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Abstract: This is the third essay advocating the use the (non-integer) fractional calculus (FC) to
capture the dynamics of complex networks in the twilight of the Newtonian era. Herein, the focus
is on drawing a distinction between networks described by monfractal time series extensively
discussed in the prequels and how they differ in function from multifractal time series, using
physiological phenomena as exemplars. In prequel II, the network effect was introduced to explain
how the collective dynamics of a complex network can transform a many-body non-linear dynamical
system modeled using the integer calculus (IC) into a single-body fractional stochastic rate equation.
Note that these essays are about biomedical phenomena that have historically been improperly
modeled using the IC and how fractional calculus (FC) models better explain experimental results.
This essay presents the biomedical entailment of the FC, but it is not a mathematical discussion
in the sense that we are not concerned with the formal infrastucture, which is cited, but we are
concerned with what that infrastructure entails. For example, the health of a physiologic network is
characterized by the width of the multifractal spectrum associated with its time series, and which
becomes narrower with the onset of certain pathologies. Physiologic time series that have explicitly
related pathology to a narrowing of multifractal time series include but are not limited to heart rate
variability (HRV), stride rate variability (SRV) and breath rate variability (BRV). The efficiency of the
transfer of information due to the interaction between two such complex networks is determined by
their relative spectral width, with information being transferred from the network with the broader
to that with the narrower width. A fractional-order differential equation, whose order is random,
is shown to generate a multifractal time series, thereby providing a FC model of the information
exchange between complex networks. This equivalence between random fractional derivatives and
multifractality has not received the recognition in the bioapplications literature we believe it warrants.

Keywords: fractal physiology; multifractals; fractional calculus

1. Introduction

In [1], it was argued that Sir Isaac Newton transformed Natural Philosophy into today’s
Science by explaining that motion is at the core of mechanics and describing the manner in
which the planets orbit the sun using the inverse power law (IPL) of gravity. He described
a planet’s trajectory using geometry, which was the contemporary mathematical language
of scientific discourse and had been for over a millennium. Fluxions, his version of the
differential calculus, were not mentioned in the Principia wherein he revealed his new
vision of the universe. The lack of discussion of differentials is curious since that would
have been the more natural way to create the orbits, as every college freshman learns today
in their Introductory Physics course. However, a handful of contemporary mathematicians
did recognize in a number of his more involved geometrical arguments that he clearly had
the differential calculus in the back of his mind. A careful reading of his text makes this
evident from our three-hundred-year-plus vantage point on the matter.

What Newton accomplished was to reveal what was entailed by fluxions (the deferen-
tial calculus) without explicitly referring to it; and in that way, he convinced generations
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of scientists of the value of analyzing how physical phenomena change in space and over
time. Whether by serendipity or conscious plan, it is not clear which, Newton forged a path
for less gifted investigators to follow and contribute to the nascent scientific discipline of
mechanics and to physics generally. He enabled the more adventurous to step beyond the
safeguards of geometry during that time of transition into the new and more encompassing
world of the differential. It was speculated in prequel I that we have reached another epoch
of transition [2]:

. . . it has occurred to a number of the more philosophically attuned contemporary
scientists that we are now at another point of transition, where the implications
of complexity, memory, and uncertainty have revealed themselves to be barriers
to our future understanding of our technological society. The fractional calculus
(FC) has emerged from the shadows as a way of taming these three disrupters
with a methodology capable of analytically smoothing their singular natures.

Looking back over the past two centuries, it is evident that the view of how the hu-
man body operates paralleled our growth in understanding of how the physical universe
operates as well as how our technological society came into being. This perspective was
developed, in large part, using physical analogs and the adaptation of physical principles
in some cases without the empirical evidence needed for its justification. Consider home-
ostasis, thought by many to be a guiding principle of medicine, and to be the biomedical
consequence of Le Chattier’s Principle [3]. From this perspective, every human body is
believed to have multiple automatic inhibitory mechanisms that suppress disquieting influ-
ences, whether those disruptions are generated by the environment external to the body or
by malfunctioning internal systems. This particular notion has recently been replaced by
homeodynamics, with the recognition that life is a non-equilibrium process and therefore
requires rich dynamics to maintain stability [3,4].

Healthy physiologic networks give rise to erratic time series whose fluctuations contain
the control information that guide the behavior of these complex networks. It is the
statistics of physiological fluctuations that determine the spatial properties of the tree-like
structures of the human lung, arterial and venous systems, and other ramified structures [5].
Statistical fractals [6,7] determine the probability density function (PDF) of time intervals
in the beating human heart [2,8–10], in respiration [11–14], synchronous response to a
metronome [15], in human locomotion [16–19], in the human nevous sysem [20], in the
dynamics of the brain [21–24], in the walking rehabilitation of the elderly [25,26], motor
control [27,28], and interpersonal coordination [29,30], and in human cognition [31].

It is not only fractal statistics that determine the behavior of physiologic networks but
fractal dynamics [32] as well. For example, such behavior is found in the firing of certain
neurons [22,33,34], as well as in the time series of posture control [35], which determine the
dynamic properties of physiologic networks having a large number of characteristic time
scales. These and other fractal physiology processes have been the focus of interdisciplinary
research on complex networks for more than a decade; see [2,36–38].

The scaling of a dynamic network determines whether it is sufficiently complex to be
able to efficiently carry out its function. In 2008, West et al. [39] determined preliminary
conditions under which information is efficiently exchanged between complex dynamic
networks under the rubric of the Principle of Complexity Matching (PCM), which subse-
quently was absorbed into the more general Principle of Complexity Management [40,41].
This latter principle has been shown to be operative in the flow of blood between the heart
and brain [42], in the transmission of oxygen between the lungs and the heart [43], and in
the more ephemeral transfer of information during rehabilitation of the elderly [26,28].

In addition, there are vast numbers of other phenomena that, due to their complexity,
require increasingly complicated use of the integer calculus (IC) that has served us so
well over the past three hundred years in describing the macroscopic world. Newton’s
derivation of celestial orbits using geometry was shown to be an unnecessarily restrictive
way to think about the phenomena being investigated and it turned out that the IC entered
the thinking of most scientists via the back door, so to speak. In fact, it was by means of an
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entirely different mathematical concept, the fractal, that the non-integer calculus, which we
herein refer to as the fractional calculus (FC) gained its present degree of popularity, if not
acceptance, in the scientific community.

2. Fractality

Mandelbrot did much more than introduce a new mathematical concept into the
scientific lexicon with his notion of fractals [6,44]. He pointed out the obvious and asked
why scientists were not modeling the world the way it actually presents itself; much as
the boy asked about the emperor’s new clothes in the fairy tale. As Mandelbrot noted,
fractals come in three flavors: geometric, statistical and dynamic. Here, we do not dwell
on the mathematical properties of each of these kinds of fractals, but instead focus on
the statistical properties of experimental datasets and how their fractal nature may be
determined and characterized.

As Bogdan et al. [45] emphasize in their brilliant editorial, the understanding of
complexity is a fundamental problem in biology, physiology and medicine. Complexity
enters into the discussion in a number of ways, including but not limited to multicomponent
regulatory mechanisms, where efficient homeostatic control is maintained by means of
non-linear feedback loops and disruptive pathologies are brought back into balance by
means of homeodynamic control. This notion of homeodynamics offered a radically new
concept departing from the traditional homeostatic idea that emphasizes the stability of
the internal dynamics with respect to perturbation. Indeed, Lloyd et al. [4] argue in their
review that biological systems are homeodynamic as a manifestation of a network’s ability
to self-organize at behavior bifurcation points where they lose stability and restabilize in a
new state. As a result of this self-organization, living systems displays complex behaviors
with a spectrum of emergent characteristics, including bistable switches, thresholds, mutual
entrainment, and periodic as well as chaotic behavior. These processes may proceed on
different spatial and/or time scales, from very rapid processes on the molecular level to
the enormously long time scales of evolutionary change. It is such dynamic organization
under homeodynamic conditions that make possible the organized complexity of life.

Herein, we focus on the generic notion of fractality to facilitate our understanding of
complexity in the life sciences [32,37,46–48] and its ultimate entailment of the FC, see [49]
for an excellent introduction to bioengineering.

2.1. Fractal Time Series

Random fractals may at first sight appear strange, but fractal statistics have been
shown to appear in all manner of familiar phenomena in physical, social and life sciences
once they were revealed by Mandelbrot. One property of interest is long-time memory,
which can be measured by an autocorrelation function. The proposal of Mandelbrot and
van Ness [44], subsequently named fractional Brownian motion (FBM) by Mandelbrot [6], is
not compatible with the traditional equilibrium statistical mechanics [50,51]. In FBM, the
stationary correlation function of the noise η(t), with a very short correlation time τc for
ordinary diffusion, is replaced by a correlation function Φη(τ), which is still stationary, but
not integrable, with a diverging correlation time. The solution to the rate equation for free
diffusion with vanishing initial conditions is used to relate the autocorrelation functions:

〈X(t1)X(t2)〉 ≡ C(t1, t2) ≡
〈

η2
〉 ∫ t2

0
dt′2

∫ t1

0
dt′1Φη(

∣∣t′2 − t′1
∣∣), (1)

where the normalized stationary autocorrelation for the noise is defined by

Φη(|t2 − t1|) ≡
〈η(t2)η(t1)〉
〈η2〉 . (2)
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With a proper choice of autocorrelation function, setting t = t2 − t1 and sending t, t1 and t2
to infinity has the effect [52] of reducing Equation (1) for the correlation index ρ to the FBM
form [6]:

ρ ≡ 〈X(−t)X(t)〉
〈X(t)2〉 = 22H−1 − 1 (3)

where the symbol H was adopted by Mandelbrot to denote the scaling first implemented
by Hurst [53].

