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Abstract: Quantization for a probability distribution refers to the idea of estimating a given probability
by a discrete probability supported by a finite set. In this article, we consider a probability distribution
generated by an infinite system of affine transformations {Sij} on R2 with associated probabilities
{pij} such that pij > 0 for all i, j ∈ N and ∑∞

i,j=1 pij = 1. For such a probability measure P, the optimal
sets of n-means and the nth quantization error are calculated for every natural number n. It is shown
that the distribution of such a probability measure is the same as that of the direct product of the
Cantor distribution. In addition, it is proved that the quantization dimension D(P) exists and is finite;
whereas, the D(P)-dimensional quantization coefficient does not exist, and the D(P)-dimensional
lower and the upper quantization coefficients lie in the closed interval [ 1

12 , 5
4 ].
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1. Introduction

The quantization problem for probability measures is concerned with approximating a
given measure by discrete measures of finite support in Lr-metrics. This problem has roots
in information theory and engineering technology, in particular in signal processing and
pattern recognition [1,2]. For a Borel probability measure P on Rd, a quantizer is a function
q mapping d-dimensional vectors in the domain Ω ⊂ Rd into a finite set of vectors α ⊂ Rd.
In this case, the error

∫
mina∈α ‖x − a‖2dP(x), where ‖ · ‖ is the Euclidean norm Rd, is

often referred to as the variance, cost, or distortion error for α with respect to the measure P,
and is denoted by V(α) := V(P; α). The value inf{V(P; α) : α ⊂ Rd, card(α) ≤ n} is called
the nth quantization error for the P, and is denoted by Vn := Vn(P). A set α on which this
infimum is attained and contains no more than n points is called an optimal set of n-means.
The elements of an optimal set are called optimal quantizers. It is known that for a Borel
probability measure P if its support contains infinitely many elements and

∫
‖x‖2dP(x) is

finite, then an optimal set of n-means always has exactly n-elements [3–6]. The number
limn→∞

2 log n
− log Vn(P) , if exists, is called the quantization dimension of the measure P, and is

denoted by D(P); likewise, for any s ∈ (0,+∞), the number lim
n→∞

n
2
s Vn(P), if it exists, is

called the s-dimensional quantization coefficient for P.
For a finite set α ⊂ Rd, the Voronoi region generated by a ∈ α, denoted by M(a|α),

is the set of all points in Rd which are closer to a ∈ α than to all other elements in α.
For a probability distribution P on Rd the centroids of the regions M(a|α) are given by
a∗ = 1

P(M(a|α))
∫

M(a|α) xdP. A Voronoi tessellation is called a centroidal Voronoi tessellation
(CVT) if a∗ = a, i.e., if the generators are also the centroids of their own Voronoi regions.
For a Borel probability measure P on Rd, an optimal set of n-means forms a CVT; however,
the converse is not true in general [7,8]. The following fact is known [6,9]:
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Proposition 1. Let α be an optimal set of n-means and a ∈ α. Then,

(i) P(M(a|α)) > 0 and P(∂M(a|α)) = 0,
(ii) a = E(X : X ∈ M(a|α)), where X is a random variable with distribution P,
(iii) P-almost surely the set {M(a|α) : a ∈ α} forms a Voronoi partition of Rd.

Let X = R and consider the probability distribution Pc := 1
2 Pc ◦U−1

1 + 1
2 Pc ◦U−1

2 ,
where U1(x) = 1

3 x and U2(x) = 1
3 x + 2

3 , for all x ∈ R. Because its support is the standard
Cantor set generated by U1 and U2, Pc is called the Cantor distribution. S. Graf and H.
Luschgy determined the optimal sets of n-means and the nth quantization errors for the
Cantor distribution, for all n ≥ 1, completing its quantization program [10]. This result has
been extended to the setting of a nonuniform Cantor distribution by L. Roychowdhury [11].
Analogously, the Cantor dust is generated by the contractive mappings {Si}4

i=1 on R2,
where S1(x1, x2) =

1
3 (x1, x2), S2(x1, x2) =

1
3 (x1, x2) + ( 2

3 , 0), S3(x1, x2) =
1
3 (x1, x2) + (0, 2

3 ),
and S4(x1, x2) = 1

3 (x1, x2) + ( 2
3 , 2

3 ). If P is a Borel probability measure on R2 such that
P = 1

4 P ◦ S−1
1 + 1

4 P ◦ S−1
2 + 1

4 P ◦ S−1
3 + 1

4 P ◦ S−1
4 , then P has support the Cantor dust. For

this measure, D. Çömez and M.K. Roychowdhury determined the optimal sets of n-means
and the nth quantization errors [12]. Let P be a probability measure on R generated by
an infinite collection of similitudes {Sj}∞

j=1, where Sj(x) = 1
3j x + 1− 1

3j−1 for all x ∈ R
and P is given by P = ∑∞

j=1
1
2j P ◦ S−1

j . For this measure, M.K. Roychowdhury determined
the optimal sets of n-means and the nth quantization errors [13], which is an infinite
extension of the result of S. Graf and H. Luschgy in [10]. The quantization dimension for
probability distributions generated by an infinite collection of similitudes was determined
by E. Mihailescu and M.K. Roychowdhury in [14], which is an infinite extension of the
result of S. Graf and H. Luschgy in [15]. In this article, we study extension of the result of
D. Çömez and M.K. Roychowdhury in [12] to the setting of countably infinite affine maps
on R2, which will also complete the program initiated in [14].

Let {S(i,j) : i, j ∈ N} be a collection of countably infinite affine transformations on
R2, where S(i,j)(x1, x2) = (rix1 + 1− ri−1, rjx2 + 1− rj−1), where 0 < r ≤ 1

3 . Clearly, these
affine transformations are all contractive but are not similarity mappings. Associate the
mappings S(i,j) with the probabilities p(i,j) such that p(i,j) = 1

2i+j for all i, j ∈ N, where
N := {1, 2, 3, · · · }. Then, there exists a unique Borel probability measure P on R2 ([16–18],
etc.) such that

P =
∞

∑
i,j=1

p(i,j)P ◦ S−1
(i,j).

The support of such a probability measure lies in the unit square [0, 1]2. We call such a
measure an affine measure on R2, or more specifically, an infinitely generated affine measure
on R2. This article deals with the quantization of this measure P. The arrangement of the
paper is as follows: in Section 2, we discuss the basic definitions and lemmas about the
optimal sets of n-means and the nth quantization errors. The arguments in this section
point out that determining optimal sets of n-means and the nth quantization errors for all
n ≥ 3 and for arbitrary r ∈ (0, 1

3 ) require very intricate and complicated analysis; hence,
for clarity purposes, in the remaining sections the focus will be on the case r = 1

3 . Section 3
is devoted to determining the optimal sets of n-means for n = 2 and n = 3. In Section 4, we
first define a mapping F which enables us to convert the infinitely generated affine measure
P to a finitely generated product measure Pc× Pc, each Pc is the Cantor distribution. Having
this connection between P and Pc; together with the optimal sets of n-means for n = 1, 2, 3,
in Section 5 we will utilize the dynamics of the affine maps to obtain the main results of the
paper: closed formulas to determine the optimal sets of n-means and the corresponding
quantization errors for all n ≥ 4. For clarity of the exposition, we also provide some
examples and figures to illustrate the constructions. Lastly, having closed form for the
quantization errors for each n, we prove the existence of the quantization dimension D(P)
and show that the D(P)-dimensional quantization coefficient for P does not exist (but are
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finite) and the D(P)-dimensional lower and the upper quantization coefficients lie in the
closed interval [ 1

12 , 5
4 ].

The results and the arguments in this article are not straightforward generalizations
of those in [13]; in particular, this is the case for optimal sets. By the nature of the affine
transformations considered in this paper, the optimal sets of order n = k2, k ≥ 1, are the
same as the cross product of optimal sets of order k obtained in [13]; however, the same
cannot be said for other n ≥ 3. Clearly, for n a prime number, optimal sets of n-means
cannot be obtained this way. Furthermore, as will be seen from the main theorem, even
for n = kl, optimal sets of n-means are not the same as the cross product of optimal sets
of k- and l-means in [13]. For example, optimal sets of 2- and 3-means in [13] are { 1

6 , 5
6}

and { 1
6 , 13

18 , 17
18} (or { 1

18 , 5
18 , 5

6}), respectively; hence, the cross product of these sets produce
some of the optimal sets of 6-means. On the other hand, one of the optimal sets of 6-
means is {( 1

18 , 1
6 ), (

5
6 , 1

6 ), (
13
18 , 1

6 ), (
1

18 , 5
6 ), (

13
18 , 5

6 ), (
5
6 , 5

6 )}, which cannot be obtained as the
cross product of optimal sets of 2- and 3-means in [13].

2. Preliminaries

Let P be the affine measure on R2 generated by the affine maps {S(i,j) : i, j ∈ N}
defined above. Consider the alphabet I = N2 = {(i, j) : i, j ∈ N}. By a "string" or a "word"
ω over I , it is meant a finite sequence ω := ω1ω2 · · ·ωk of symbols from the alphabet,
k ≥ 1, where k is called the length of the word ω. A word of length zero is called the
"empty word", and is denoted by ∅. By I∗ we denote the set of all words over the alphabet
I of some finite length k, including the empty word ∅. By |ω|, we denote the length
of a word ω ∈ I∗. For any two words ω := ω1ω2 · · ·ωk and τ := τ1τ2 · · · τ` in I∗, by
ωτ := ω1 · · ·ωkτ1 · · · τ` we mean the word obtained from the concatenation of ω and τ.
For n ≥ 1 and ω = ω1ω2 · · ·ωn ∈ I∗ we define ω− := ω1ω2 · · ·ωn−1. Note that ω− is
the empty word if the length of ω is one. Analogously, by N∗ we denote the set of all
words over the alphabet N, and for any τ ∈ N∗, |τ|, τ−, etc. are defined similarly. Let
ω ∈ Ik, k ≥ 1, be such that ω = (i1, j1)(i2, j2) · · · (ik, jk), then ω(1) and ω(2) will denote
the “coordinate words”; i.e., ω(1) := i1i2 · · · ik and ω(2) := j1 j2 · · · jk. Thus, ω

(1)
|ω| = ik and

ω
(2)
|ω| = jk. These lead us to define the following notations: For ω ∈ I∗, by ω(∅, ∞) it is

meant the set of all words ω−(ω
(1)
|ω|, ω

(2)
|ω| + j) obtained by concatenating the word ω− with

the word (ω
(1)
|ω|, ω

(2)
|ω| + j) for j ∈ N, i.e.,

ω(∅, ∞) := {ω−(ω(1)
|ω|, ω

(2)
|ω| + j) : j ∈ N}.

