method in the Complex Plane

Consider the iterated function

zk+1 = F(zk), k = 1, 2, 3, . . .

For each initial point z0, the sequence z0, z1, z2, . . . may converge or diverge depending
on the coordinates of z0. Newton’s method is a numerical iterative method that is used as a
discrete dynamical system [5] to derive the roots of a higher-order nonlinear function at a
given point on the curve, which can be used to obtain a better approximation of the root
with another round of iteration.

Let f : C→ C be a complex-valued function with a continuous derivative. The
standard Newtonian iteration method in the complex plane [2,4] can be defined as:

N(z) = zn+1 = zn − f (zn) f ′(zn), where n = 0, 1, 2, 3, . . . and f ′(zn) 6= 0,

N : C∪ {∞} → C∪ {∞} , and z0 moves from some initial guess (seed) to an approx-
imation of the root through the maximum number of iterations. That is, if z0 is the seed,
then N(n)(z0) will converge on the root of f (z) [2], where n is the maximum number of
iterations. The complex derivative of the rational function N(z) is given by

N′(z) = f (z) f ′′ (z)
(

f ′(z)
)2

We know that the root of f (z) is the fixed point of N(z), which is given by f (z) f ′(z) = 0 .
Let w = f (z) f ′(z) be the root of f (z), so if w is simple, then f (w) = 0, but f ′(z) 6= 0, and
|N′(z)| = 0; thus, the root w of f is a super-attractive fixed point (every seed converges
toward the same point—i.e.,

{
f (k)
}

converges normally toward w) of N(z) [3,6]. This
shows that the rate of convergence is quadratic in some open regions, which contains the
fixed-point w of N(z). Now, if w is a root of multiplicity m, then |N′(w)| = (m− 1)/m,
and if m > 1 then 0 ≤ |N′(w)| ≤ 1. This means that w is also an attractive fixed point
for N(z), and the convergence is linear (since |N′(w)| lies between 0 and 1). This shows
that N(z) is unsatisfactory if the root is not a simple root. If z in an absolute value is large;
N(z) ≈ 1/n.(nz− z), where n is the degree of f (z), N′(z) = 1/n.(n− 1)), and |N′(z)| =
(n–1)/n; this says that the point w = ∞ is a repelling fixed point.

2.2. Algorithm for Generating a Fractal Pattern Using a Numerical Iterative Method

The fractal pattern for the function f (z) is a type of mathematical/geometric shape
that has the property of self-similarity and was computed using an algorithm named “the
escape time algorithm.” This algorithm is based on the definition that identifies the escape
time fractal pattern, which is different from the fractal pattern generated by a deterministic
algorithm [7–9] or a random iteration algorithm [8–10]. It is generated by a numerical
iteration method, as the boundaries of the points are attracted to infinity, and the points
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are attracted to an attracted k—the cycle of f (z) [2,11,12]. For example, let f (z) = z2, so
that f (n)(z) = z22

. The points satisfying f (k)(z) = z are
{

e(2iπm/(2k−1)) : 0 ≤ m ≤ 2k–2
}

,

which are repelling points, since
∣∣∣∣( f (k)(z)

)′ ∣∣∣∣ = 2 at such points. Thus,

B(0) =
{

z ∈ C : f (n)(z)→ 0, |z| < 1
}

B(0) =
{

z ∈ C : lim
n→∞

f (n)(z), |z| > 1
}

Therefore, the fractal pattern, S f , is the unit circle, which is the boundary of both B(0)
and B(∞) [2,12]. Note that if |z|= 1 , then the points with f (n)(z), ∀n, remain on S f .

The escape-time algorithm is represented as follows [13]: If |zn| > bound (i.e., fixed
bound), the value will always escape towards infinity: then, iteration can be stopped for
this point. |zn| is the square root of x2

n + y2
n and is named the modulus of the complex

number zn. Fixed bound is the bailout value for the fractal pattern S f . When using a large
number of iterations (the maximum number of iterations), it can be assumed that almost
all the points with |zn| < fixed bound pertain to the fractal pattern.