Feder [50] emphasizes, for H = 0.5, the correlation of past and future increments of
the time series vanish for all t, thereby yielding an uncorrelated random process. However,
for H > 0.5, the process is persistent, indicating that an increasing trend in the past
entails an increasing trend in the future for all t. Similarly, for H < 0.5, the process is
anti-persistent, indicating that an increasing (decreasing) trend in the past entails that a
decreasing (increasing) trend in the future is more probable.

Note that the autocorrelation function given for FBM is in direct conflict with what
is normally assumed or can be proven from the statistical records of physical networks.
Thermal equilibrium requires that events correlated when separated in time by ∆t become
uncorrelated in the limit ∆t → ∞, which is certainly not the case above. Moreover, in a
second-order phase transition, e.g., as the critical point of a fluid is approached from above
the fluid density, autocorrelation function transitions from being an exponential with inde-
pendent increments to being an inverse power law (IPL) with a long-time correlation [54].

The correlation index defined by Equation (3) is expressed in terms of the correlation
dimension D = 2− H and D = 1.5 is the dimension of an uncorrelated random process for
which ρ = 0, as seen in Brownian motion. On the other hand, a regular one-dimensional
curve has D = 1, corresponding to a completely correlated process with ρ = 1. A fractal
time series X(t), in general, satisfies the homogeneous scaling relation:

X(λt) = λδX(t), (4)

and generates another fractal process with the same statistics and typically δ = H. As
the size of a network increases, it provides increasing opportunity for variability, which
is necessary in order to maintain stability. Scaling provides a measure of complexity in
dynamic networks, indicating that the network’s observables can simultaneously fluctuate
over many time and/or space scales.

The FBM process proposed by Mandelbrot and van Ness [44] lies between Brownian
motion and white noise. In both cases, the continuum is characterized by the homogenous
scaling law given by Equation (4) but in the frequency domain [44]:

S( f ) ∝
1
f β

, (5)

which is the power spectrum for a fractal process. The statistics for Brownian motion are
Gaussian and the spectral scaling index is β = 2δ + 1 = 2, since δ = H = 1/2. Similarly,
the statistics for white noise are Gaussian as well but with a flat spectrum such that β = 0.
The situation with β = 1 is the well-known situation of 1/f noise [55,56] which has been
empirically determined in a large number of natural and physical phenomena as recorded
in the excellent review article by Deligniéres and Marmelat [57] on the connections between
fractal fluctuations and complexity.

Scaling PDF: The hallmarks of fractal statistics are spatial (x) inhomogeneity, temporal
(t) intermittency and the phase space trajectory (x; t) exchanged for the dynamic variable
X(t). In phase space, the scaling of the dynamic variable is replaced by a scaling of the PDF
P(x; t):

P(x; t) =
1
tδ

F
( x

tδ

)
(6)
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as we subsequently show for quite general complex phenomena. There is a broad class
of PDFs for which the functional form of F(·) is left unspecified. It is straightforward to
calculate the average value of X(t) using the PDF given by Equation (6):

〈X(t)〉 =
∫

xP(x, t)dx = Xtδ, (7)

and the overall constant is determined by the scaling variable q = x/tδ averaged over the
PDF F(q):

X ≡
∫

qF(q)dq. (8)

Notice that using the scaling PDF that it is the average of the dynamic variable that now
manifests the scaling property:

〈X(λt)〉 = λδ〈X(t)〉. (9)

For FBM, it is clear that the scaling parameter is given by δ = H and the PDF given
by F(·) is Gaussian, which is not the situation in general. The more general case is only
constrained by the complexity of the network through the scaling behavior of the moments
of the PDF.

2.2. Multifractal Time Series

One property that stands out from the multiple studies performed on the information
transfer between complex dynamic physiologic networks is that such living networks
exist at, or are on the edge of, a phase transition [58,59]. Such network configurations
optimize both intra- and inter-network information transmission [39]. Moreover, the
generic statistical distribution that characterizes a diverse collection of complex networks
is the IPL, whether modeling the connectivity of the internet or social groups [60], the
frequency or magnitude of earthquakes [61], the number of solar flares, the time intervals
in conversational turn taking [62], and many other phenomena; see, for example, [63–65]
for reviews of exemplars and the discussion of mathematics.

As pointed out by West and Grigolini [7], 1/f noise is not strictly speaking noise, since
noise by definition does not carry useful information about network dynamics. The IPL
index of a 1/f spectrum is the temporal signature of the self-similarity property of a critical
dynamic state. Bak [66] proposed the first theory of critical behavior that is independent of
an external control parameter such as temperature, in which a network’s internal dynamic
attracts the network elements into a critical state [67]. This attraction is called self-organized
criticality (SOC) and the associated 1/f variability occurs in catastrophic phenomena such
as brainquakes [22,33,68,69], spral waves in astrocyte syncytia [70], earthquakes, the highly
optimized tolerant (HOT) theory of forest fires [64,71] and punctuated equilibria [57].
Finally, there exists a connection between neural organization and information theory, the
empirical laws of perception [72], and the production of 1/f noise [73], with the remarkable
property that 1/f signals are encoded and transmitted by sensory neurons more efficiently
than are white noise signals [74].

The signature of SOC is the IPL index of the 1/f spectrum of the time intervals between
critical events, with an IPL waiting-time PDF, a property historically referred to as temporal
complexity. We therefore refer to this form of SOC as self-organized temporal criticality
(SOTC) and identify the critical events as crucial [7,75]. The 1/f variability IPL index and
that of the underlying time series statistics are related and taken to be measures of the
network complexity and the relation to multifractality is emphsized by Mandelbrot [63].

We closed prequel II [76] with a brief discussion of multifractals along with a promise
to expand on its overlap with the FC. These earlier comments began with the observation
of the need to replace the historical engineering paradigm of ‘signal-plus-noise’ with a
model of biomedical time series having fractal statistics. The scaling behavior of such
biomedical time series entails the fact that no single scale or frequency carries the signal,
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but rather pieces of the signal are distributed across a spectrum of scales. However, even
this generalization of the engineering paradigm was shown to be too restrictive to properly
describe the richness of physiologic time series. A number of physiologic time series were
found to be characterized by a distribution of scaling parameters and therefore to belong
to a broader class of complex processes known as multifractals. Such multifractal time
series appear in the rich variability of healthy physiological networks, including but not
restricted to human gait [32], cerebral blood flow (CBF) [77,78] and heart rate variability
(HRV) [79–81], and changes in scaling behavior [82] reflect certain kinds of pathologies, as
discussed in prequel I [2] of this series.

There are many fractal time series generated by multiple processes having long-term
memory of the underlying dynamic networks, with FBM being only one exemplar. For
example, physiological signals, such as cerebral blood flow (CBF), are typically generated
by complex self-regulatory networks that handle inputs with a spectrum of characteristics.
The importance of this self-regulation was recognized by Ivanov et al. [81], who determined
that time series for healthy human HRV, rather than being fractal, are multifractal, which is
to say that the time series are not restricted to a single fractal but described by a spectrum
of fractal dimensions. They also uncovered the fact that a narrowing of the multifractal
spectrum is diagnostic of congestive heart failure as well as other cardiac pathologies [83]. It
is noteworthy that multifractals are defined by time series with spectra of fractal dimensions
(scaling exponents). Such an effect arises due to the scaling index changing over time—see,
e.g., Feder [50]—resulting in the underlying process being characterized by a spectrum
of fractal dimensions, or scaling parameters. West et al. [78] similarly determined that
CBF in healthy humans is also multifractal, and showed that CBF time series have a broad
uni-modal multifractal spectrum and the width of this spectrum is greatly reduced for
people who suffer from ”severe” migraines.

In [76], it was pointed out that multifractals are made up of many interwoven sub-
sets with different local scaling exponents. The statistical properties of these subsets are
characterized by the spectral distribution of fractal dimensions f (h) as depicted therein
in Figure 11. In that figure, we fit the multifractal spectrum for the middle CBF velocity
time series for a healthy control group using the solution to a linear Langevin equation [78],
compared with a group of migraineurs. The width of the multifractal distribution centered
on the local scaling exponent for the CBF velocity for the migraineurs is constricted by a
factor of three over that of the control group, suggesting that the underlying process has
lost a great deal of flexibility. The physiological advantage of multifractal processes is that
they are highly adaptive, so that the brains of healthy individuals readily adapt to the
multifractality of the interbeat interval time series [84,85].

Multifractal signal processing: Mandelbrot was the first to recognize that signals that
are singular at almost every point, fractal signals, are typical of physiological datasets.
So how do we interpret a multifractal signal, or a fractal signal for that matter? A long-
standing strategy for interpreting a signal is to construct the Fourier transform applied
to an experimental time series. Although the method is mathematically unassailable, the
utility of the various derived quantities has been questioned. The basis for these queries is
the mutually exclusive treatment of time and frequency in the specification of the signal,
that is, the time series is assumed to be infinitely long and each frequency is defined for a
monochromatic infinitely long wave train. However, all time series in medicine are of finite
duration and dominant frequencies change over time. The recognition of this limitation
of the (time, frequency) representation of Fourier signals lead to the development of the
wavelet transform method for representing one-dimensional signals as a function of time
and frequency; see, e.g., [86].