Similarly, ω(∞, ∅) and ω(∞, ∞) represent the sets

ω(∞, ∅) := {ω−(ω(1)
|ω| + i, ω

(2)
|ω|) : i ∈ N} and ω(∞, ∞) := {ω−(ω(1)

|ω| + i, ω
(2)
|ω| + j) : i, j ∈ N},

respectively. Analogously, for any τ ∈ N∗, by (τ, ∞) it is meant the set (τ, ∞) := {τ + i : i ∈ N},
and (τ, ∅) represents the set (τ, ∅) := {τ}. Thus, if ω = (i1, j1)(i2, j2) · · · (ik, jk)(∞, ∅), then
we write ω(1) := (i1i2 · · · ik, ∞) and ω(2) := j1 j2 · · · jk; if ω = (i1, j1)(i2, j2) · · · (ik, jk) (∅, ∞),
then we write ω(1) := i1i2 · · · ik and ω(2) := (j1 j2 · · · jk, ∞); and if ω = (i1, j1)(i2, j2) · · · (ik, jk)
(∞, ∞), then we write ω(1) := (i1i2 · · · ik, ∞) and ω(2) := (j1 j2 · · · jk, ∞). For ω = ω1ω2 · · ·
ωk ∈ Ik, k ≥ 1, let us write

Sω : = Sω1 ◦ · · · ◦ Sωk , pω := pω1 pω2 · · · pωk and Jω := Sω([0, 1]× [0, 1]).

In particular, S∅ = I, the identity mapping on R2, and J := J∅ = S∅([0, 1]× [0, 1]). Then,
the probability measure P supports the closure of the limit set S , where S =

⋂
k∈N

⋃
ω∈Ik Jω .

The limit set S is called the affine set or infinitely generated affine set. For ω ∈ Ik and
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i, j ∈ N, the rectangles Jω(i,j), into which Jω is split up at the (k + 1)th level are called the
children or the basic rectangles of Jω (see Figure 1). For ω ∈ I∗, we write

Jω(∅,∞) :=
∞
∪

j=1
J
ω−(ω

(1)
|ω| , ω

(2)
|ω|+j)

, Jω(∞,∅) :=
∞
∪

i=1
J
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|)

, Jω(∞,∞) :=
∞
∪

i,j=1
J
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|+j)

;

pω(∅,∞) := P(Jω(∅,∞)) =
∞

∑
j=1

p
ω−(ω

(1)
|ω| , ω

(2)
|ω|+j)

, pω(∞,∅) := P(Jω(∞,∅)) =
∞

∑
i=1

p
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|)

, and

pω(∞,∞) := P(Jω(∞,∞)) =
∞

∑
i,j=1

p
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|+j)

.

Notice that for any ω ∈ I∗, pω(∅,∞) = pω− ∑∞
j=1

1

2
ω
(1)
|ω|+ω

(2)
|ω|+j

= pω− pω|ω| ∑
∞
j=1

1
2j = pω− pω|ω|

= pω; and similarly, pω(∞,∅) = pω(∞,∞) = pω.

...
...

... · · ·

· · ·

· · ·

· · ·

(1,1)

(1,2)

(1,3)

(2,2)

(2,1) (3,1)

(2,3)

(1,1)(1,1)

(1,1)(2,2)
(1,1)(1,2)

(3,2)

(3,3)

(1,2)(1,1)

Figure 1. Basic rectangles of the infinite affine transformations.

Because P =
∞
∑

i,j=1
p(i,j)P ◦ S−1

(i,j), then, by induction, P = ∑
ω∈Ik

pωP ◦ S−1
ω for any k ∈ N.

Hence, we have the following statement:

Lemma 1. Let f : R2 → R+ be Borel measurable and k ∈ N. Then,∫
f dP = ∑

ω∈Ik

pω

∫
f ◦ Sω dP.

Let S(1)
(i,j) and S(2)

(i,j) be the horizontal and vertical components of the transformations

S(i,j). Then, for all (x1, x2) ∈ R2, we have S(1)
(i,j)(x1) = rix1 + 1 − ri−1 and S(2)

(i,j)(x2) =

rjx2 + 1− rj−1; hence, S(1)
(i,j) and S(2)

(i,j) are similarity mappings on R with similarity ratios

s(1)
(i,j) := ri and s(2)

(i,j) := rj, respectively. Similarly, for ω = (i1, j1)(i2, j2) · · · (ik, jk) ∈ Ik, k ≥ 1,

let S(1)
ω and S(2)

ω represent the horizontal and vertical components of the transformation Sω

on R2. Then, S(1)
ω and S(2)

ω are similarity mappings on R with similarity ratios s(1)ω and s(2)ω ,
respectively, such that S(1)

ω = S(1)
(i1,j1)

◦ · · · ◦ S(1)
(ik ,jk)

and S(2)
ω = S(2)

(i1,j1)
◦ · · · ◦ S(2)

(ik ,jk)
. Thus, it

follows that

s(1)ω = s(1)
(i1,j1)

s(1)
(i2,j2)

· · · s(1)
(ik ,jk)

= ri1+i2+···+ik and

s(2)ω = s(2)
(i1,j1)

s(2)
(i2,j2)

· · · s(2)
(ik ,jk)

= rj1+j2+···+jk .
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Moreover, we have P(Jω) = pω = p(i1,j1)p(i2,j2) · · · p(ik ,jk) = 1
2i1+i2+···+ik+j1+j2+···+jk

. Let
X := (X1, X2) be a bivariate random variable with distribution P. Let P1, P2 be the marginal
distributions of P, i.e., P1(A) = P(A × R) = P ◦ π−1

1 (A) for all A ∈ B, and P2(B) =

P(R× B) = P ◦π−1
2 (B) for all B ∈ B, where π1, π2 are projections given by π1(x1, x2) = x1

and π2(x1, x2) = x2 for all (x1, x2) ∈ R2. Here B is the Borel σ-algebra on R. Then, X1

has distribution P1 and X2 has distribution P2. Let S−(1)
(i,j) and S−(2)

(i,j) denote respectively the
inverse images of the horizontal and vertical components of the transformations S(i,j) for
all i, j ∈ N. Then, the following lemma is known [16–18]:

Lemma 2. Let P1 and P2 be the marginal distributions of the probability measure P. Then,

P1 =
∞

∑
i=1

1
2i P1 ◦ S−(1)

(i,j) and P2 =
∞

∑
j=1

1
2j P2 ◦ S−(2)

(i,j) .

Remark 1. Since S(1)
(i,j) and S(2)

(i,j) are similarity mappings, from Lemma 2, one can see that both the
marginal distributions P1 and P2 are self-similar measures on R generated by an infinite collection
of similarities associated with the probability vector ( 1

2 , 1
22 , · · · ).

Lemma 3. Let E(X) and V(X) denote the expectation and the variance of the random variable X.
Then,

E(X) = (E(X1), E(X2)) = (
1
2

,
1
2
) and V := V(X) = E‖X− (

1
2

,
1
2
)‖2 =

1
4

.

Proof. By Lemma 2, P1 = P2 = µ, where µ is a unique Borel probability measure on R such
that

µ =
∞

∑
k=1

1
2k µ ◦ S−(1)

(k,j) =
∞

∑
k=1

1
2k µ ◦ S−(2)

(i,k) .

Hence, X1 = X2, and by ([11], Lemma 2.2), E(X1) = E(X2) =
1
2 , and V(X1) = V(X2) =

1
8 ,

which implies that E‖X− ( 1
2 , 1

2 )‖2 = E(X1− 1
2 )

2 + E(X2− 1
2 )

2 = V(X1) +V(X2) =
1
4 .

Remark 2. By using the standard rule of probability, for any (a, b) ∈ R2, we have E‖X −
(a, b)‖2 = V + ‖(a, b)− ( 1

2 , 1
2 )‖2, which yields that the optimal set of one-mean consists of the

expected value and the corresponding quantization error is the variance V of the random variable X.

Lemma 4. Let ω ∈ I∗. Then,
(i) E(X|X ∈ Jω(∞,∞)) = S

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 , 1

2 ) + (s(1)ω
1
2 (1− r), s(2)ω

1
2 (1− r));

(ii) E(X|X ∈ Jω(∅,∞)) = S
ω−(ω(1)

|ω| , ω
(2)
|ω|+1)

( 1
2 , 1

2 ) + (0, s(2)ω
1
2 (1− r)), and

(iii) E(X|X ∈ Jω(∞,∅)) = S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|)

( 1
2 , 1

2 ) + (s(1)ω
1
2 (1− r), 0).

Proof. First prove (i). Because P(Jω(∞,∞)) = pω(∞,∞) = pω and p
ω−(ω(1)

|ω|+i, ω
(2)
|ω|+j)

= pω
1

2i+j ,

E(X|X ∈ Jω(∞,∞)) = E(X|X ∈
∞
∪

i,j=1
J
ω−(ω(1)

|ω|+i, ω
(2)
|ω|+j)

)

=
1

P(Jω(∞,∞))

∞

∑
i,j=1

p
ω−(ω(1)

|ω|+i, ω
(2)
|ω|+j)

S
ω−(ω(1)

|ω|+i, ω
(2)
|ω|+j)

(
1
2

,
1
2
) =

∞

∑
i,j=1

1
2i+j S

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2

,
1
2
).



Fractal Fract. 2022, 6, 239 6 of 25

Notice that

S
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2

,
1
2
)− S

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2

,
1
2
)

=
(

S(1)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
), S(2)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)
)
−
(

S(1)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
), S(2)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)
)

=
(

S(1)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
), S(2)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(2)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)
)

.

Because

S(1)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
) = s(1)ω−

(
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)
)

= s(1)ω−

(
rω

(1)
|ω|+i

(
1
2
)− rω

(1)
|ω|+i−1 − rω

(1)
|ω|+1

(
1
2
) + rω

(1)
|ω|+1−1

)
= s(1)ω

(1
2

ri − ri−1 − r
2
+ 1
)

= s(1)ω (1− r
2
)(1− ri−1),

and similarly
S(2)

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

( 1
2 )− S(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 ) = s(2)ω (1− r

2 )(1− rj−1).

Hence, we have that
S

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

( 1
2 , 1

2 ) = S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

( 1
2 , 1

2 ) + (s(1)ω (u)), s(2)ω (v)), where u = ( 2−r
2 )

(1− ri−1) and v = ( 2−r
2 )(1− rj−1). Therefore,

E(X|X ∈ Jω(∞,∞)) = S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

(
1
2

,
1
2
) +

∞

∑
i,j=1

1
2i+j (s

(1)
ω (u), s(2)ω (v))

= S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

(
1
2

,
1
2
) + (s(1)ω (

1− r
2

), s(2)ω (
1− r

2
)).

Proofs of (ii) and (iii) are similar.