In order to track the dynamical behavior [14] of the points that are attracted to infinity
and the points that are converted to an attracted k-cycle of f (z), an appropriate coloring
scheme is used as follows:

We know that the escape-time algorithm consists of evaluating each point in a grid as
a portion of the complex plane. Then, if a point iterates to infinity, the corresponding pixel
on the computer screen is given one color, and if a point ends up in an attractive k-cycle
of f (z), the pixel is given another color. The boundary between two colors is the fractal
pattern of f (z) [8].

Now, consider the function fc(z) = z2 + c, and then, the escape time algorithm deter-
mines a sequence of complex numbers and plots the basins of attraction for the roots of
fc(z) in a region of the complex plane by fixing the complex parameter c and varying z. The
escape time algorithm is coded as a pseudo-code, so that readers may easily understand it.

2.2.1. The Escape Time Algorithm (Pseudo-Code)

It is widely known that plots generated by the escape time algorithm [6] are called
escape time fractals [6,15]. The most commonly displayed escape time fractal image is
the fractal pattern, which represents the region of parameter space for which a certain
plane iteration converges toward an attractor rather than diverging to infinity, and the
iteration count in the escape time algorithm is an integer value (the actual value depends
on the choice of the escape radius or bailout value), and it can be clearly seen that in this
Algorithm 1, evaluating the number of cycles is required so that the number of computed
points zn in absolute value exceeds the bailout value.

Algorithm 1: The escape time algorithm

n = 0; % n is the iteration count
e− radius = ε; % ε is the escape–radius
Represent the complex variable z as a couple of real variables in the complex plane and evaluate
each point z on a square grid(−r ≤ x ≤ r, –r ≤ y ≤ r), where r ∈ R(square grid):

z = x + y ∗ i;
c = a + b ∗ i;

loop (forever)
zn = Fc(zn−1);
modulus = |zn|; % |zn| is the absolute value of zn
if (modulus>e-radius) then

L1: colour-value = n mod colormap;
L2: plot pixel;
if (n>maxiter) then goto L1, L2;

end; % end the loop
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2.2.2. The Modified Escape Time Algorithm

A modified algorithm which avoids conditional instructions of the escape time algo-
rithm for accelerating the fractal pattern generation is applied here. This is a variation
of the escape time algorithm. The theory behind the revised escape time algorithm is as
follows in Algorithm 2:

Algorithm 2: The modified escape time algorithm

The Pseudo-code of the algorithm is as follows:
cycount = k; % k is the cycle count
Represent the complex variable z as a couple of real variables in the complex plane, and evaluate
each point z on a square mesh grid (−r ≤ x ≤ r, –r ≤ y ≤ r),r ∈ R (mesh grid or region).

z = x + y ∗ i;
c = a + b ∗ i;

for n = 1 to cycount do % for loop
zn = N(zn−1); % numerical iteration formulaend

end; % end for loop
modulus = |zn|; % computes the absolute value of zn
Determine colour-value to the various “basins of attraction”.
Plot pixel of modulus with colour-value.

Instead of evaluating the number of cycles required so that the |zn| > bailout value,
the value of |zn| for a fixed number of cycles is evaluated. To make it clear, we present
now what is the pseudo-code of the so-called modified escape time algorithm that employs
that theory.

This algorithm is a variation on the escape time algorithm, which makes the interior
structure of the resulting pattern of the applied numerical iteration formula to f (z) more
informative, and reduces the computation because it avoids the conditional instructions
speeding up the computer program’s execution.