One can develop the mathematical infrastructure for analyzing the properties of
multifractals following the wavelet-transform modulus-maxima method (WTMM) laid
out by Mallat [86] or by adopting the more intuitive box counting techniques used by
Feder [50]. The singularity spectrum can be calculated from the WTMM [86–88] at each
data point in the time series. Given the time series X(t) and the WTMM time series at a
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scale l denoted by W(X(tm), l), the partition function Z(q, l) can be expressed in terms of
the qth moment:

Z(q, l) = ∑
m
|W(X(tm), l)|q ∼ lτ(q), (10)

where tm is the position of the local maxima of the transformed dataset at the fixed scale
l. The quantity τ(q) is the mass exponent and is related to the generalized dimension
Dq = τ(q)/(1− q), where the fractal dimension is D0, the information dimension is D1, and
the correlation dimension is D2. Measurements of the Dq and the spectrum of singularities
provide global and statistical information of the scaling properties of fractal measures. This
information is similar to the power spectral density obtained from the Fourier transform of
a time series that quantifies the relative contributions of the underlying frequencies. The
spectral function f (h) quantifies the relative contribution of the underlying singularities.
However, just as the Fourier transform does not keep track of the time-ordering of the
frequencies contributing to a power spectral density, neither does f (h) denote the temporal
locations of the singularities.

An important consequence of this analysis is that the Hölder exponent h(q) will not
be constant, if and only if, large fluctuations scale differently from small fluctuations. The
multifractal spectrum f (h) describes how the local fractal exponents h contribute to a
multifractal time series. We note that h and f are independent variables, as are q and
τ. These two sets of variables are interrelated by the general formalism of Legrendre
transform pairs:

f (h) = qh + τ(q). (11)

using the sign convention of Feder [50]. The local fractal exponent h varies with the
q-dependent Hölder exponent through:

h(q) = −dτ(q)
dq

= −τ′(q),

The singularity spectrum given by Equation (11) can therefore be written:

f (h(q)) = −qτ′(q) + τ(q), (12)

where both the mass exponent and its derivative are determined using WTMM on the
dataset. Thus, a multifractal spectrum can only give an indication of the span of dimensions
being accessed by the dynamic process and not the order in time at which they occur.

A vast literature has become available on multifractals and their processing techniques
over the last quarter century, including the brain–heart connection [9,42,43,89,90], the be-
havioral experiments on syncopated finger tapping [27,28,91,92], dyadic conversation [62]
and information flow through different parts of the brain [12,36,93]. The current research
work on extended cognition, a recent theory in which mental processes are hypothesized to
extend beyond the brain and incorporate interactions with the environment in which it is
embedded [94,95], is entailed by the information transferred between complex networks,
such as the environment and the brain.

Our goal is to compare the multifractal spectra of a complex network perturbed by
another complex network as a function of their respective IPL indices, as in [41], since the
IPL indices are the proposed measures of complexity. A stable procedure to generate the
singularity spectrum from the events of the complex networks is needed. A number of
such procedures have been proposed, but only one of which has proven satisfactory for
non-ergodic networks and which we now discuss.

2.2.1. Ergodicity Breaking

Piccinini et al. [96] generate a single time series using an IPL PDF, which is then used
to construct a multifractal spectrum equivalent to creating a Lévy process. This construction
creates an apparent contradiction, since using the generalized central limit theorem it is
possible to conclude that Lévy processes are monofractal, with the fractal dimension being
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related to the Lévy index [97]. Why, then, does the algorithm [98] used produce wide
parabolas when applied to this time series, since such a parabola is a clear indication of
multifractality? As they explain, the reason is that the constant fractal exponent resulting
from the generalized central limit theorem is tied to the fact that averages are carried
out using ensemble PDFs, whereas the procedure used by Piccinini et al. [96] evaluates
averages using a single time series. Consequently, if the time series is non-ergodic, the two
kinds of averages can be very different [41].

Let us plot the multifractal spectra obtained for time series generated using various IPL
indices µ. As shown in Figure 1, the spectrum for µ = 1.1 is very broad, while the spectrum
for µ = 1.5 is still broad, but with significantly less weight in the tails. As expected, when
µ is further increased, the generated spectra become narrower, their peaks shift towards
h = 0.5, and the networks they represent deviate less and less from being ergodic with
an increasing IPL index. Thus, this figure compliments the IPL index as a representation
of the complexity of a dynamic time series series by explicitly showing the width of the
multifractal spectrum.

1

1.pdf

Figure 1: The multifractal spectrum f (h) is plotted for the indicated values of
the IPL index µ = 1.1, 1.5, 2.0, 2.5, 3.0, and 3.5 without truncation. When µ is
close to 1, the spectrum is very broad. As µ is increased, the spectrum narrows
and its peak moves to h = 0.5. From [94] with permission.

truncating a PDF affects the scaling of the large fluctuations (since the tail of

the distribution is suppressed) and leaves the scaling of the small fluctuations

unaffected. Thus, the multifractal properties of these networks are substantially

altered by truncation. When µ < 2, the average length of the laminar regions

between critical events would diverge when unaltered, but the truncation pre-

vents it from doing so, which attracts the peak of the singularity spectrum to a

value closer to h = 0.5.

2.2.2 Information transfer

The newly emerging fields of network physiology and network medicine

[42, 49, 62] have stimulated research that spans the gap between microbiology

and neurophysiology, and has benefited from the significant advances recently

made in the field of dynamic complex networks. One of the more significant

advances in these new fields of research is understanding the effi ciency of the

transport of information from one complex network to another, during their in-

12

Figure 1. The multifractal spectra f (h) are plotted for the indicated values of the IPL index
µ = 1.1, 1.5, 2.0, 2.5, 3.0, and 3.5 without truncation. When µ is close to 1, the spectrum is
very broad. As µ is increased, the spectrum narrows and its peak moves to h = 0.5. From [96]
with permission.

Introducing a truncation into the IPL waiting-time PDF has a dramatic effect, as can
be seen in Figure 2. While networks with µ > 2, which have a finite first moment, are
essentially unaffected by truncation, networks with µ < 2, whose first moment diverges,
behave differently than they did without truncation. The smaller the IPL index µ, the more
the parabola is shifted to a smaller scaling index h and becomes more sharply peaked
at approximately h = 0.5. The reason for this change becomes clear when we stop and
consider that the truncation mainly affects networks that have longer tails (µ < 2). More
significantly, truncating a PDF affects the scaling of the large fluctuations (since the tail of
the distribution is suppressed) and leaves the scaling of the small fluctuations unaffected.
Thus, the multifractal properties of these networks are substantially altered by truncation.
When µ < 2, the average length of the laminar regions between critical events would
diverge when unaltered, but the truncation prevents it from doing so, which attracts the
peak of the singularity spectrum to a value closer to h = 0.5.
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2

Figure 2: Effects of truncation on the spectra. Upper: Increasing µ from 1.1 to
2.0 the spectral peak moves to increasing h, in contrast with Figure 1. Lower:
Increasing µ from 2.0 to 3.5 the spectral peak moves to decreasing h. From [94]
with permission.

13

Figure 2. Effects of truncation on the spectra. (Upper): Increasing µ from 1.1 to 2.0 the spectral peak
moves to increasing h, in contrast with Figure 1. (Lower): Increasing µ from 2.0 to 3.5 the spectral
peak moves to decreasing h. From [96] with permission.

2.2.2. Information Transfer

The newly emerging fields of network physiology and network medicine [99–101]
have stimulated research that spans the gap between microbiology and neurophysiology,
and has benefited from the significant advances recently made in the field of dynamic
complex networks. One of the more significant advances in these new fields of research is
understanding the efficiency of the transport of information from one complex network
to another, during their interaction. We show that the transport of information from one
dynamic complex network to another is equivalent to the transmission of the multifractality
property. This information transport is captured by the PCM, which relies on the roles
played by criticality [102] and ergodicity breaking in the network dynamics [37]. Moreover,
as subsequently pointed out by Mahmoodi et al. [103], the PCM is consistent with the
notion of transporting global properties from one complex network to another. This
mechanism has also been called 1/f resonance to denote the increase in information transfer
associated with the enhanced increase in information transfer efficiency between networks
associated with a single frequency and that associated with the matching of IPL indices of
the interacting networks [40].

The organ–organ interaction perspective of the new network physiology enriches
the therapeutic culture, with the infusion of basic concepts such as comorbidity being a
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manifestation of different diseases being interconnected [104]. The degree and fidelity of a
network’s response are a consequence of both the average h and the width of the singularity
spectrum of the perturber relative to the responder. The communication between two
complex networks is frequently interpreted [27,28,62], following West et al. [39,40,105], to
be a manifestation of complexity matching and consequently of the information exchange
being facilitated when the interacting networks share the same dynamical complexity as
measured by the IPL index of the PDF for the time interval between crucial events. In
turn, the IPL index is related to the fractal dimension of the underlying stochastic process.
The signature of the shared dynamical complexity is multifractality [106,107], namely the
dynamic processes having the same range of values of fractal dimensions, or equivalently,
comparable spectra of IPL indices, activated by the emergence itself of cognition [108–112].

One way to visualize the multifractal spectrum that has been used extensively herein is
by means of the singularity spectrum f (h). The broader the parabola, the more multifractal
a network, in the sense that more values of fractal dimensions contribute to the variability
of the time series. A very narrow parabola centered on h = 0.5 indicates an essentially
monofractal ergodic system. This interpretation is confirmed by experimental results [113]
based on the transfer of global properties from one complex network to another. In these
latter experiments, a multifractal metronome generates a spectrum of fractal dimensions as
a function of the excitatory signal and it is this multifractal spectrum that is captured by
the brain-response stimulation. As noted in prequel I, the multifractal behavior depicted
by the uni-modal spectrum provides a unique measure of complexity of the underlying
network. It is worth noting further that the same displacement of the metronome spectrum,
from the body response spectrum, is observed for walking in response to a multifractal
metronome, as depicted in Figure 3.