Note 1. For words β, γ, · · · , δ in I∗, by a(β, γ, · · · , δ) we denote the conditional expectation of
the random variable X given Jβ ∪ Jγ ∪ · · · ∪ Jδ, i.e.,

a(β, γ, · · · , δ) = E(X|X ∈ Jβ ∪ Jγ ∪ · · · ∪ Jδ) =
1

P(Jβ ∪ · · · ∪ Jδ)

∫
Jβ∪···∪Jδ

(x1, x2)dP. (1)

Then, for ω ∈ I∗, 
a(ω) = Sω(E(X)) = Sω(

1
2 , 1

2 ),
a(ω(∅, ∞)) = E(X|X ∈ Jω(∅,∞)),
a(ω(∞, ∅)) = E(X|X ∈ Jω(∞,∅)), and
a(ω(∞, ∞)) = E(X|X ∈ Jω(∞,∞)).

(2)

Thus, by Lemma 4, if ω = (1, 1), then a((1, 1)) = ( r
2 , r

2 ), a((1, 1)(∞, ∅)) = (1 − r
2 , r

2 ),
a((1, 1)(∅, ∞)) = ( r

2 , 1− r
2 ), and a((1, 1)(∞, ∞)) = (1− r

2 , 1− r
2 ). In addition,

a((1, 1), (1, 1)(∞, ∅)) = ( 1
2 , r

2 ),
a((1, 1)(∅, ∞), (1, 1)(∞, ∞)) = ( 1

2 , 1− r
2 ),

a((1, 1), (1, 1)(∅, ∞)) = ( r
2 , 1

2 ),
a((1, 1)(∞, ∅), (1, 1)(∞, ∞)) = (1− r

2 , 1
2 ).

(3)
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Moreover, for ω ∈ Ik, k ≥ 1, it is easy to see that∫
Jω

‖x− (a, b)‖2dP = pω

∫
‖(x1, x2)− (a, b)‖2dP ◦ S−1

ω (4)

= pω

(
s(1)2ω V(X1) + s(2)2ω V(X2) + ‖Sω(

1
2

,
1
2
)− (a, b)‖2

)
,

where s(k)2ω := (s(k)ω )2 for k = 1, 2. The expressions (2) and (4) are useful to obtain the optimal sets
and the corresponding quantization errors with respect to the probability distribution P.

For the rest of the article r = 1
3 is assumed, which is the most important case due to its

intimate connection with the standard Cantor system.

3. Optimal Sets of n-Means for n = 2, 3

In the this section, we determine the optimal sets of two- and three-means, and their
quantization errors.

Lemma 5. Let P be the affine measure on R2 and let ω ∈ I∗. Then,∫
Jω(∞,∞)

‖x− a(ω(∞, ∞))‖2dP =
∫

Jω(∅,∞)

‖x− a(ω(∅, ∞))‖2dP

=
∫

Jω(∞,∅)

‖x− a(ω(∞, ∅))‖2dP =
∫

Jω

‖x− a(ω)‖2dP = pω(s
(1)2
ω + s(2)2ω )

1
8

.

Proof. Let us first prove
∫

Jω(∞,∞)
‖x− a(ω(∞, ∞))‖2dP = pω(s

(1)2
ω + s(2)2ω ) 1

8 . By Lemma 4,

we have∫
Jω(∞,∞)

‖x− a(ω(∞, ∞))‖2dP =
∞

∑
i,j=1

∫
J
ω−(ω

(1)
|ω|+i, ω

(2)
|ω|+j)

‖x− a(ω(∞, ∞))‖2dP (5)

= pω

∞

∑
i,j=1

1
2i+j

∫
‖S

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

(x1, x2)− S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

(
1
2

,
1
2
)

− (s(1)
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

, s(2)
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

)‖2dP.

Note that S
ω−(ω(1)

|ω|+i, ω
(2)
|ω|+j)

(x1, x2) =
(

S(1)

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

(x1), S(2)

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

(x2)
)

and

S
ω−(ω(1)

|ω|+1, ω
(2)
|ω|+1)

( 1
2 , 1

2 ) =
(

S(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 ), S(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 )
)

. Moreover,

we have(
S(1)

ω−(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(x1)− S(1)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)− s(1)

ω−(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

)2

= s(1)2ω−

(
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(x1)− S(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)− s(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

)2

= s(1)2ω−

((
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(x1)− S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)
)
+
(

S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)

− s(1)
(ω

(1)
|ω|+1, ω

(2)
|ω|+1)

))2
.
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Now break the above expression by using the square formula and note the fact that

∫ (
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(x1)− S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)
)2

dP1 = s(1)2
(ω

(1)
|ω|+i, ω

(2)
|ω|+j)

V(X1) = s(1)2
(ω

(1)
|ω| , ω

(2)
|ω|)

1
9i

1
8

, and∫ (
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)
)

dP1 = 0, and after some simplification we have(
S(1)

(ω
(1)
|ω|+i, ω

(2)
|ω|+j)

(
1
2
)− S(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)− s(1)

(ω
(1)
|ω|+1, ω

(2)
|ω|+1)

)2
= s(1)2

(ω
(1)
|ω| , ω

(2)
|ω|)

1
4
(1− 5

3i )
2.

Thus, it follows that∫ (
S(1)

ω−(ω(1)
|ω|+i, ω

(2)
|ω|+j)

(x1)− S(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)− s(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

)2
dP1

= s(1)2ω

( 1
9i

1
8
+

1
4
(1− 5

3i )
2
)

, and similarly∫ (
S(2)

ω−(ω(2)
|ω|+i, ω

(2)
|ω|+j)

(x2)− S(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

(
1
2
)− s(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

)2
dP2

= s(2)2ω

( 1
9j

1
8
+

1
4
(1− 5

3j )
2
)

.

Therefore, (5) implies that∫
Jω(∞,∞)

‖x− a(ω(∞, ∞))‖2dP

= pω

∞

∑
i,j=1

1
2i+j

(
s(1)2ω

( 1
9i

1
8
+

1
4
(1− 5

3i )
2
)
+ s(2)2ω

( 1
9j

1
8
+

1
4
(1− 5

3j )
2
))

= pω(s
(1)2
ω + s(2)2ω )

1
8

.

Other equalities of the statement are proved similarly.

Lemma 6. Let P be the affine measure on R2, and let {(a, p), (b, p)} be a set of two points lying
on the line x2 = p for which the distortion error is smallest. Then, a = 1

6 , b = 5
6 , p = 1

2 and the
distortion error is 5

36 .

Proof. Let β = {(a, p), (b, p)}. Because the points for which the distortion error is smallest
are the centroids of their own Voronoi regions, by the properties of centroids, we have

(a, p)P(M((a, p)|β)) + (b, p)P(M((b, p)|β)) = (
1
2

,
1
2
),

which implies pP(M((a, p)|β)) + pP(M((b, p)|β)) = 1
2 , i.e, p = 1

2 . Thus, the boundary of
the Voronoi regions is the line x1 = 1

2 . Now, using the definition of conditional expectation,

(a,
1
2
) = E(X : X ∈ M((a,

1
2
)|β)) = E(X : X ∈

∞
∪

j=1
J(1,j)) =

1
∑∞

j=1 p(1,j)

∞

∑
j=1

p(1,j)S(1,j)(
1
2

,
1
2
),

which implies (a, 1
2 ) = ( 1

6 , 1
2 ) yielding a = 1

6 . Similarly, b = 5
6 . Then, the distortion error is∫

min
c∈β
‖x− c‖2dP =

∫
∞
∪

j=1
J(1,j)

‖x− (
1
6

,
1
2
)‖2dP +

∫
∞
∪

i=2,j=1
J(i,j)

‖x− (
5
6

,
1
2
)‖2dP =

5
72

+
5
72

=
5
36

.

This completes the proof the lemma.

The following lemma provides us information on where to look for points of an
optimal set of two-means.
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Lemma 7. Let P be the affine measure on R2. The points in an optimal set of two-means can not lie
on an oblique line of the affine set.

Proof. In the affine set, among all the oblique lines that pass through the point ( 1
2 , 1

2 ), the
line x2 = x1 has the maximum symmetry, i.e., with respect to the line x2 = x1 the affine
set is geometrically symmetrical. Also, observe that, if two basic rectangles of similar
geometrical shape lie in the opposite sides of the line x2 = x1, and are equidistant from the
line x2 = x1, then they have the same probability (see Figure 1); hence, they are symmetrical
with respect to the probability distribution P. Due to this, among all the pairs of two points
which have the boundaries of the Voronoi regions oblique lines passing through the point
( 1

2 , 1
2 ), the two points which have the boundary of the Voronoi regions the line x2 = x1 will

give the smallest distortion error. Again, we know the two points which give the smallest
distortion error are the centroids of their own Voronoi regions. Let (a1, b1) and (a2, b2)
be the centroids of the left half and the right half of the affine set with respect to the line
x2 = x1 respectively. Then, from the definition of conditional expectation, we have

(a1, b1) = 2
[ ∞

∑
i=1,j=i+1

1
2i+j S(i,j)(

1
2

,
1
2
) +

∞

∑
k1=1

∞

∑
i=1

j=i+1

1
22k1+i+j S(k1,k1)(i,j)(

1
2

,
1
2
)

+
∞

∑
k1=1

∞

∑
k2=1

∞

∑
i=1

j=i+1

1
22k1+2k2+i+j S(k1,k1)(k2,k2)(i,j)(

1
2

,
1
2
)

+
∞

∑
k1=1

∞

∑
k2=1

∞

∑
k3=1

∞

∑
i=1

j=i+1

1
22k1+2k2+2k3+i+j S(k1,k1)(k2,k2)(k3,k3)(i,j)(

1
2

,
1
2
) + · · ·

]
= (

3
10

,
7
10

),

and

(a2, b2) = 2
( ∞

∑
i=1

i−1

∑
j=1

1
2i+j S(i,j)(

1
2

,
1
2
) +

∞

∑
k1=1

∞

∑
i=1

i−1

∑
j=1

1
22k1+i+j S(k1,k1)(i,j)(

1
2

,
1
2
)

+
∞

∑
k1=1

∞

∑
k2=1

∞

∑
i=1

i−1

∑
j=1

1
22k1+2k2+i+j S(k1,k1)(k2,k2)(i,j)(

1
2

,
1
2
)

+
∞

∑
k1=1

∞

∑
k2=1

∞

∑
k3=1

∞

∑
i=1

i−1

∑
j=1

1
22k1+2k2+2k3+i+j S(k1,k1)(k2,k2)(k3,k3)(i,j)(

1
2

,
1
2
) + · · ·

)
= (

7
10

,
3
10

).

Let β = {( 3
10 , 7

10 ), (
7

10 , 3
10 )}. Then, due to symmetry,∫

min
c∈β
‖x− c‖2dP = 2

∫
M(( 3

10 , 7
10 )|β)

‖x− (
3

10
,

7
10

)‖2dP.