3. Results

We have utilized Newton’s method to find the roots of a complex-valued function.
Through the aid of MATLAB, the complex basins of attraction for several complex-valued
functions can be viewed and the following fractal patterns (Figures 1–4) can be obtained.
These fractal patterns are called Newton fractals [2,3,6,11]. They are a fractal based on using
Newton’s method in order to find roots for a particular complex-valued function starting
from points laid out on a region (the two-dimensional grid of points) in the complex plane
C. We ran Newton’s method, starting from each grid point, and we determined to which
one of the roots it was converging for this grid point.
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4. Discussion

Figure 1 is one solution to the problem of dividing a plane into three regions so that
all three regions share a common boundary. The infinitely loop set that is the common
boundary is called a fractal pattern. The Newton transformation N(z) = 2z3/(3z2 − 1)
takes the fractal pattern onto itself, and does so chaotically. It also preserves each of the
three colored regions and transforms them in interesting ways [16]. For example, N takes
the yellow bulb at around z = 0.5 into the main yellow region on the left. Figure 2 is the
detail of a bulb from Figure 1.

A fixed point is a point that is mapped to itself under an iterated function [12]. The
three roots to the cubic complex-valued function z3 − 1 are mapped to themselves under
the iterative Newton’s method. A fixed point is an attractive fixed point if all points in a
neighborhood around it converge towards it [11]. All points that converge to a fixed point
form a basin of attraction for the point.
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Figure 3 is an example that shows a part of the basins for Newton’s method applied to
the cubic complex-valued function z3 − 1. B(1) is in yellow, and the other two basins are in
the other two colors.

Figure 4 shows the basin of attraction of the roots when Newton’s method is applied
to z5 − z2 = z2(z3 − 1). Since 0 is a double root of f (z), and |N′(0)|= 1 , this means that
the double root 0 is an indifferent (may be attracting, repelling, or neither) fixed point
for N(z), and any neighborhood of such fixed point contains points that are in the basin
of attraction of that indifferent fixed point and points that are not in that basin, because
Newton’s method converges only linearly at the double root.

Finally, in Figures 1, 3 and 4 we use a square grid (−r ≤ x ≤ r, –r ≤ y ≤ r), where
r ∈ R is mesh grid or region. To speed up the convergence rate, we avoided conditional
instructions of the prior escape time algorithm and used a maximum of 10 iterations
to reach a fractal pattern when iterating Newton’s method via modified escape time
algorithm. This conclusively shows that the results are superior in terms of performance
and algorithmic efficiency.

5. Conclusions

The mathematical foundations behind generating a fractal pattern of an algebraic
function using the numerical iteration method have been introduced. For constructing a
fractal pattern, we first introduced the numerical iterative method for the complex plane
and described a modified algorithm that shows the dynamical behavior of the numerical
iteration method (see the result in Section 3).

This algorithm is based on the fact that it identifies the fractal pattern generated by
the numerical iteration method as the boundary of the points that are attracted to infinity
and the points that are attracted to an attracted k–cycle of the algebraic function.

This algorithm speeds up the convergence rate by avoiding conditional instructions
and minimizing the number of iterations needed to obtain the fractal pattern to 10 iterations.

This algorithm is a variation of the escape time algorithm, which changes the interior
structure of the fractal pattern of the numerical iteration method applied to the algebraic
function for accelerating the fractal pattern generation.

The most used iteration method is Newtons’ iteration formula, but other famous
iteration methods could be introduced for future works—e.g., Chun-Hui He’s iteration
method, the variational iteration method, and the homotopy perturbation method. The
values of the fractal dimensions of the fractal pattern could be approximated in future
studies. The two-scale fractal dimensions (see [17–19]) could be used for this purpose.

This article presented a novel tool making use of the modified escape time algorithm.
To accelerate convergence, we removed conditional instructions in the prior algorithm
and employed a maximum of 10 iterations to reach a fractal pattern by iterating Newton’s
method using the modified escape time algorithm. Our results are superior to both old
and recent results in terms of the performance and efficiency of the modified escape
time algorithm, and superior results came about in the nonstandard convergence test
when Newton’s method was iterated by the modified escape time algorithm, which is a
mathematical insight gained in this article. The results give notably new insights into the
treatment of fractal pattern generation, which is one of the study’s strengths.
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