Figure 3. Walking in synchrony with a multifractal metronome. The multifractal spectra for the
participant (black circles) and that for the metronome (white circle) are shown. This figure is derived
with permission from the left panel of Figure 3 in [28].

To perturb the multifractal spectrum of a complex network, consider a complex
network P perturbing a responsive complex network R, with appropriately indexed pa-
rameters. The upper panel of Figure 4 depicts the response of a network with µR = 3.4 to a
perturbing network having µP = 2.4. The inverted parabola of the responding network
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becomes broader in this case and shifts to increasing h, so the perturbed network becomes
more multifractal and less ergodic than it was before being perturbed. This result is not
unexpected, since the response of the perturbed network is high for these values of the IPL
indices, µR > µP. One can interpret this result as the responding network acquiring certain
of the characteristics of the perturbing network.

Figure 4. Effects of perturbation of network R by network P as captured by the multifractal spectrum.
(Upper): the perturber network has µP = 2.4 response network has µR = 3.4 and is depicted before
and after the perturbation; (Lower): the perturber network has µP = 3.4 and response network has
µR = 2.4 and is depicted before and after the perturbation. The spectrum of the perturbed system is
strongly affected in the first case in the upper panel, in contrast to the second case in the lower panel.

By way of contrast, the lower panel of Figure 4 depicts the complimentary scenario,
in which the multifractality exchange when a network with µR = 2.4 is perturbed by a
network with µP = 3.4. The responding multifractal spectrum is changed only slightly in
this case and this result was qualitatively expected.
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The upper panel of Figure 5 depicts the effects of a network having µP = 1.2, per-
turbing a network having µR = 3.4. As we discussed, the suppression of the tails by the
truncation induces a multifractal spectrum whose peak is close to h = 0.5 for µP close
to 1. However, the multifractal spectrum of the responding network, with µR = 3.4 is
shifted to higher values of h in this case, as well. This behavior can be understood by
considering that, as the result of the perturbation, the responding network acquires some
of the characteristics of the perturbing network, with µP = 1.2 < µR = 3.4. Comparing
the parabola of the perturbed network depicted in the upper panel of Figure 5 with the
parabolas of the lower panel of Figure 2, we can see that it is close to the one generated by
a system with µR = 2.6.

Figure 5. Effects of perturbation on the response network by a perturbing network, as captured by
the multifractal spectra. (Upper): perturber having µP = 1.2 perturbs network having µR = 3.4
shown both before and after perturbation; (Lower): perturber having µP = 3.4 perturbs network
having µR = 1.2 shown both before and after perturbation. The perturbation significantly changes
the spectrum only when the IPL complexity index of the perturbed network is larger than that of the
perturbing one. From [96] with permission.

Again the complimentary scenario is shown in the lower panel of Figure 5, where the
network with µP = 3.4 perturbs the network having µR = 1.2. As is evident, the multifractal
spectrum of the responding network is only slightly affected by the perturbation. This
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asymmetric result for the effects of perturbation was expected for the same reasons as
before: extrapolating from the predictions of Non-Ergodic Complexity Management Cube in
the next section, we see that, in the first case, the response of the perturbed network is
maximal, while, in the second case, it is minimal.

3. Cross-Correlation Cube

Familiar examples of two complex dynamic networks, which through their interaction
exchange information, include but are certainly not limited to: two people talking to one
another, or walking together and only occasionally talking with one another; a patient’s
body ’talking’ to a physician during a physical examination; and the music of a symphony
orchestra exciting an audience member’s brain. Each complex network has its own charac-
teristic exponent at a given time and the efficiency of the information transfer is determined
by the relative values of the IPL indices of the sender and receiver at that time.

One measure of the efficiency of information transfer between two complex networks
is the cross-correlation between the output of the perturbing network and that of the
responding network. A crucial event (CE) time series is generated by an IPL PDF having
renewal statistics and is denoted here by ξ(t). The normalized output of perturbing network
is ξP(t), that of responding network by ξR(t), and the cross-correlation function:

C(t) ≡ E[ξR(t)ξP(t)]. (13)

The notation E[·] is introduced to indicate an average because the results discussed here are
proven for both the ensemble averages [40] and time averages [41] by explicit calculation.
The t→ ∞ cross-correlation function is the simplest measure of the asymptotic information
transfer efficiency from the perturbing to the responding network.

Non-ergodic renewal processes have been shown by multiple authors [114–119]
to be asymptotically insensitive to periodic perturbations, thereby apparently sanction-
ing the death of linear response, a building block of non-equilibrium statistical physics.
Aquino et al. [105] showed in Beyond the Death of Linear Response: 1/f Optimal Information
Transport that it is possible to go beyond the âeœdeath of linear responseâe and establish a
permanent correlation between an external stimulus and the response of a complex network
generating non-ergodic renewal processes, by taking as stimulus a similar non-ergodic
process. They proposed a theory for the transport of information through non-ergodic net-
works that explains why 1/ f noise variability is an efficient stimulus for complex networks.
The ideal condition of 1/ f noise, in fact, corresponds to a singularity that is expected to be
relevant in several experimental conditions of physical and biological interest.

Aquino et al. [40,105] developed a generalized linear response theory (GLRT) and
established that the death of LRT, like that of Mark Twain, was seriously exaggerated. The
first proof of GLRT was restricted to ensemble averages, and was subsequently generalized
to the successful treatment of time averages [41] as well. Here, we illustrate the results of
applying the perturbation arguments of GLRT along with the modified algorithm [96] used
to determine the multifractality of a single time series to the question of quantifying the
transfer of multifractality between complex dynamic networks.

In Figure 6, the asymptotic cross-correlation function, evaluated using ensemble
distribution functions, is normalized to one and graphed as a function of the IPL indices of
the two networks to form a cross-correlation cube (CCC). As mentioned, µP captures the
complexity of the perturbing network and µR that of the responding network; and taken
together, these values (µP, µR) define a plane. The value of the cross-correlation function at
each point on the plane defines a third dimension, so that the three together give rise to the
CCC. Note that this cube denotes the asymptotic values of the cross-correlation function
and displays a number of remarkable properties.
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Figure 6. The cross-correlation cube (CCC) depicts the asymptotic response of the cross-correlation
function, graphed as a function of the IPL indices of the responding network R and the stimulating
network P. The height of the CCC, that being the vertical axis perpendicular to the (µR, µP) plane, is
normalized to a maxmum value of one. Adapted from [2] with permission.

In keeping with our definition of complexity, the networks of interest are complex and
each have an IPL strictly in the domain 1 < µ < 3 and we do not truncate the time series in
the calculations as we did in the multifractal time series perturbation calculations. For the
moment, we focus our attention on networks whose complexity is high corresponding to
1 < µ < 2 (region 1) and networks whose complexity is lower corresponding to 2 < µ < 3
(region 2). Summarizing the asymptotic influence of one network in a given complexity
region on another network in a second complexity region, it has been shown that [2,40,41]:

(1) A complex network belonging to region 2 cannot exert any asymptotic influence on a
complex network belonging to region 1. This is the square denoted II on the CCC and
is where LRT supposedly died.

(2) A complex network belonging to region 2 exerts varying degrees of influence on a
complex network belonging to region 2. This follows from PCM and is indicated by
IV on the CCC.

(3) A complex network belonging to region 1 exerts varying degrees of influence on a
complex network belonging to region 1. This follows from PCM and is indicated by I
on the CCC.

(4) A complex network belonging to region 1 transmits its full complexity to a network
belonging to region 2. This is the plateau denoted III on the CCC and is where
Wiener [120] hypothesized the entropy gradient could dominate an energy gradient;
see also [7,39].

(5) When the two IPL indices are equal to 2 there is an abrupt jump up from zero (square
II) to one (square III), or down from one to zero, depending on the values of the IPL
indices just before they converge on 2. This is a singular point where the spectra of the
two networks display exact 1/ f -noise fluctuations.

It is possible that one could have extrapolated the results obtained for the transfer
of multifractal behavior between complex networks discussed in the preceding section to
sketch the results obtained from the CCC—at least in the case where the regions in which
the two networks were generating ergodic time series, i.e., where the IPL indices were both
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in region 1. Things are more complicated when one network is ergodic (region 1) and the
other network is non-ergodic (region 2). Piccinini et al. [41] were able to prove that a nearly
identical CCC to that depicted in Figure 6 could be numerically constructed using time
averages rather than ensemble averages by being cautious with the numerics. The latter
CCC is referred to as the Non-Ergodic Complexity Management CCC and is include here as
Figure 7 for ease of reference.

Figure 7. Non-ergodic complexity management CCC: The asymptotic in time cross-correlation
function between the P and R networks as a function of the IPL indices. The details of the numerical
analysis are given in [41], as are the analytic calculations given by the red stripes.

The main result of this section is a demonstration that the mechanism that gives
rise to the exchange of information between two complex networks, following as it does
from the PCM [37,39], is the same as that which transfers multifractal properties from
one network to the other, that mechanism being the information gradient arising from
the relative complexity and thereby producing an information force [76]. It is also worth
emphasizing that all the results obtained here for the interaction of two complex networks
were also obtained using yet another method in a recent paper [103].

4. Fractional Calculus

The Introduction briefly presented the case for not being able to use the IC to suc-
cessfully demystify complex phenomena and thereby not be able to replicate in the life
sciences the success enjoyed in the physical sciences by the use of IC dynamic models.
At its core, the barrier to be overcome is the inability to define complexity using a reduc-
tionistic approach. One of the clearest discussions of the distinction between complicated
and complex networks is given by Deligniéres and Marmelat [57], wherein a complex
phenomenon is argued to consist of a very large number of infinitely entangled components
such that the phenomenon cannot be decomposed into elementary units. In such a network,
the interactions are more important than the components themselves, and the whole is
greater than the sum of its parts.