Write

A := (
4
∪

j=2
J(1,1)(1,1)(1,1)(1,1)(1,j)) ∪ (

6
∪

j=2
J(1,1)(1,1)(1,1)(1,j)) ∪ (

5
∪

j=3
J((1,1)(1,1)(1,1)(2,j)) ∪ (

8
∪

j=2
J(1,1)(1,1)(1,j))

∪ (
6
∪

j=3
J(1,1)(1,1)(2,j)) ∪ J(1,1)(1,1)(3,4) ∪ (

8
∪

j=2
J(1,1)(1,j)) ∪ (

7
∪

j=3
J(1,1)(2,j)) ∪ (

6
∪

j=4
J(1,1)(3,j)) ∪ (

10
∪

j=2
J(1,j))

∪ (
10
∪

j=3
J(2,j)) ∪ (

10
∪

j=4
J(3,j)) ∪ (

9
∪

j=5
J(4,j)) ∪ (

7
∪

j=6
J(5,j)).
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Because A is a proper subset of M(( 3
10 , 7

10 )|β), we have
∫

minc∈β ‖x− c‖2dP > 2
∫
A
‖x−

( 3
10 , 7

10 )‖2dP. Now using (4), and then upon simplification, it follows that∫
min
c∈β
‖x− c‖2dP > 2

∫
A

‖x− (
3
10

,
7
10

)‖2dP = 0.13899,

which is larger than the distortion error 5
36 obtained in Lemma 6. Hence, the points in an

optimal set of two-means can not lie on a oblique line of the affine set. Thus, the assertion
of the lemma follows.

Proposition 2. Let P be the affine measure onR2. Then, the sets {( 1
6 , 1

2 ), (
5
6 , 1

2 )} and {( 1
2 , 1

6 ), (
1
2 , 5

6 )}
form two different optimal sets of two-means with quantization error 5

36 .

Proof. By Lemma 7, it is known that the points in an optimal set of two-means cannot lie
on an oblique line of the affine set. Thus, by Lemma 6, we see that {( 1

6 , 1
2 ), (

5
6 , 1

2 )} forms
an optimal set of two-means with quantization error 5

36 . Due to symmetry, {( 1
2 , 1

6 ), (
1
2 , 5

6 )}
forms another optimal set of two-means (see Figure 2); thus, the assertion follows.

Figure 2. Optimal sets of two-means.

Proposition 3. Let P be the affine measure on R2. Then, the set {( 1
6 , 1

6 ), (
5
6 , 1

6 ), (
1
2 , 5

6 )} forms an
optimal set of three-means with quantization error 1

12 .

Proof. Let us first consider a three-point set β given by β = {( 1
6 , 1

6 ), (
5
6 , 1

6 ), (
1
2 , 5

6 )}. Then,
by using Lemma 5 and Equation (4), we have∫

min
a∈β
‖x− a‖2dP =

∫
J(1,1)

‖x− (
1
6

,
1
6
)‖2dP +

∫
J(1,1)(∞,∅)

‖x− (
5
6

,
1
6
)‖2dP

+
∫

J(1,1)(∅,∞)∪J(1,1)(∞,∞)

‖x− (
1
2

,
5
6
)‖2dP =

1
12

.

Because V3 is the quantization error for an optimal set of three-means, we have 1
12 ≥ V3.

Let α = {(ai, bi) : 1 ≤ i ≤ 3} be an optimal set of three-means. Because the optimal
points are the centroids of their own Voronoi regions, we have α ⊂ [0, 1] × [0, 1]. Let
A1 = [0, 1

3 ]× [0, 1
3 ], A2 = [ 2

3 , 1]× [0, 1
3 ], A3 = [0, 1

3 ]× [ 2
3 , 1], and A4 = [ 2

3 , 1]× [ 2
3 , 1]. Note

that the centroids of A1, A2, A3 and A4 with respect to the probability distribution P are
respectively ( 1

6 , 1
6 ), (

5
6 , 1

6 ), (
1
6 , 5

6 ) and ( 5
6 , 5

6 ). Suppose that α does not contain any point

from
4
∪

i=1
Ai. Then, we can assume that all the points of α are on the line x2 = 1

2 , i.e.,

α = {(ai, 1
2 ) : 1 ≤ i ≤ 3} with a1 < a2 < a3. If a1 > 1

3 , quantization error can be strictly
reduced by moving the point (a1, 1

2 ) to ( 1
3 , 1

2 ). So, we can assume that a1 ≤ 1
3 . Similarly,

we can show that a3 ≥ 2
3 . Now, if a2 < 1

3 , then A3 ∪ A4 ⊂ M((a3, 1
2 )|α). Moreover, for
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any x = (x1, x2) ∈ J(1,1)(1,1) ∪ J(1,3), we have m(x) := minc∈α ‖(x1, x2)− c‖2 ≥ ( 7
18 )

2 and
so by (4) and Lemma 5, we obtain∫

m(x)2dP =
∫

J(1,1)(1,1)∪J(1,3)

m(x)2dP +
∫

J(1,1)(∞,∅)∪J(1,1)(∞,∞)

m(x)2dP

≥ 1
16

(
(

1
81

+
1
81

)
1
8
+ (

7
18

)2
)
+

1
16

(
(

1
9
+

1
272 )

1
8
+ (

7
18

)2
)
+

∫
J(1,1)(∞,∅)∪J(1,1)(∞,∞)

‖x− (
5
6

,
1
2
)‖2dP

=
1
16

(
(

1
81

+
1
81

)
1
8
+ (

7
18

)2
)
+

1
16

(
(

1
9
+

1
272 )

1
8
+ (

7
18

)2
)
+

5
72

=
1043

11664
> V3,

which is a contradiction, and so a2 ≥ 1
3 must be true. If a2 > 2

3 , similarly we can show that a
contradiction arises. So, 1

3 < a2 < 2
3 . Next, suppose that 1

2 ≤ a2 < 2
3 . Then, we have 1

2 (a1 +

a2) ≤ 1
3 which implies a1 ≤ 1

6 , for otherwise quantization error can be strictly reduced

by moving a2 to ( 2
3 , 1

2 ), contradicting the fact that α is an optimal set. Then,
∞
∪

j=1
J(1,1)(1,j) ∪

∞
∪

i=2,j=1
J(1,i)(1,j) ⊂ M((a1, 1

2 )|α) and E(X : X ∈
∞
∪

j=1
J(1,1)(1,j) ∪

∞
∪

i=2,j=1
J(1,i)(1,j)) = ( 1

18 , 1
2 ). So,

for any (x1, x2) ∈
∞
∪

i=2,j=1
J(1,1)(i,j) ∪

∞
∪

k=1,i=2,
j=1

J(k,2)(i,j), minc∈α ‖(x1, x2) − c‖2 ≥ ‖(x1, x2) −

( 1
6 , 1

2 )‖2. If A =
∞
∪

j=1
J(1,1)(1,j) ∪

∞
∪

i=2,j=1
J(1,i)(1,j), B =

∞
∪

i=2,j=1
J(1,1)(i,j) ∪

∞
∪

k=1,i=2,
j=1

J(k,2)(i,j), A′ =

∞
∪

j=1
J(1,1)(1,j) and B′ =

∞
∪

k=1,i=2,
j=1

J(k,2)(i,j), then

∫
m(x)2dP >

∫
A

‖(x1, x2)− (
1

18
,

1
2
)‖2dP +

∫
B

‖(x1, x2)− (
1
6

,
1
2
)‖2dP

= 2
∫
A′

‖x− (
1

18
,

1
2
)‖2dP +

∫
∞
∪

i=2,j=1
J(1,1)(i,j)

‖x− (
1
6

,
1
2
)‖2dP +

∫
B′

‖x− (
1
6

,
1
2
)‖2dP

= 2 · 41
2592

+
5

288
+

551
14688

=
953

11016
> V3,

which is a contradiction. Similarly, if we assume 1
3 ≤ a2 < 1

2 , a contradiction will arise.
Therefore, all the points in α can not lie on the line x2 = 1

2 . Let (a1, b1) and (a3, b3) lie on
the line x2 = 1

2 , and (a2, b2) is above or below the horizontal line x2 = 1
2 . If (a2, b2) is above

the horizontal line, then the quantization error can be strictly reduced by moving (a1, b1) to
A1 and (a3, b3) to A2 contradicting the fact that α is an optimal set. Similarly, if (a2, b2) is
below the horizontal line, a contradiction will arise. All these contradictions arise due to

our assumption that α does not contain any point from
4
∪

i=1
Ai. Hence, α contains at least

one point from
4
∪

i=1
Ai. In order to complete the proof of the Proposition, first we will prove

the following claim:

Claim 1. card({i : α ∩ Ai 6= ∅, 1 ≤ i ≤ 4}) = 2.

For the sake of contradiction, assume that card({i : α∩ Ai 6= ∅, 1 ≤ i ≤ 4}) = 1. Then,
without any loss of generality we assume that (a1, b1) ∈ A1 and (ai, bi) 6∈ A2 ∪ A3 ∪ A4 for
i = 2, 3. Due to symmetry of the affine set with respect to the diagonal x2 = x1, we can
assume that (a1, b1) ∈ A1 lies on the diagonal x2 = x1; (a2, b2) and (a3, b3) are equidistant
from the diagonal x2 = x1 and are in opposite sides of the diagonal x2 = x1. Now, consider
the following cases:
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Case 1. Assume that both (a2, b2) and (a3, b3) are below the diagonal x2 = 1− x1, but
not in A1 ∪ A2 ∪ A3. Let (a2, b2) be above the diagonal x2 = x1 and (a3, b3) be below the
diagonal x2 = x1. In that case, the quantization error can be strictly reduced by moving
(a2, b2) to A3 and (a3, b3) to A2 which contradicts the optimality of α.

Case 2. Assume that both (a2, b2) and (a3, b3) are above the diagonal x2 = 1− x1.
Let (a2, b2) lie above the diagonal x2 = x1 and (a3, b3) lie below the diagonal x2 = x1.
Then, due to symmetry we can assume that (a1, b1) = ( 1

6 , 1
6 ) which is the centroid of A1,

(a2, b2) = ( 1
2 , 5

6 ) which is the midpoint of the line segment joining the centroids of A3 and
A4, (a3, b3) = ( 5

6 , 1
2 ) which is the midpoint of the line segment joining the centroids of A2

and A4. Then,∫
m(x)2dP =

∫
J(1,1)

m(x)2dP +
∫

J(1,1)(∅,∞)

m(x)2dP +
∫

J(1,1)(∞,∅)

m(x)2dP +
∫

J(1,1)(∞,∞)

m(x)2dP

≥ 1
144

+
∫

J(1,1)(∅,∞)

‖x− (
1
2

,
5
6
)‖2dP +

∫
J(1,1)(∞,∅)

‖x− (
5
6

,
1
2
)‖2dP +

∫
∞
∪

i=2
j=i+1

J(i,j)

‖x− (
1
2

,
5
6
)‖2dP

=
1

144
+

5
144

+
5

144
+

1381
166320

=
7043

83160
> V3,

which is a contradiction. Thus, card({i : α ∩ Ai 6= ∅, 1 ≤ i ≤ 4}) = 1 cannot hold.
Next, for the sake of contradiction, assume that card({i : α ∩ Ai 6= ∅, 1 ≤ i ≤ 4}) = 3.