Just as Newton’s shift from the positional focus of geometry to that of motion was
entailed by his fluxions, along with the eventual development of the reductionist per-
spective of science, so too is a modern-day shift from simplicity to complexity entailed
by the giant steps made in our ability to measure, coallate and compute. Consequently,
today’s situation is thought to be comparable to the time of Newton requiring a new way of
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thinking, in large part because of the confusion over how the world’s complexity influences
our undertanding of the world.

There is the mathematics that all the physics community knows and understands,
which is dominated by the IC paired with Newton’s forces. However, this robust view of
how to understand the world has been subverted by the three-body problem, where, as
described by Poincaré, a planet orbiting two suns finds itself on a fractal trajectory (of course,
the term fractal did not come into existence for another 100 years in the work of Mandelbrot).
More generally, a non-linear mechanical system with three or more degrees of freedom is
chaotic [121] and, given the proper conditions, a trajectory can break up into a spray of
points [122], or, if dissipative, can be drawn onto a fractal attractor [123]. This state of affairs
was summarized by Sir James Lighthill, a leader in applied mathematics, who in 1986,
when he was the president of the International Union of Theoretical and Applied Mechanics,
presented a paper to the Royal Society entitled The recently recognized failure of predictability in
Newtonian dynamics [124]: (It is probably worth pointing out here that a reviewer suggested
deleting this quote from from this paper. My reluctance to do this stems from the fact
that the strength of science is, in part, a consequence of the willingness to acknowledge
mistakes made being a necessary part of the process. The more fundmental the error, say
one of interpretation, the more value associated with its uncovering. Few scientists today
remember the luminiferous aether or spontaneous generation, but might recall phlogiston theory
or even more recently cold fusion. These conceptual errors stood as barriers to understanding
the true nature of the phenomenon being misunderstood and their removal was necessary
in order to move forward using the knowledge gained from those mistakes).

We are all deeply conscious today that the enthusiasm of our fore bears for the
marvelous achievements of Newtonian mechanics lead them to make generaliza-
tions in this area of predictability which, indeed, we may have generally tended
to believe before 1960, but which we now recognize were false. We collectively
wish to apologize for having misled the general educated public by spreading
ideas about determinism of systems satisfying Newton’s laws of motion that,
after 1960, were to be proved incorrect. . .

In this section, we consider how the FC can bridge the gap between the multifractality
of empirical time series and the equations of motion required to described the behavior of
the phenomena generating the multifractal time series. The familiar phenomena of motor
mobility by walking, exchanging CO2 for oxygen to fuel the body through breathing, and
circulating the blood to supply oxygen and nutrients to the body by the heart pumping
blood, share a common feature having to do with the variability in the frequency of their
cycles. Heart rate variability (HRV), breath rate variability (BRV), and stride rate variability
(SRV) each provides a distinct measure of the statistical changes in a nearly cyclic underling
process. Many of the physiologic details leading to the inescapable conclusion that each of
these processes is multifractal in nature have been recorded [37]. In fact, multifractal time
series appear to be ubiquitous in biomedical phenomena.

In prequel II, we reviewed the evidence for the need to describe the dynamics of fractal
phenomena by the FC with constant fractional-order (FO) derivatives. Herein, we use the
FC with FO derivatives that are stochastic to establish the required equations of motion
for multifractal phenomena. We use datasets of rate variability of physiologic processes to
securely establish the need for such FC equations of motion to describe the dynamics of
complex physiologic phenomena.

4.1. Nexus with Multifractality

The nexus of multifractality and the FC can be established using a number of modeling
strategies. A rather broad review of the fractal time series that arise in physiology and
medicine was presented in prequel I. The mathematical properties of these empirical fractal
time series were used to establish that the IC was not sufficient to model these phenomena,
because the evolution of fractal functions over time do not have traditional integer-order
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equations of motion. A brief introduction to the FC was provided therein in anticipation of
the more extended discussion of the formalism in prequel II.

The utility of the FC in determining the properties of physiological networks was
taken up in prequel II, including a summary of how to solve certain fractional equations of
motion, and which will not be reproduced here. However, we did replace integer-order
(IO) growth models, both linear and non-linear, with FC generalizations and discussed the
network properties entailed for each kind of generalization. Two distinct arguments were
made in making these replacements; one based on the network effect and the other on the
time subordination method. These were followed by a third generalization in making the
fractional-order index of the time derivative itself α a function of time α(t).

The primary focus of the time dependence of the non-integer index discussed in
prequel II was to demonstrate the utility of a time-varying order parameter α(t) using a
previously fitted tumor growth dataset. This was achieved using an exploratory approach
and captured the 14 data point history of a tumor by the time-dependent value of the order
of the time derivative using Taylor series [125]. We do not reproduce those results here but
instead take the next logical step and consider two additional kinds of variability in the
derivative parameter by considering the effect of the order of the derivative being either a
random or a stochastic variable.

The latter equations address fractional Langevin equations (FLE) and introduce the
need for a fractional probability calculus (FPC).

4.1.1. Fractional Linear Langevin Equation (FLLE)

The proposed fractional linear Langevin equation (FLLE) can be cast in the form:

Dα
t [X(t)]− t−α

Γ(1− α)
X(0) = −λαX(t) + η(t), (14)

where η(t) is a zero-centered random force, Dα
t [·] is the Riemann–Liouville fractional

derivative of order α, the range of the fractional index is 0 < α ≤ 1, the constant λα > 0
has the dimensions of 1/time, and X(t) is the dynamical variable of interest. Finally, the
quantity Γ(·) is the Euler integral of the second kind and is called the gamma function [126].
Note that the dynamic variable does not need to be continuous at the origin, nor does it
need to be differentiable. The solution to this equation is obtaind in prequel II:

X(t) = Eα(−(λt)α) +

t∫
0

dt′
(
t− t′

)α−1Eα,α

(
−
[
λ
(
t− t′

)]α
)

η
(
t′
)
, (15)

where for ease of notation we choose X(0) = 1. Averaging this solution over the fluctuations
in the additive random force, indicated by a suitably subscripted bracket, yields:

〈X(t)〉η = Eα(−(λt)α). (16)

The solution to the fractional-order equation with no random force was first obtained by
the mathematician Mittag-Leffler at the turn of the 20th century in terms of the series which
now bears his name:

Eα(z) =
∞

∑
n=0

znα

Γ(nα + 1)
, (17)

the Mittag-Leffler function (MLF).
This FLLE was used to model the influence of a network on the probability that a

single element in the network will change its decision (state) [60]. As mentioned, this was
termed the network effect and describes how a network consisting of N interacting element
influences the behavior of a single element. In the decision-making model (DMM), the
network is described by 2N integer-order dynamic equations for the probability of each of
the network members being in one of two states. These 2N equations were transformed
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into one fractional-order (FO) equation of motion for a typical individual in the network.
The solution given by Equation (16) is shown in Figure 2 of prequel II to coincide with the
numerical calculation of the survival probability of a single element in a 10,000 element
network. Here, the MLF is the homogenous solution and is also the Greens function
weighing the contribution of each fluctuation to the nuanced changes in opinion of an
individual element due to the influence of the other 9999 members of the network.

In this case, the non-integer order of the fractional derivative α is obtained as a
fitting parameter to the results obtained by large-scale numerical calculations. However,
we do not have, as yet, a theory explicitly relating α to the detailed properties of the
numerical calculation, which is to say, we do not see the connection between the properties
of the network and the fractional rate equation for the individual member of the network.
However, we do see that the FC equation is a consequence of the critical dynamics of
the network and is like the mathematical theorem of Carlman that tells us that a finite
dimensional non-linear dynamical system has an equivalent infinite dimensional linear
system description, but does not indicate how to construct the latter representation of the
former. The network effect we discovered is like that and remains an intriguing formal
result supported by numerical experiment [60].

4.1.2. Stochastic Fractional Index

An even simpler FLE can provide us with insight into the influence of another kind of
FO. Consider the dissipation-free form of the FLLE, i.e., λ = 0, whose formal solution is:

X(t)− X0 =

t∫
0

Kα(t− t′)η
(
t′
)
dt′, (18)

where Kα(t) is the kernel corresponding to the dynamic operator in Equation (14):

Kα(t) =
tα−1

Γ(1− α)
, (19)

which can be interpreted as a filter and X0 ≡ X(0). The simplest FLE (SFLE) to which
Equation (18) is the formal solution could be obtained from the construction of the FLE for
a free particle coupled to a fractal heat bath when the inertial term is negligible [127].

As written, the solution to the SFLE is a monofractal if the statistics of the random force
are specified to be monofractal. What makes the solution X(t) a multifractal time series is
choosing the index of the fractional operator to also be a random variable. Generally, if the
additive random force η(t) is chosen to have fractal Gaussian statistics, it scales as:

η(λt) = λhη(t), (20)

which, for a Wiener process, has h = 1/2 [44,51]. The kernel given by Equation (19)
scales as:

Kα(λt) = λα−1Kα(t), (21)

consequently, the solution to the SFLE scales as:

∆X(λt) ≡ X(λt)− X0 = λh+α∆X(t). (22)

The time dependence of the second moment is given by
〈
∆X(t)2〉

ξ
∝ t2H , which is

obtained by inserting λ = 1/t into Equation (22) and it agrees with the second moment
obtained for anomalous diffusion if we identify H = h + α with the Hurst exponent.
If the stochastic force is that of classical diffusion, that is, h = 1/2 and 1 ≥ H > 0,
then the interval of values for the fractional operator index in Equation (18) is given by
−1/2 ≤ α ≤ 1/2. Consequently, the process described by the SFLE can cover the full range
of values 1 ≥ H > 0.
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Multifractals: As reviewed in [65], the interval 1/2 ≥ H > 0 has in the past been
interpreted in terms of an anti-persistent random walk. An anti-persistent explanation of
time series was made by Peng et al. [10] for the differences in time intervals between heart
beats, now called HRV. They interpreted their time series, as did a number of subsequent
investigators, in terms of random walks with H < 1/2. In this model, the anti-persistent
behavior lead to an avoidance of the extremes, so that the time intervals became neither
too large nor too small. However, from these results, it is clear that the SFLE as a model
for the dynamics provides an equivalent description of the underlying dynamics. The
scaling behavior alone cannot distinguish between these two models. What is needed is a
complete statistical distribution and not just the time dependence (scaling behavior) of the
central moments.

There are a number of ways to test the interpretation of the scaling behavior observed
in Equation (18). For example, Podlubny [128] showed that when reality manifests the
dynamics of a FO, rather than an IO, differential equation, attempting to control it with IO
feedback leads to extremely slow convergence, if not divergence, of the network output.
On the other hand, using a FO feedback, with the indices appropriately chosen, leads to
rapid convergence of the output to the desired signal. Thus, we anticipate that dynamic
physiologic networks with scaling properties, because they can be described by fractional
dynamics, would have FO controls.

The solution to the SFLE is monofractal if the additive fluctuations are monofractal.
One way to make the solution to the SFLE a multifractal when the fluctuations of the
random force are monofractal is to assume that the parameter θ = 1− α in the kernel given
by Equation (21) is a random variable. To construct the traditional measures of multifractal
statistical processes, we calculate the qth moment of the solution Equation (22) by averaging
over both the random force η(t) and the random parameter θ = 1− α to obtain [78]:〈

|∆X(λt)|q
〉

η,θ =
〈
|∆X(t)|q

〉
η
λq(H+1)

〈
λ−qθ

〉
θ

,

=
〈
|∆X(t)|q

〉
η
λρ(q). (23)

Consequently, when the exponent in the memory kernel in the SFLE is random, the solution
consists of the product of two random quantities, giving rise to a multifractal process. To
determine the structure function exponent ρ(q), we make an assumption about the statistics
of θ since we can always write the θ average as:〈

λ−qθ
〉

θ
=
〈

e−qZ(ln λ)
〉

θ
,

where Z(ln λ) is the random variable. The expression on the RHS of this equality is the
Laplace transform of the PDF.

We assume the random variable has Lévy statistics so that the PDF is given by:

P(z, s) =
∞∫
−∞

eikze−bs|k|β dk
2π

,

with 0 < β ≤ 2 and s = ln λ. Inserting the PDF into the θ average and integrating over z
yield the delta function δ(k + iq), which integrating over k in the Fourier transform yields:〈

λ−qθ
〉

θ
= e−b ln λ|q|β = λ−b|q|β ,

so that the structure function exponent extracted from Equation (23) can be written:

ρ(q) = (q + 1)H − b|q|β. (24)
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This expression produces a q-order structure function exponent ρ(q) determined by the
scaling relation in Equation (23). Note that if the structure function exponent is linear in
q, the underlying process is monofractal, whereas, when it is non-linear in q, the process
is multifractal. The structure function exponent has been related to the mass exponent
τ(q) [129]:

ρ(q) = 2− τ(q). (25)

Consequently, we have ρ(0) = H so that τ(0) = 2 − H, as it should because of the
well-known relation between the fractal dimension D0 and the global Hurst exponent
D0 = 2− H.

Note that for an infinitely long time series, the Hölder exponent h and the Hurst
exponent H are identical; however, for a time series of finite length, H and h are not
necessarily the same. We stress that the fractal dimension and the Hölder exponent are
local quantities, whereas the Hurst exponent is a global quantity, consequently the relation
D0 = 2− H is only true for an infinitely long time series. The multifractal spectrum f (h)
describes how the local Hölder (fractal) exponents contribute to such time series.

We can see from Equation (24) that the solution to the SFLE corresponds to a monofrac-
tal process only in the case that β = 1 and q > 0, otherwise the process is multifractal [50].

This approach has been applied to BRV, HRV, and SRV time series datasets and
interpreted for the statistics of the FO exponent given by Lévy statistics. The singularity
spectrum as a function of the positive moments shown by the points in Figure 8 for
human gait data. The solid curve in this figure is obtained from the analytic form of the
multifractality spectrum:

f (q) = 2− H − (β− 1)bqβ, (26)

which was determined by substituting Equation (24) into the equation for the singularity
spectrum given by Equation (12), through the relationship between exponents Equation (25).
It is clear from Figure 8 that the data are well fit by the solution to the SFLE with the
parameter values β = 1.45 and b = 0.1, obtained through a mean square fit of Equation (26)
to the SRV time series datasets.

Figure 8. The singularity spectrum for q > 0 obtained through the numerical fit to the human gait
data. The curve is the best mean square fit of Equation (26) to the average over the ten data sets [10]
and which determine the two parameters b = 0.1 and β = 1.45. From [78] with permission.

As mentioned earlier, the multifractal spectrum for the middle CBF velocity time
series for a healthy control group using the solution to a linear Langevin equation [130],
was compared with a group of migraneurs as depicted therein in Figure 11. We note here
that β = 2 in the fit to the spectrum using Equation (26), indicating that the statistics of
the fractional-order derivative α in this case is Gaussian, that being the only member of
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the Lévy PDFs that has a finite variance. An alternative way to express the singularity
spectrum the CBE is:

f (h) = f (H)− b
4
(h− H)2

where we observe that the fractal dimension is given by 2− H, which is the value of the
spectral function at h = H. The width of the multifractal distribution for the CBF velocity
of the migraneurs is constricted by a factor of three from 0.038 averaged over the control
group to 0.013 averaged over the group of migraineurs, suggesting that the underlying
process has lost a great deal of flexibility. However, both of these multifractal spectra are
centered at h = 0.81 so that the average scaling behavior between the two groups remains
the same.

It is the case that disease—here, that is migraine—may be associated with the loss of
complexity [131]. Complexity is lost along with flexibility in proportion to the narrowing
of the spectral width, and consequently the loss of adaptability, thereby suppressing
the normal healthy multifractality of blood flow within the brain. More generally, the
narrowing of the multifractal spectrum indicates a loss of adaptability of the associated
physiologic network and therefore there is an attendant reduction in the network’s ability
to carry out its function. This may also suggest the reason for the associated headache,
since pain is often the biomedical indicator of a network’s inability to preform its function.

5. Fractional Probability Calculus

It is useful here to recall the two paths that lead many if not most physical scientists to
an understanding of uncertainty in the dynamics of physical processes, which is nowhere
better contrasted than in the distinct treatments of Brownian motion by Einstein [132] and
Langevin [133]. Each investigator explained the uncertain influence of the environment on
the movement of the Brownian particle in their own way; Einstein used the physical notion
of probability in phase space in a thermodynamic analysis, whereas Langevin used the
idea of random forces resulting from the dynamic equations. However, both were satisfied
that the Brownian particle moved according to Newton’s force law, but they differed in the
manner of taking into account the thermal motion of the environment on the Brownian
particle’s motion.

In prequel II, the IO force laws were replaced with FO force laws based on empirical
evidence. For example, this replacement was proposed when an ostensibly deterministic
linear process of interest yielded experimental results that systematically deviated from
any linear Newtonian model of the phenomenon. When such a process was described by a
fractal rate equation (FRE) as, for example, given by the generalization of Newton’s law of
cooling by Mondol et al. [134], the Newtonian IO model was abandoned in favor of the
FO model.

When the process of interest is a monofractal, its IO derivative diverges, but a FO
derivative of that same function is well defined, with only a shift in the fractal dimension
resulting [135]. Consequently, we argued that the equation of motion for a process described
by a fractal function must contain FO derivatives and the solution to such equations are
formally expressed in terms of FO integrals.

5.1. Fractal Diffusion

The traditional discussion of the LE typically begins with Newton’s force law for a
system of interest coupled to the environment. The description developed in any of a
number of excellent texts on statistical mechanics [136,137] expresses the coupling of a
system to its environment through a deterministic force and a random force. The first
and second moments of the dynamic variables in the LE are then used to construct the
Fokker–Planck equation (FPE) for the corresponding PDF. The simplest FPE is that for a
freely diffusing particle:

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2 , (27)
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where the dependence of the PDF on the initial state is not explicitly indicated, x is the
dynamic variable and the diffusion coefficient D is related to the mean-square strength of
the random force. The corresponding LE given by:

dX(t)
dt

= η(t), (28)

and η(t) is a memoryless Wiener process. The Gaussian PDF is obtained by solving the
FPE for a delta function in space initial condition, or by inserting the time integral over the
fluctuations in the LE into the characteristic function and using the properties of the Wiener
process to obtain the PDF. All of this has been known since the turn of the last century.
Knowledge of a more recent vintage has to do with replacing the LE Equation (28) with the
FLLE and the solution to which is given by Equation (18).

Consider a random walk (RW) process to model the LE given by Equation (28). The
properties of the RW determine the statistics of the random force along with its correlation
properties. We select η(t) to be a dichtomous unit step process such that

〈
η(t)2

〉
= 1,

whose two-point autocorrelation function has the stationary form:

Φη(t− t′) =
〈
η(t)η

(
t′
)〉

. (29)

The probability that the dynamic variable X(t) has the value in the phase space inter-
val (x, x + dx) at time t is P(x, t)dx, and its evolution is determined by the diffusion
equation [130,138]:

∂P(x, t)
∂t

=

t∫
0

dt′Φη(t− t′)D
∂2P(x, t′)

∂x2 . (30)

Note that here the diffusion equation is a convolution in time and that the autocorrelation
function plays the role of a memory kernel.