Then, without any loss of generality we assume that (a1, b1) ∈ A3, (a2, b2) ∈ A2 and
(a3, b3) ∈ A4. Let A11 and A12 be the regions of A1 which are respectively above and below
the diagonal of A1 passing through (0, 0). Due to symmetry, we must have A3 ∪ A11 ⊂
M((a1, b1)|α) and A2 ∪ A12 ⊂ M((a2, b2)|α). Notice that A3 ∪ A11 ⊂ M((a1, b1)|α) implies

A3 ∪ ∪
i=1,j=i+1

J(1,1)(i,j) ∪ ∪
k=1,i=1
j=i+1

J(1,1)(k,k)(i,j) ⊂ M((a1, b1)|α),

and by using (1), we have

E(X : X ∈ A3 ∪ ∪
i=1,j=i+1

J(1,1)(i,j) ∪ ∪
k=1,i=1
j=i+1

J(1,1)(k,k)(i,j) = (
1385
9438

,
6173
9438

),

which shows that the point (a1, b1) falls below the line x2 = 2
3 , which is a contradiction,

as we assumed that (a1, b1) ∈ A3. This contradiction arises due to our assumption that
card({i : α ∩ Ai 6= ∅, 1 ≤ i ≤ 4}) = 3. Hence, we conclude that card({i : α ∩ Ai 6= ∅, 1 ≤
i ≤ 4}) = 2, which proves the claim.

By the claim, we assume that (a1, b1) ∈ A1 and (a3, b3) ∈ A2. Notice that A1, A2, A3, A4
are geometrically symmetric as well as their corresponding centroids are symmetrically
distributed over the square [0, 1]× [0, 1]. Without any loss of generality, we can assume
that the optimal point (a1, b1) is the centroid of A1, i.e., (a1, b1) = ( 1

6 , 1
6 ). Then, due to

symmetry with respect to the line x1 = 1
2 , it follows that (a3, b3) = centroid of A2 = ( 5

6 , 1
6 ),

and (a2, b2) lies on x1 = 1
2 but above the line x2 = 1

2 . Now, notice that

min
(a3,b3)∈[ 1

3 , 2
3 ]×[

2
3 ,1]
{‖(1

6
,

5
6
)− (a3, b3)‖2 + ‖(5

6
,

5
6
)− (a3, b3)‖2} = 2

9
,

which occurs when (a3, b3) = center of [ 1
3 , 2

3 ] × [ 2
3 , 1] = ( 1

2 , 5
6 ). Moreover, the three

points ( 1
6 , 1

6 ), (
5
6 , 1

6 ) and ( 1
2 , 5

6 ) are the centroids of their own Voronoi regions. Thus,
{( 1

6 , 1
6 ), (

5
6 , 1

6 ), (
1
2 , 5

6 )} forms an optimal set of three-means with quantization error V3 = 1
12 .

Hence, the proposition follows.
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Remark 3. Due to symmetry, in addition to the optimal set given in Proposition 3, there are three
more optimal sets of three-means with quantization error V3 = 1

12 (see Figure 3).

Figure 3. Optimal sets of three-means.

4. Affine Measures

In this section, we show that the affine measure P under consideration is the direct
product of the Cantor distribution Pc.

For the rest of the article, by a word σ of length k over the alphabet {1, 2}, it is meant
σ := σ1σ2 · · · σk ∈ {1, 2}k, k ≥ 1. By a word of length zero it is meant the empty word
∅. {1, 2}∗ represents the set of all words over the alphabet {1, 2} including the empty
word ∅. Length of a word σ ∈ {1, 2}∗ is denoted by |σ|. If σ = σ1σ2 · · · σk, we write
Uσ := Uσ1 ◦Uσ2 ◦ · · · ◦Uσk . U∅ represents the identity mapping on R. By uσ we represent
the similarity ratio of Uσ. If Xc is the random variable with distribution Pc, then E(Xc) =

1
2

and V(Xc) = 1
8 [10]. For σ ∈ {1, 2}∗, write A(σ) := Uσ(

1
2 ). Notice that for σ ∈ {1, 2}∗,

we have 1
2 (A(σ1) + A(σ2)) = A(σ), uσ = 1

3|σ|
, the contractive factor of Uσ, and for the

empty word ∅, A(∅) = 1
2 . For σ ∈ {1, 2}∗ define Aσ := Uσ[0, 1]. For any positive integer

n, by 2∗n it is meant the concatenation of the symbol 2 with itself n-times successively, i.e.,
2∗n = 222 · · · (n times), with the convention that 2∗0 is the empty word. For any positive
integer k, by {1, 2}k∗2 it is meant the direct product of the set {1, 2}k with itself. By {1, 2}0∗2

it is meant the set {(∅, ∅)}. Also, recall the notations defined in Section 2. Let us now
introduce the map F : N∗ ∪ {(σ, ∞) : σ ∈ N∗} → {1, 2}∗ such that

F(x) =


f (σ1) f (σ2) · · · f (σ|σ|) if x = σ = σ1σ2 · · · σ|σ|,
f (σ1) f (σ2) · · · f (σ|σ|, ∞) if x = (σ1σ2 · · · σ|σ|, ∞),
∅ if x = ∅,

(6)

where f : N∪ {(n, ∞) : n ∈ N} → {1, 2}∗ \ {∅} is such that

f (x) =
{

2∗(n−1)1 if x = n for some n ∈ N,
2∗n if x = (n, ∞) for some n ∈ N.

The function f is one-to-one and onto, and consequently, F is also one-to-one and onto. For
any σ ∈ N∗, write AF(σ) := A(F(σ)) and AF(σ, ∞) := A(F(σ, ∞)).

The map F is instrumental in converting the infinitely generated affine measure P
to a finitely generated affine measure Pc × Pc. Furthermore, to improve the clarity of the
arguments, we will write Ti for S(1)

(i,j), and Tj for S(2)
(i,j), where Tk for all k ≥ 1 form an

infinite collection of similarity mappings on R such that Tk(x) = 1
3k x + 1− 1

3k−1 for all

x ∈ R. Thus, if ω = (i1, j1)(i2, j2) · · · (in, jn), then S(1)
ω = Ti1 ◦ · · · ◦ Tin = Ti1i2···in and

S(2)
ω = Tj1 ◦ · · · ◦ Tjn = Tj1 j2···jn for all n ≥ 1. Again, T∅ is the identity mapping on R.

Lemma 8. Let Tk for k ≥ 1 be the infinite collection of similitudes defined above, and U1 and
U2 be the similitudes generating the Cantor set. Then, for any σ ∈ N∗ and x ∈ R, we have
Tσ(x) = UF(σ)(x).
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Proof. If σ = 1, then T1(x) = 1
3 x = U1(x) = UF(1)(x) for any x ∈ R. Assume that the

lemma is true if σ = k for some positive integer k, i.e., Tk(x) = UF(k)(x). Then,

UF(k+1)(x) = U2∗k1(x) = U2∗(k−1)21(x) = U2∗(k−1)U21(x) = U2∗(k−1)(
1
9

x +
2
3
)

= U2∗(k−1)1(3(
1
9

x +
2
3
)) = UF(k)(

1
3

x + 2) = Tk(
1
3

x + 2) =
1
3k (

1
3

x + 2) + 1− 1
3k−1

=
1

3k+1 x + 1− 1
3k = Tk+1(x).

Thus, by the Principle of Mathematical Induction, Tk(x) = UF(k)(x) for all k ∈ N. Again, for
any τ, δ ∈ N∗, by (6), it follows that F(σδ) = F(σ)F(δ). Hence, for any σ = σ1σ2 · · · σn ∈ N∗,
n ≥ 1, we have

Tσ(x) = Tσ1 ◦ Tσ2 ◦ · · · ◦ Tσn(x) = UF(σ1)
◦UF(σ2)

◦ · · · ◦UF(σn)(x) = UF(σ)(x),

which completes the proof.

Lemma 9. Let ω ∈ I∗, and F be the function as defined in (6). Then for r = 1, 2, we have
AF(ω(r)) = S(r)

ω ( 1
2 ), and AF(ω(r), ∞) = S(r)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 ) + s(r)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

.

Proof. By Lemma 8, we have

AF(ω(1)) = UF(ω(1))(
1
2
) = Tω(1)(

1
2
) = S(1)

ω (
1
2
), and similarly AF(ω(2)) = S(2)

ω (
1
2
).

Without any loss of generality, we can assume ω = (i1, j1)(i2, j2) · · · (ik, jk) for k ≥ 1. Then,

AF(ω(1), ∞) = UF(i1i2···ik ,∞)(
1
2
) = UF(i1i2···ik−1)

◦UF(ik ,∞)(
1
2
) = UF(i1i2···ik−1)

◦U2∗ik (
1
2
)

= UF(i1i2···ik−1)
◦U2∗ik 1(U

−1
1 (

1
2
)) = UF(i1i2···ik−1)

◦UF(ik+1)(
3
2
) = UF(i1i2···ik−1(ik+1))(

3
2
)

= Ti1i2···ik−1(ik+1)(
3
2
) = S(1)

ω−(ik+1, jk+1)(
3
2
).

Because, S(1)
(ik+1, jk+1)(

3
2 )− S(1)

(ik+1, jk+1)(
1
2 ) =

1
3ik+1

3
2 + 1− 1

3ik
− 1

3ik+1
1
2 − 1 + 1

3ik
= 1

3ik+1 , we
have

S(1)
ω−(ik+1, jk+1)(

3
2
)− S(1)

ω−(ik+1, jk+1)(
1
2
) = s(1)

ω−(S
(1)
(ik+1, jk+1)(

3
2
)− S(1)

(ik+1, jk+1)(
1
2
)) = s(1)

ω−
1

3ik+1

= s(1)
ω−(ik+1,jk+1) = s(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

, which yields

AF(ω(1), ∞) = S(1)
ω−(ik+1, jk+1)(

3
2 ) = S(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 ) + s(1)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

. Similarly,

AF(ω(2), ∞) = S(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

( 1
2 ) + s(2)

ω−(ω(1)
|ω|+1, ω

(2)
|ω|+1)

.

Remark 4. By Lemmas 4 and 9, for any ω ∈ I∗, we have

a(ω) = (AF(ω(1)), AF(ω(2))), a(ω(∞, ∞)) = (AF(ω(1), ∞), AF(ω(2), ∞)),

a(ω(∞, ∅)) = (AF(ω(1), ∞), AF(ω(2))), and a(ω(∅, ∞)) = (AF(ω(1)), AF(ω(2), ∞)).

The following example illustrates the outcome of the lemma above.
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Example 1. a((1, 1)) = (AF(1), AF(1)) = (A(1), A(1)) = ( 1
6 , 1

6 ),
a((1, 1)(∞, ∅)) = (AF(1, ∞), AF(1)) = (A(2), A(1)) = ( 5

6 , 1
6 ),

a((1, 1)(∅, ∞)) = (AF(1), AF(1, ∞)) = (A(1), A(2)) = ( 1
6 , 5

6 ),
a((1, 1)(∞, ∞)) = (AF(1, ∞), AF(1, ∞)) = (A(2), A(2)) = ( 5

6 , 5
6 ),

a((1, 1)(1, 1)) = (AF(11), AF(11)) = (A(11), A(11)) = ( 1
18 , 1

18 ),
a((1, 1)(1, 1)(∞, ∅)) = (AF(11, ∞), AF(11)) = (A(12), A(11)) = ( 5

18 , 1
18 ),

a((1, 1)(1, 1)(∅, ∞)) = (AF(11), AF(11, ∞)) = (A(11), A(12)) = ( 1
18 , 5

18 ), and
a((1, 1)(1, 1)(∞, ∞)) = (AF(11, ∞), AF(11, ∞)) = (A(12), A(12)) = ( 5

18 , 5
18 ), etc.

Lemma 10. Let µ = ∑∞
k=1

1
2k µ ◦ T−1

k . Then, for any σ ∈ N∗, we have µ(Tσ[0, 1]) = Pc(AF(σ)),
where Pc := 1

2 Pc ◦U−1
1 + 1

2 Pc ◦U−1
2 .

Proof. Without any loss of generality, let σ = i1i2 · · · ik for any k ≥ 1. See that F(σ) =
F(i1)F(i2) · · · F(ik), and thus |F(σ)| = |F(i1)|+ |F(i2)|+ · · ·+ |F(ik)| = i1 + i2 + · · ·+ ik.
Consequently,

µ(Tσ[0, 1]) =
1

2i1+i2+···+ik
=

1
2|F(σ)|

= Pc(AF(σ)),

which proves the lemma.

Proposition 4. Let P be the affine measure. Then, P = Pc× Pc, where Pc is the Cantor distribution.

Proof. Borel σ-algebra on the affine set is generated by all sets of the form J(δ,τ) for (δ, τ) ∈
I∗, where J(δ,τ) = S(δ,τ)([0, 1]× [0, 1]). Notice that

J(δ,τ) = Tδ[0, 1]× Tτ [0, 1] = UF(δ)[0, 1]×UF(τ)[0, 1] = AF(δ) × AF(τ).

Again, the sets of the form Aα, where α ∈ {1, 2}∗, generate the Borel σ-algebra on the Cantor
set C. Thus, we see that the Borel σ-algebra of the affine set is the same as the product of
the Borel σ-algebras on the Cantor set. Moreover, for any (δ, τ) ∈ I∗, by Remark 1 and
Lemma 10, we have

P(J(δ,τ)) = µ(Tδ[0, 1])µ(Tτ [0, 1]) = Pc(AF(δ))Pc(AF(τ)) = (Pc × Pc)(AF(δ) × AF(τ)).

Hence, the proposition follows.

Remark 5. By Proposition 4, it follows that the optimal sets of n-means for P are the same as the
optimal sets n-means for the product measure Pc × Pc on the affine set. Moreover, for k ≥ 1 we can
write

P = Pc × Pc = ∑
(σ,τ)∈{1,2}k∗2

1
4k (Pc × Pc) ◦ (Uσ, Uτ)

−1,

where for (x1, x2) ∈ R2, (Uσ, Uτ)−1(x1, x2) = (U−1
σ (x1), U−1

τ (x2)).

5. Optimal Sets of n-Means for all n ≥ 4

In this section, we will derive closed formulas to determine the optimal sets of n-means
and the nth quantization error for all n ≥ 4. For (σ, τ) ∈ {1, 2}k∗2, write A(σ,τ) := Aσ × Aτ

and U(σ,τ) := (Uσ, Uτ).

Lemma 11. Let α be an optimal set of n-means with n ≥ 4. Then, α ∩ A(i,j) 6= ∅ for all
1 ≤ i, j ≤ 2.

Proof. Let α be an optimal set of n-means for n ≥ 4. As the optimal points are the centroids
of their own Voronoi regions we have α ⊂ A∅ × A∅ := [0, 1]× [0, 1].
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Consider the four-point set β given by β = {(A(i), A(j)) : 1 ≤ i, j ≤ 2}. Then,

∫
min
c∈β
‖x− c‖2dP =

2

∑
i,j=1

∫
A(i,j)

‖x− (A(i), A(j))‖2d(Pc × Pc) =
2

∑
i,j=1

1
4
(

1
9
+

1
9
)

1
8
=

1
36

.

Because V4 is the quantization error of four-means, we have 1
36 ≥ V4 ≥ Vn.

Assume that α does not contain any point from
2
∪

i,j=1
A(i,j). We know that

∑
(a,b)∈α

(a, b)P(M(a, b)|α)) = (
1
2

,
1
2
). (7)

If all the points of α are below the line x2 = 1
2 , i.e., if b < 1

2 then by (7), we see that
1
2 = ∑(a,b)∈α bP(M(a, b)|α)) < ∑(a,b)∈α

1
2 P(M(a, b)|α)) = 1

2 , which is a contradiction.
Similarly, it follows that if all the points of α are above the line x2 = 1

2 , or left of the line
x1 = 1

2 , or right of the line x1 = 1
2 , a contradiction will arise.

Next, suppose that all the points of α are on the line x2 = 1
2 . We will consider two

cases: n = 4 and n > 4. When n = 4, let α = {(ai, 1
2 ) : 1 ≤ i ≤ 4} with ai < aj for i < j.

Due to symmetry, we can assume that the boundary of the Voronoi regions of the points
(a1, 1

2 ), (a2, 1
2 ), (a3, 1

2 ), and (a4, 1
2 ) are respectively x1 = 1

6 , x1 = 1
2 , and x1 = 5

6 yielding
α = {( 1

18 , 1
2 ), (

5
18 , 1

2 ), (
13
18 , 1

2 ), (
17
18 , 1

2 )}, and then writing B := A(11,11) ∪ A(11,12) ∪ A(11,21) ∪
A(11,22), by symmetry we have

∫
min
c∈α
‖x− c‖2dP = 4

∫
B

‖x− (
1

18
,

1
2
)‖2d(Pc × Pc)

= 8
∫

A(11,11)

‖x− (
1

18
,

1
2
)‖2d(Pc × Pc) + 8

∫
A(11,12)

‖x− (
1

18
,

1
2
)‖2d(Pc × Pc)

= 8(
65

5184
+

17
5184

) =
41

324
> V4,

which is a contradiction. We consider the case n > 4. Because for any (x1, x2) ∈
2
∪

i,j=1
Aij,

minc∈α ‖(x1, x2)− c‖2 ≥ 1
36 , we have

∫
min
c∈α
‖x− c‖2dP =

2

∑
i,j=1

∫
A(i,j)

min
c∈α
‖x− c‖2d(Pc × Pc) ≥

2

∑
i,j=1

∫
A(i,j)

1
36

d(Pc × Pc) =
1
36

,

which implies 1
36 ≥ V4 > Vn, a contradiction. Thus, we see that all the points of α can not

lie on x2 = 1
2 . Similarly, all the points of α can not lie on x1 = 1

2 .
Notice that the lines x1 = 1

2 and x2 = 1
2 partition the square [0, 1]× [0, 1] into four

quadrants with center ( 1
2 , 1

2 ). If n = 4k for some positive integer k, due to symmetry, we can
assume that each quadrant contains k-points from the set α. But then, any of the k points
in the quadrant containing a basic rectangle A(i,j) can be moved to A(i,j) which strictly
reduce the quantization error, and it gives a contradiction as we assumed that the set α is
an optimal set of n-means and α does not contain any point from A(i,j) for 1 ≤ i, j ≤ 2.

If n = 4k + 1, 4k + 2, or n = 4k + 3, then, again due to symmetry, each quadrant gets at
least k points. Then, as in the case n = 4k, here also, one can strictly reduce the quantization
error by moving a point in the quadrant containing a basic rectangle A(i,j) to A(i,j) for
1 ≤ i, j ≤ 2, which is a contradiction.

Thus, we have proved that α ∩ A(i,j) 6= ∅ for all 1 ≤ i, j ≤ 2.
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Lemma 12. Let α be an optimal set of n-means with n ≥ 4. Then, α ⊂
2
∪

i,j=1
A(i,j).

Proof. By Lemma 11, we know that α ∩ A(i,j) 6= ∅ for all 1 ≤ i, j ≤ 2. Now, we will prove
the statement by considering four distinct cases:

Case 1: n = 4k for some integer k ≥ 1.
In this case, due to symmetry, we can assume that α contains k points from each of

A(i,j), otherwise, quantization error can be reduced by redistributing the points of α equally

among A(i,j) for 1 ≤ i, j ≤ 2, and so α ⊂
2
∪

i,j=1
A(i,j).

Case 2: n = 4k + 1 for some integer k ≥ 1.
In this case, again due to symmetry, we can assume that α contains k points from each

of A(i,j), and if possible, one point, say (a, b), from A(∅,∅) \
2
∪

i,j=1
A(i,j). By symmetry, one

can assume that (a, b) is the midpoint of the line segment joining any two centroids of the
basic rectangles A(i,j) for 1 ≤ i, j ≤ 2. Let us first take (a, b) = ( 1

2 , 1
2 ) which is the center

of the affine set. For simplicity, we first assume k = 1, i.e., n = 5. Then, α contains only
one point from each of A(i,j). Let (a1, b1) be the point that α takes from A(1,1). As ( 1

2 , 1
2 )

lies on the diagonal x2 = x1, due to symmetry we can also assume that (a1, b1) lies on
the diagonal x2 = x1. By Proposition 1, we have P(M(( 1

2 , 1
2 )|α)) > 0. This yields that

1
2 ((a1, b1) + ( 1

2 , 1
2 )) < ( 1

3 , 1
3 ) which implies a1 < 1

6 and b1 < 1
6 . Then, we see that

1
36

= V4 ≈ V5 = 4
∫

A(1,1)

min
c∈{(a1,b1),( 1

2 , 1
2 )}
‖x− c‖2dP >

∫
min
c∈β
‖x− c‖2dP =

2
81
≥ V5,

where β = {( 1
18 , 1

18 ), (
1

18 , 5
18 ), (

5
6 , 1

6 ), (
1
6 , 5

6 ), (
5
6 , 5

6 )}, which is a contradiction. Similarly, if
we take (a, b) as the midpoint of a line segments joining the centroids of any two adjacent
basic rectangles A(i,j) for 1 ≤ i, j ≤ 2, contradiction arises. Proceeding in the similar way,
by taking k = 2, 3, · · · , we see that contradiction arises at each value k takes. Therefore,

α ⊂
2
∪

i,j=1
A(i,j).