Lévy statistics: The theory of the influence of long-time memory on stochastic phe-
nomena was developed to explain diffusion in which the second moment of the diffusion
variable does not increase linearly in time, that is, the diffusion is anomalous. Following
West et al. [130], this long-time memory is captured by assuming an IPL form for the
autocorrelation function:

lim
t→∞

Φη(t) ∝
1
tγ

, (31)

with 0 ≤ γ ≤ 1 and from the second moment yields for the Hurst exponent H = 1− γ/2,
from which the discussions for Brownian motion follow.

Under the assumption that the RW is constrained to walkers whose steps have a
constant finite speed, say unity, such that the two positions x and x′ are related through the
two times t and t′ :

P(x, t− t′) =
1
2

∞∫
−∞

δ
(∣∣x− x′

∣∣− t′
)

P(x′, t)dx′ (32)

where the Dirac delta function δ(·) confines the step size due to the finite speed of a step.
Allegrini et al. [138] show that this expression enables the rewriting of Equation (30)
without approximation as:

∂P(x, t)
∂t

= b
∞∫
−∞

dx′P(x′, t)

(∆ + |x− x′|)γ+2 (33)

where b and ∆ are each a collection of known constants and we have used Φη(t) ∝
(∆ + t)−γ. Making the plausible assumption that the short-range region |x− x′| ≈ ∆ does
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not contribute to the long-time evolution of the PDF, Equation (33) becomes identical to the
fractional diffusion equation for the PDF:

∂P(x, t)
∂t

= Dβ∂
β

|x|[P(x, t)], (34)

where β = γ + 1 ≤ 2 and the operator ∂
β

|x|[·] is the Riesz–Feller fractional derivative [139].
The characteristic function is given by the Fourier transform of the PDF:

φ(k, t) = P̃(k, t) ≡ F{P(x, t); k}, (35)

such that [7]:
F
{

∂
β

|x|[P(x, t)]; k
}
= −|k|βφ(k, t),

and the Fourier transform of Equation (34) becomes a rate equation for the characteris-
tic function:

∂φ(k, t)
∂t

= −Dβ|k|βφ(k, t). (36)

The inverse Fourier transform of the solution to the rate equation with the initial condition
φ(k, t = 0) = 1 therefore yields the Lévy stable PDF:

P(x, t) = F−1
{

e−Dβt|k|β ; x
}

, (37)

and does not have a simple analytic form except for a few values of the Lévy index among
which are the Gaussian for β = 2 and the Cauchy for β = 1. Note that the Lévy PDF
satisfies the scaling relation given by Equation (6), where the scaling index is δ = 1/β and
the function F(·) is a known integral in this case.

Fractional in time and space: Memory can be introduced into the FPE by means of
a subordination process whereby two times are introduced into the process and one is
subordinated to the other. The concept of using different clocks to measure different aspects
of interacting complex dynamic networks dates back to the middle of the 19th century. It
was then proposed that the two clocks defined subjective and objective times and were
used to justify the empirical Weber–Fechner law [140]. Due to the present-day availability
of time resolved datasets, life science investigators have begun adopting the notion of
multiple clocks to distinguish between cell-specific and organ-specific clocks in biology,
which is analogous to person-specific and group-specific clocks in sociology. While the
global activity of an organ, such as the brain or the heart, might be characterized by quite
regular behaviors, the activity of single neurons or pacemaker cells demonstrate statistical
intermittency resulting in global 1/f variability.

In this way, interpreting the time in Equation (27) as the intrinsic time of the system of
interest and subordinating that time to the clock time of the environment τ yields [7]:

∂α
τ [P(x, τ)] = D

∂2P(x, τ)

∂x2 , (38)

which was called fractional time FPE. The fractional time derivative ∂α
τ [·] is of the Caputo

type, which, for the purposes here, we define in terms of its Laplace transform:

L{∂α
τ [P(x, τ)]; s} = sα P̂(x, s)− sα−1P0(x), (39)

where the Laplace transform of g(t) is ĝ(s) and the initial state of the PDF is given by the
Dirac delta function: P0(x) = P(x, t = 0) = δ(x).

Of course introducing subordination into the simplest FPE was an arbitrary choice.
It is probably more reasonable to consider subordination in a network where spatial
heterogeneity is also present and for that you need a fractional kinetic theory (FKT).
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Zaslavsky [141] considered chaotic dynamics to be the bridge between deterministic and
stochastic dynamic systems, and developed the mathematics for the fractional kinetics
corresponding to chaotic dynamics intermediate between completely regular (integrable)
and completely random networks. The kinetics are “strange” in that the low-order moments
of the PDF can be infinite and the Onsager Principle is violated because it takes infinitely
long for fluctuations to relax back to the equilibrium state. West and Grigolini [130] present
an alternative to the fractional kinetic equation (FKE) developed by Zaslavsky [141].

Zaslavsky’s arguments [141] lead to a FKT resulting from the underlying dynamics
being chaotic and consequently to the dynamic trajectories being fractal. The historical
kinetic theory argument was generalized by taking into account the fractal nature of the set
generated by the ensemble of chaotic trajectories initiated by a non-integrable Hamiltonian.
Inserting the time limit for a fractional time differential into the chain condition for a
stationary PDF yields:

∂α
t [P(x, t)] = lim

∆t→0

1
∆tα

∫
dy[W(x, y; ∆t)− δ(x− y)]P(y; t), (40)

where W(x, y; ∆t) is the stationary PDF of having a particle at position x a time ∆t after
it was at the position y. This expression can be simplified by introducing the generalized
Taylor expansion:

W(x, y; ∆t) = δ(x− y) + A(y; ∆t)δ(β)(x− y) + · · ·, (41)

for a set characterized by the fractal dimension 0 < β ≤ 2. (Note that this is only a sketch
of the much more detailed arguments presented by Zaslavsky. The purpose here is to
show the connection between the FC and multifractality). Inserting this expansion into
Equation (40) simplifies the generalized chain condition by introducing the quantity:

A(x) ≡ lim
∆t→0

A(x; ∆t)
∆tα

= lim
∆t→0

∫
dy
|x− y|β

∆tα
W(x, y; ∆t), (42)

to obtain the fractional Fokker–Planck equation (FFPE):

∂α
t [P(x, t)] = ∂

β

|x|[A(x)P(x, t)]. (43)

The FFPE has fractional indices in the domains 0 < α ≤ 1, and 1 ≤ β ≤ 2, the fractional time
derivative is of the Caputo form, and the fractional spatial derivative is of the symmetric
Riesz–Feller form.

Zaslavsky [142] explained that the limit in Equation (42) is the result of the fractal
dimensionality of the space–time set, along which the state of the system is meandering in
the ∆t→ 0 limit. In this all too brief discussion of Zaslavsky’s contribution to a FKT, we
should mention the work that he along with collaborators did to visualize the underlying
landscape produced by averaging over chaotic trajectories, which enabled them to describe
the formal structure uncovered by extensive numerical calculations. They discuss the
idea of a “stochastic web” characterizing the dynamics in which “weak” chaotic orbits,
generated by Hamiltionian systems, are concentrated on small measure domains of phase
space thereby constituting a “web”. This argument can be recast as a random walk which
we do in the next section.

They note that transport through stochastic webs could produce non-Gaussian, i.e.,
intrinsically anomalous, diffusion. We do not reproduce the mathematical details from the
open literature and instead jump to the result for the one-dimensional fractional kinetic
equation (FKE) [130,142] for one of the simplest dynamical processes described by the
FFPE, thereby reducing Equation (43) to:

∂α
t [P(x, t)] = Dβ∂

β

|x|[P(x, t)]. (44)
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This is one of the simplest forms of anomalous diffusion, first discussed in terms of the
continuous time random walk (CTRW) by Montroll and Scher [143].

The solution to this fractional diffusion equation is readily obtained by taking its
combined Fourier–Laplace transform to obtain from the Fourier–Laplace transform of
the FFPE:

uαP∗(k, u)− uα−1P̃(k, t = 0) = −Dβ|k|βP∗(k, u), (45)

where the astrix denotes the double transform of the PDF. This equation is simplified for
the initial value problem P(x, t = 0) = δ(x) =⇒ P̃(k, t = 0) = 1, to the form:

P∗(k, u) =
uα−1

uα + Dβ|k|β
. (46)

The inverse Fourier–Laplace transform of this expression yields the solution to the initial
value problem for the PDF.

Metzler and Klafter [144] derived the FFPE using the CTRW formalism of Montroll
and Weiss [145] and reviewed the potential functions for various combinations of indices. It
was also derived using subordination theory by West [139]. The inverse Laplace transform
of P∗(k, u) yields the characteristic function:

P̃(k, t) = Eα

(
−Dβ|k|βtα

)
(47)

expressed in terms of the MLF given by Equation (17). The inverse Fourier transform of the
characteristic function yields the PDF solution:

P(x, t) = F−1
[

Eα

(
−Dβ|k|βtα

)
; x
]
. (48)

The simple substitution k′ = ktδ into Equation (48), with δ = α/β, after some algebra
reduces the formal solution to:

P(x, t) =
1
tδ
F−1

[
Eα

(
−Dβ

∣∣k′∣∣β);
x
tδ

]
, (49)

or in a more familiar scaling form given by Equation (6), where the new function is defined
from the inverse Fourier transform in Equation (49). The new function F(·) is analytic in
the scaled variable x/tδ, is properly normalized and can therefore be treated as a PDF. For
a diffusion process with no intrinsic memory, α = 1; in which case, the MLF becomes an
exponential so that for β = 2, the Fourier transform can be carried out and this function
becomes a Gaussian with δ = 1/2. When α = 1 and 1/2 ≤ β ≤ 2, the result is a stable Lévy
process [146,147] with the Lévy index given by 0 < 1/δ ≤ 2. However, for general chaotic
systems, there is a broad class of distributions for which the functional form is neither
Gaussian nor Lévy.