Case 3: n = 4k + 2 for some integer k ≥ 1.
In this case, due to symmetry, we can assume that α contains k points from each of

A(i,j), and if possible, two points, say (a1, b1) and (a2, b2), from A(∅,∅) \
2
∪

i,j=1
A(i,j). Then, by

symmetry, we can assume that (a1, b1) lies on the midpoint of the line segment joining the
centroids of A(1,1), A(2,1); and (a2, b2) lies on the midpoint of the line segment joining the

centroids of A(1,2) and A(2,2). As in Case 2, this leads to a contradiction. Thus, α ⊂
2
∪

i,j=1
A(i,j).

Case 4: n = 4k + 3 for some integer k ≥ 1. Due to symmetry, in this case, we can assume
that each of A(1,1) and A(2,1) gets k + 1 points; each of A(1,2) and A(2,2) gets k points. The
remaining one point lies on the midpoint of the line segment joining the centroids of A(1,2)
and A(2,2). But, in that case, proceeding as in Case 2, we can show that a contradiction

arises. Thus, α ⊂
2
∪

i,j=1
A(i,j).

We have shown that in all possible cases α ⊂
2
∪

i,j=1
A(i,j); hence, the lemma follows.

Corollary 1. The set {( 1
6 , 1

6 ), (
5
6 , 1

6 ), (
1
6 , 5

6 ), (
5
6 , 5

6 )} is a unique optimal set of four-means of the
affine measure P with quantization error V4 = 1

36 (see Figure 4).
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Figure 4. Optimal sets of n-means for 4 ≤ n ≤ 7. Optimal set of 4-means is unique; on the other
hand, optimal sets of n-means for n = 5, 6, 7 are not unique.

Remark 6. Let α be an optimal set of n-means, and nij = card(βij) where βij = α ∩ A(i,j) for
1 ≤ i, j ≤ 2. Then, 0 ≤ |nij − npq| ≤ 1 for 1 ≤ i, j, p, q ≤ 2.

Lemma 13. Let n ≥ 4 and α be an optimal set of n-means for the product measure Pc × Pc. For
1 ≤ i, j ≤ 2, set βij := α ∩ A(i,j), and let nij = card(βij). Then, U−1

(i,j)(βij) is an optimal set of

nij-means, and Vn =
2
∑

i,j=1

1
36 Vnij .

Proof. For n ≥ 4, by Lemma 11, we have α =
2
∪

i,j=1
βij, n =

2
∑

i,j=1
nij, and so

Vn =
2

∑
i,j=1

∫
A(i,j)

min
a∈βij
‖x− a‖2d(Pc × Pc).

If U−1
(1,1)(β11) is not an optimal set of n11-means for Pc × Pc, then there exists a set γ11 ⊂ R2

with card(γ11) = n11 such that
∫

mina∈γ11 ‖x − a‖2d(Pc × Pc) <
∫

mina∈U−1
(1,1)(β11)

‖x −

a‖2d(Pc × Pc). But then, δ := U(1,1)(γ11) ∪ β12 ∪ β21 ∪ β22 is a set of cardinality n and it
satisfies

∫
mina∈δ ‖x− a‖2d(Pc × Pc) <

∫
mina∈α ‖x− a‖2d(Pc × Pc), contradicting the fact

that α is an optimal set of n-means for Pc × Pc. Similarly, it can be proved that U−1
(1,2)(β12),

U−1
(2,1)(β21), and U−1

(2,2)(β22) are optimal sets of n12-, n21-, and n22-means respectively. Thus,

Vn =
2

∑
i,j=1

1
4

∫
min
a∈βij
‖x− a‖2d((Pc × Pc) ◦U−1

(i,j)) =
2

∑
i,j=1

1
36

∫
min

a∈U−1
(i,j)(βij)

‖x− a‖2dP =
2

∑
i,j=1

1
36

Vnij ,

which gives the lemma.

Proposition 5. Let n ∈ N be such that n = 4`(n) for some positive integer `(n). Then, the set

α4`(n) := ∪
(σ,τ)∈{1,2}`(n)∗2

{(A(σ), A(τ))}

forms a unique optimal set of n-means for the affine measure P with quantization error
V4`(n) =

1
4

1
9`(n)

.

Proof. We will prove the statement by induction. By Corollary 1, it is true if `(n) = 1.
Let us assume that it is true for n = 4k for some positive integer k. We now show that
it is also true if n = 4k+1. Let β be an optimal set of 4k+1-means. Set βij := β ∩ A(i,j) for
1 ≤ i, j ≤ 2. Then, by Lemmas 11 and 13, U−1

(i,j)(βij) is an optimal set of 4k-means, and

so U−1
(i,j)(βij) = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}k∗2} which implies βij = {(A(iσ), A(jτ)) :

(σ, τ) ∈ {1, 2}k∗2}. Thus, β = ∪2
i,j=1βij = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}(k+1)∗2} is
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an optimal set of 4k+1-means. Because (A(σ), A(τ)) is the centroid of A(σ,τ) for each
(σ, τ) ∈ Ik+1, the set β is unique. Now, by Lemma 13, we have the quantization error as

Vk+1 =
2

∑
i,j=1

1
36

Vk =
1
9
· 1

4
· 1

9k =
1
4

1
9k+1 .

Thus, by induction, the proof of the proposition is complete.

Definition 1. For n ∈ N with n ≥ 4 let `(n) be the unique natural number with 4`(n) < n ≤
2 · 4`(n). For I ⊂ {1, 2}`(n)∗2 with card(I) = n− 4`(n) let αn(I) be the set defined as follows:

αn(I) = ∪
(σ,τ)∈{1,2}`(n)∗2\I

{(A(σ), A(τ))} ∪ ( ∪
(σ,τ)∈I

{(A(σ1), A(τ)), (A(σ2), A(τ))}).

Remark 7. In Definition 1, instead of choosing the set {(A(σ1), A(τ)), (A(σ2), A(τ))}, one can
choose {(A(σ), A(τ1)), (A(σ), A(τ2))}, i.e., the set associated with each (σ, τ) ∈ I can be chosen
in two different ways. Moreover, the subset I can be chosen from {1, 2}`(n)∗2 in 4`(n)Cn−4`(n) ways.

Hence, the number of the sets αn(I) is 2card(I) · 4`(n)Cn−4`(n) .

The following example illustrates Definition 1.

Example 2. Let n = 5. Then, `(n) = 1, I ⊂ {1, 2}∗2 with card(I) = 1, and so

α5({(1, 1)}) = {(A(1), A(2)), (A(2), A(1)), (A(2), A(2))} ∪ {(A(11), A(1)), (A(12), A(1))}

= {(1
6

,
5
6
), (

5
6

,
1
6
), (

5
6

,
5
6
)} ∪ {( 1

18
,

1
6
), (

5
18

,
1
6
)},

or,

α5({(1, 1)}) = {(A(1), A(2)), (A(2), A(1)), (A(2), A(2))} ∪ {(A(1), A(11)), (A(1), A(12))}

= {(1
6

,
5
6
), (

5
6

,
1
6
), (

5
6

,
5
6
)} ∪ {(1

6
,

1
18

), (
1
6

,
5

18
)}.

Similarly, one can get six more sets by taking I = {(1, 2)}, {(2, 1)}, or {(2, 2)}, i.e., the number
of the sets αn(I) in this case is 2card(I) · 4`(n)Cn−4`(n) = 8.

Proposition 6. Let n ≥ 4 and αn(I) be the set as defined in Definition 1. Then, αn(I) forms an
optimal set of n-means with quantization error

Vn =
1
4

1
36`(n)

(
2 · 4`(n) − n +

5
9
(n− 4`(n))

)
.

Proof. We have n = 4`(n) + k where 1 ≤ k ≤ 4`(n). Set βij = α∩ Aij with nij = card(βij) for
1 ≤ i, j ≤ 2. Let us prove it by induction. We first assume k = 1. By Lemmas 11 and 13, we
can assume that each of U−1

(i,j)(βij) for i = 2 and j = 1, 2, are optimal sets of 4`(n)−1-means

and U−1
(1,1)(β11) is an optimal set of (4`(n)−1 + 1)-means. Thus, for i = 2 and j = 1, 2, we

can write

U−1
(i,j)(βij) = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}(`(n)−1)∗2}, and

U−1
(1,1)(β11) = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}(`(n)−1)∗2 \ {τ}} ∪Uτ(α2),

for some τ ∈ {1, 2}(`(n)−1)∗2, where α2 is an optimal set of two-means. Thus,

αn({(1, 1)τ}) =
2
∪

i,j=1
βij = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}`(n)∗2 \ {(1, 1)τ}} ∪U(1,1)τ(α2),
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for some τ ∈ {1, 2}(`(n)−1)∗2, where α2 is an optimal set of two-means. Notice that instead
of choosing U−1

(1,1)(β11) as an optimal set of (4`(n)−1 + 1)-means, one can choose any one

from U−1
(i,j)(βij) for i = 2, j = 1, 2, as an optimal set of (4`(n)−1 + 1)-means. Hence, for

n = 4`(n) + 1, one can write

αn(I) =
2
∪

i,j=1
βij = {(A(σ), A(τ)) : (σ, τ) ∈ {1, 2}`(n)∗2 \ {τ}} ∪Uτ(α2),

where I = {τ} for some τ ∈ {1, 2}`(n)∗2 as an optimal set of n-means. Thus, we see that
the proposition is true if n = 4`(n) + k. Similarly, one can prove that the proposition is true
for any 1 ≤ k ≤ 4`(n). Then, the quantization error is

Vn = min
(a,b)∈αn(I)

‖x− (a, b)‖2dP = ∑
(σ,τ)∈{1,2}`(n)∗2\I

∫
Aσ×Aτ

‖x− (A(σ), A(τ))‖2d(Pc × Pc)

+ ∑
(σ,τ)∈I

2

∑
i=1

∫
Aσi×Aτ

‖x− (A(σi), A(τ))‖2d(Pc × Pc)

= ∑
(σ,τ)∈{1,2}`(n)∗2\I

1
4`(n)

(u2
σ + u2

τ)
1
8
+ ∑

(σ,τ)∈I

2

∑
i=1

1
4`(n)

1
2
(u2

σi + u2
τ)

1
8

= ∑
(σ,τ)∈{1,2}`(n)∗2\I

1
4`(n)

(u2
σ + u2

τ)
1
8
+ ∑

(σ,τ)∈I

1
4`(n)

(
1
9

u2
σ + u2

τ)
1
8

.

Because card({1, 2}`(n)∗2 \ I) = 2 · 4`(n) − n, card(I) = n− 4`(n), uσ = uτ = 1
3`(n)

, upon

simplification, we have Vn = 1
4

1
36`(n)

(
2 · 4`(n) − n + 5

9 (n− 4`(n))
)

. Thus, the proof of the
proposition is complete.