Mainardi et al. [148] obtained a variety of other solutions to the FKE in terms of the
properties of the MLF for 0 < α < 1. The inverse Fourier transform of the scaled PDF
solution for β = 2 asymptotically relaxes as the IPL in time with an IPL index δ = α/2.

5.2. Fractal Random Walks

The web connectivity discussed by Zaslavsky is made up of traps where homoclinic
points have dissolved into sprays of local points that locally entrap trajectories for sojourn
times of intermittent length described by an IPL of waiting times. Once it has exited a trap,
the trajectory undergoes a long-range flight having self-similar properties. This argument
can be realized by replacing the complete simulation of the Hamltoian dynamics involving
turnstiles and cantori [149] with a RW containing the approriate features. This can be
performed using a RW determined by a Weierstrass (W) function to construct a Weierstrass
random walk (WRW) for a discrete PDF with sites on a one-dimensional lattice indexed by
x [150]:
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p(x) =
∞

∑
n=0

1
an [δx,bn + δx,−bn ]. (50)

As the WRW process unfolds, the set of sites visited mimics the influence of localized
chaotic islands, interspersed by gaps, nested within clusters of clusters over ever-increasing
spatial scales. The WRW generates a hierarchy of traps that are statistically self-similar, as
suggested by the RW process depicted in Figure 9. The parameter a determines the number
of subclusters within a cluster and the parameter b determines the scale size between
clusters subject to the condition b2 > a, which ensures that the second moment diverges.

Figure 9. The landing sites for the WRW are connected by jumps and the islands of clusters discussed
in the text are readily observed. From [150] with permission.

The discrete Fourier transform of Equation (50) yields the characteristic function which
has the form of a Weierstrss function (WF). The solution to the WRW can be determined an-
alytically using the scaling properties of the WF to apply renormalzation group theory. The
complete characteristic function has a homogeous φh(k) and a singular φs(k) part; the for-
mer is analytic in the neighborhood of k = 0 and the latter is singular in this neighborhood.
We obtain the scaling relation for the singular part of the characteristic function:

φs(bk) = aφs(k), (51)

which has the renormalization group solution:

φs(k) =
∞

∑
n=−∞

An|k|Hn , (52)

with the complex power law index:

Hn =
ln a
ln b

+ in
2π

ln b
. (53)

The analytic forms of the Fourier coefficients in Equation (52) are given in [150].
They [150] establish that the dominant behavior of the WRW is determined by the

lowest-order term in Equation (52), and the n = 0 term in the series: φs(k) ≈ A0|k|δ;
δ = ln a/ ln b, whose inverse Fourier transform is determined by a Tauberian theorem to be
the IPL:
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p(x) =
K(δ)

|x|δ+1

and K(δ) is a known function of δ. Thus, the singular part of the WRW has an IPL
stepping PDF and this dominant behavior intuitively justifies ignoring all the other terms
in the series.

We can now write for the asymptotic time-dependent form of the discrete PDF resulting
from the WRW process:

P(x, n + 1) = ∑
x′

p(x− x′)P(x′, n)

= ∑
x′

K(δ)

|x− x′|δ+1 P(x′, n) (54)

in which each step n in WRW process occurs at equal time intervals. This equation was
analyzed by Gillis and Weiss [151], who determined that its solution to a Lévy PDF, thereby
relating the RG solution of the WRW to the discussion of the FDE.

Stable Lévy processes can therefore arise from the “weak” chaotic nature of the phase
space trajectories. This is, in part, a consequence of the asymptotic behavior k → 0
corresponding to the asymptotic x → ∞, which is of significance in determining the
transport behavior of the anomalous diffusion process.

6. Discussion and Conclusions

One difficulty encountered in writing a sequence of interrelated essays is the challenge
of restricting the discussion and conclusions to the narrow perspective of a single essay. In
prequel II, it was found that rather than attempting a detailed summary of what had been
presented therein, the general results obtained were instead itemized and their significance
articulated. This strategy turned out to be successful and we apply it here as well.

Let us begin by identifying the most important points covered in the two prequels and
touched on herein as well:

(1). The simple analytic functions of the IC have been found to be insufficient to describe
the time dependence of most physiology networks. The notion of fractality was
introduced to capture the true complexity of such biomedical network time series
through fractal geometry, fractal statistics and fractal dynamics.

(2). A fractal function diverges when an integer-order derivative is taken, so that such a
fractal function cannot be the solution to a Newtonian equation of motion. However,
when a fractional-order derivative of a fractal function is taken, it results in a new
fractal function. Consequently, a time-dependent fractal process can have an equation
of motion that is a FDE.

(3). The network effect is the influence exerted by a complex dynamic network on each
member of the network. When the network dynamics is a member of the Ising
universality class, the interconnected set of IDEs for the probability of an individual
being in one of two states during its non-linear interaction with the other members of
the network can be replaced by an equivalent linear FDE and solved using the FC.

(4). Even the simplest FDEs has a built-in memory resulting from the hidden interaction
of the observable with its environment, which is manifest in the non-integer order of
the time derivative, as in the network effect.

(5). The solution to a linear FRE is a MLF for α < 1 and becomes an exponential function
for α = 1. The MLF is the workhorse of the FC just as the exponential is for the IC.

(6). A truly complex stochastic dynamic process can have more than one fractal dimension.
A multifractal process is characterized by a uni-modal spectrum f (h) peaked at the
value of the Hurst exponent h = H.

These points have been developed further in the present essay whose most important
points are as follows:
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(7). The flow of information due to interaction of two complex networks each generating a
multifractal time series is from the network with the broader to that with the narrower
multifractal spectrum. This is summarized in the interpretation of the efficiency of
information transfer using the CCC.

(8). FREs with random fractional derivatives are shown to generate multifractal processes
and therefore can be used to model the dynamics of both healthy and pathological
physiologic networks.

(9). Multifractality emerges from three distinct sources: (1) the introduction of random
fractional derivatives into the dynamics of complex networks; (2) a FKT developed to
define the evolution of PDF over fractional trajectories; (3) fractional random walks
with diverging central moments.

(10). A simple FDE that has a built-in non-locality in space is the FSDE. The solution to this
fractional diffusion equation in space is a Lévy PDF, whose index is given by the order
of the spatial fractional derivative. Yet another fractional diffusion equation differs in
having a built-in memory and is the FTDE. The solution to this fractional diffusion
equation in time is expressed in terms of the inverse Fourier transform of a MLF.

(11). The health of a physiologic network is manifest by the width of the multifractal
spectrum of the time series generated by that network. Experiments include but are
not limited to CBF, HRV, BRV and SRV, which also show that pathologies in each of
the underlying networks narrow the approprate multifractal spectrum.

The empirical evidence supports the interpretion that physiologiv time series are
described by fractal stochastic networks. Moreover, the fractal nature of these time series
is not constant but often changes with the vagaries of the interactions of one network with
another, since other networks are the environment in a network of networks. In addition,
there is the SOTC produced by a network’s internal dynamics. Consequently, physiologic
phenomena are nearly always multifractal and the multifractal spectral width is a measure
of the state of health of that network.

A remarkable aspect of multifractality is that it is not just a consequence of the critical
dynamics of complex networks, inwhich SOTC would be a reasonable driver for such
behavior. The three-body problem and its subsequent generalization to chaos theory along
with the limited predictability of non-linear dynamics systems hold the key to deciphering
the information contained in physiologic time series. Nature uses multifractality to adapt
to the breakdown of classical dynamics into chaos, resulting in fractal trajectories to go
a step beyond what Taleb called ’antifragile’ behavior [152]. The antifragility concept
articulates how things gain from disorder rather than being weakened by it. The enhanced
uncertainty that antifragility promotes in order to become stronger in the face of disruption
and adversity, whether internally or externally produced, is precisely what is measured by
the width of the multifractal spectrum.

The degree of flexibility required to attain and maintain health is part of the stochastic
control process that for generations was interpreted as random noise in physiologic time
series. It seems to the author that rather than being 1/ f noise, the multifractality character
of physiologic time series is nature’s real-time prescription for how to adapt and survive.
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Nomenclature
The following abbreviations are used in this manuscript:

BRV breathrate variability
GLRT generalized linar response theory
CBF cerebral blood flow
HRV heartrate variability
CCC cross correlation cube
IC integer calculus
CE crucial event
IDE integer differential equation
CTRW continuous time random walk
IPL inverse power law
DMM decision-making model
LE Langevin equation
FBM fractional Brownian motion
LRT linear response theory
FC fractional calculus
MLF Mittag-Leffler function
FDE fractional diffusion equaton
PCM principle of compexity management
FFPE fractional Fokker–Planck equation
PDF probability density function
FKE fractional kinetic equaition
RG renormalization group
FKT fractional kinetic theory
RHS right hand side
FLE fractional Langevin equation
RW random walk
FLLE fractional linear Langevin equation
SFLE simplest fractional Langevin equation
FO fractional order
SOC self-organized criticality
FPE Fokker–Planck equation
SOTC self-organized temporal criticality
FPC fractional probability calculus
SRV striderate variability
FRE fractional rate equation
WF Weirstrass function
FTDE fractional time diffusion equation
WRW Weirstrass random walk
FSDE fractional space diffuson equation
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