Definition 2. For n ∈ N with n ≥ 4 let `(n) be the unique natural number with 2 · 4`(n) < n <
4`(n)+1. For I ⊂ {1, 2}`(n)∗2 with card(I) = n− 2 · 4`(n) let αn(I) be the set defined as follows:

αn(I) = ∪
(σ,τ)∈{1,2}`(n)∗2\I

{(A(σ1), A(τ)), (A(σ2), A(τ))}

∪ ( ∪
(σ,τ)∈I

{(A(σ1), A(τ1)), (A(σ1), A(τ2)), (A(σ2), A(τ))}).

Remark 8. In Definition 2, instead of choosing the set {(A(σ1), A(τ)), (A(σ2), A(τ))}, one can
choose {(A(σ), A(τ1)), (A(σ), A(τ2))}. Instead of choosing the set
{(A(σ1), A(τ1)), (A(σ1), A(τ2)), (A(σ2), A(τ))}, one can choose either the set
{(A(σ1), A(τ)), (A(σ2), A(τ1)), (A(σ2), A(τ2))}, or
{(A(σ1), A(τ1)), (A(σ2), A(τ1)), (A(σ), A(τ2))}, or
{(A(σ), A(τ1)), (A(σ1), A(τ2)), (A(σ2), A(τ2))}, i.e., the set corresponding to each (σ, τ) ∈
{1, 2}`(n)∗2 \ I can be chosen in two different ways, and the set corresponding to each (σ, τ) ∈ I
can be chosen in four different ways. Because card({1, 2}`(n)∗2 \ I) = 4`(n) − (n− 2 · 4`(n)) =
3 · 4`(n) − n and the subset I can be chosen from {1, 2}`(n)∗2 in 4`(n)Cn−2·4`(n) ways, the number of

the sets αn(I) is 23·4`(n)−n · 4card(I) · 4`(n)Cn−2·4`(n) .

We now give an example illustrating Definition 2.
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Example 3. Let n = 9. Then, `(n) = 1, I ⊂ {1, 2}∗2 with card(I) = 1. Take I = {(1, 1)}.
Then,

α9({(1, 1)}) = {(A(11), A(2)), (A(12), A(2)), (A(21), A(2)), (A(22), A(2)), (A(21), A(1)),

(A(22), A(1))} ∪ {(A(11), A(1)), (A(12), A(11)), (A(12), A(12))}

= {( 1
18

,
5
6
), (

5
18

,
5
6
), (

13
18

,
5
6
), (

17
18

,
5
6
), (

13
18

,
1
6
), (

17
18

,
1
6
)}

∪ {( 1
18

,
1
6
), (

5
18

,
1
18

), (
5
18

,
5

18
)}.

Note that each of α9({(1, 1)}), α9({(1, 2)}), α9({(2, 1)}), α9({(2, 2)}) can be chosen in 32 ways,
i.e., the numbers of the sets α9(I) in this case is 4 · 32 = 128. Moreover, by using the formula in
Remark 8, we have

23·4`(n)−n · 4card(I) · 4`(n)Cn−2·4`(n) = 128.

Proposition 7. Let n ≥ 4 and αn(I) be the set as defined in Definition 2. Then, αn(I) forms an
optimal set of n-means with quantization error

Vn =
1

36`(n)+1
(9 · 4`(n) − 2n).

Proof. We have n = 2 · 4`(n) + k where 1 ≤ k < 2 · 4`(n). Set βij = α ∩ Aij with nij =
card(βij) for 1 ≤ i, j ≤ 2. Let us prove it by induction. We first assume k = 1. By
Lemmas 11 and 13, we can assume that each of U−1

(i,j)(βij) for i = 2 and j = 1, 2, are optimal

sets of 2 · 4`(n)−1-means and U−1
(1,1)(β11) is an optimal set of (2 · 4`(n)−1 + 1)-means. Thus,

for i = 2 and j = 1, 2, we can write

U−1
(i,j)(βij) = {U(σ,τ)(α2) : (σ, τ) ∈ {1, 2}(`(n)−1)∗2}, and

U−1
(1,1)(β11) = {U(σ,τ)(α2) : (σ, τ) ∈ {1, 2}(`(n)−1)∗2 \ {τ}} ∪Uτ(α3),

for some τ ∈ {1, 2}(`(n)−1)∗2, where α3 is an optimal set of three-means. Thus

αn({(1, 1)τ}) =
2
∪

i,j=1
βij = {U(σ,τ)(α2) : (σ, τ) ∈ {1, 2}`(n)∗2 \ {(1, 1)τ}} ∪U(1,1)τ(α3),

for some τ ∈ {1, 2}(`(n)−1)∗2, where α3 is an optimal set of three-means. Notice that instead
of choosing U−1

(1,1)(β11) as an optimal set of (2 · 4`(n)−1 + 1)-means, one can choose any one

from U−1
(i,j)(βij) for i = 2, j = 1, 2, as an optimal set of (2 · 4`(n)−1 + 1)-means. Hence, for

n = 2 · 4`(n) + 1, one can write

αn(I) =
2
∪

i,j=1
βij = {U(σ,τ)(α2) : (σ, τ) ∈ {1, 2}`(n)∗2 \ {τ}} ∪Uτ(α3),

where I = {τ} for some τ ∈ {1, 2}`(n)∗2 as an optimal set of n-means. Thus, we see that
the proposition is true if n = 2 · 4`(n) + 1. Similarly, one can prove that the proposition
is true for any 1 ≤ k < 2 · 4`(n). Thus, writing α2 = {(A(1), A(∅)), (A(2), A(∅))}, and
α3 = {(A(1), A(1)), (A(1), A(2)), (A(2), A(∅))}, we have, in general,

αn(I) = ∪
(σ,τ)∈{1,2}`(n)∗2\I

{(A(σ1), A(τ)), (A(σ2), A(τ))}

∪ ( ∪
(σ,τ)∈I

{(A(σ1), A(τ1)), (A(σ1), A(τ2)), (A(σ2), A(τ))}),
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where I ⊂ {1, 2}`(n)∗2 with card(I) = k for some 1 ≤ k < 2 · 4`(n). Then, we obtain the
quantization error as

Vn = min
(a,b)∈βn(I)

‖x− (a, b)‖2dP = ∑
(σ,τ)∈{1,2}`(n)∗2\I

2

∑
i=1

∫
Aσi×Aτ

‖x− (A(σi), A(τ))‖2d(Pc × Pc)

+ ∑
(σ,τ)∈I

( 2

∑
j=1

∫
Aσ1×Aτ j

‖x− (A(σ1), A(τ j))‖2d(Pc × Pc)

+
∫

Aσ2×Aτ

‖x− (A(σ2), A(τ))‖2d(Pc × Pc)
)

= ∑
(σ,τ)∈{1,2}`(n)∗2\I

2

∑
i=1

1
4`(n)

1
2
(u2

σi + u2
τ)

1
8
+ ∑

(σ,τ)∈I

1
4`(n)

( 2

∑
j=1

1
4
(u2

σ1 + u2
τ j)

1
8
+

1
2
(u2

σ2 + u2
τ)

1
8

)
= ∑

(σ,τ)∈{1,2}`(n)∗2\I

1
4`(n)

(
1
9

u2
σ + u2

τ)
1
8
+ ∑

(σ,τ)∈I

1
4`(n)

(u2
σ + 5u2

τ)
1
72

.

Because card({1, 2}`(n)∗2 \ I) = 3 · 4`(n) − n, card(I) = n− 2 · 4`(n), uσ = uτ = 1
3`(n)

, upon

simplification, we have Vn = 1
36`(n)+1 (9 · 4`(n) − 2n). Thus, the proof of the proposition is

complete.

6. Quantization Dimension and Quantization Coefficient for P

The techniques employed in the previous sections also provide closed formulas for
the quantization errors involved at each step. Such closed formulas are amenable for
direct calculation of the quantization dimension and the quantization coefficient for the
probability distribution involved. Hence, in this section we will calculate the quantization
dimension D(P) of the probability distribution P, and the accumulation points for the
D(P)-dimensional quantization coefficients. By Propositions 5–7, the nth quantization
error Vn is given by

Vn =

 1
4

1
36`(n)

(
2 · 4`(n) − n + 5

9 (n− 4`(n))
)

if 4`(n) ≤ n ≤ 2 · 4`(n),
1

36`(n)+1 (9 · 4`(n) − 2n) if 2 · 4`(n) < n < 4`(n)+1.
(8)

Proposition 8. The quantization dimension D(P) of the probability distribution P exists and
equals log 4

log 3 .

Proof. By (8), for 4`(n) ≤ n ≤ 2 · 4`(n), it follows that V2·4`(n) ≤ Vn ≤ V4`(n) , i.e.,

5
36

9−`(n) ≤ Vn ≤
1
4

9−`(n),

and so
2`(n) log 4

− log 5
36 + `(n) log 9

≤ 2 log n
− log Vn

<
2 log 2 + 2`(n) log 4
− log 1

4 + `(n) log 9
.

Thus, we deduce that

lim
n→∞

2 log n
− log Vn

=
log 4
log 3

.

Similarly, for 2 · 4`(n) < n < 4`(n)+1, we also obtain the same limit. Hence,

D(P) = lim
n→∞

2 log n
− log Vn

=
log 4
log 3

.

Thus, the proof of the proposition is complete.
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Proposition 9. Let β := D(P) be the quantization dimension of P. Then, the β-dimensional

quantization coefficient forP does not exist, and the accumulation points of {n
2
β Vn}n∈N lie in the

closed interval [ 1
12 , 5

4 ].

Proof. Recall the sequence of quantization errors {Vn}∞
n=4 given by (8). Again, notice that

4
1
β = 3. Along the sequence {4`(n)}n∈N, we have limn→∞(4`(n))

2
β V4`(n) = 1

4 . Similarly,

along the sequence {2 · 4`(n)}n∈N, we have limn→∞(2 · 4`(n))
2
β V2.4`(n) =

5
12 . Consequently,

lim
n→∞

n
2
β Vn does not exist. Now, we calculate the range for the accumulation points of

{n
2
β Vn}n∈N. The following two cases can arise:

Case 1. 4`(n) ≤ n ≤ 2 · 4`(n).
In this case, we have V2.4`(n) ≤ Vn ≤ V4`(n) , implying (4`(n))

2
β V2·4`(n) ≤ n

2
β Vn ≤

(2 · 4`(n))
2
β V4`(n) . Because

lim
n→∞

(4`(n))
2
β V2·4`(n) =

5
36

, and lim
n→∞

(2 · 4`(n))
2
β V4`(n) =

3
4

,

it follows that along such subsequences, we have lim infn n
2
β Vn = 5

36 < 3
4 = lim supn n

2
β Vn.

Case 2. 2 · 4`(n) < n < 4`(n)+1.
In this case, we have V4`(n)+1 < Vn < V2·4`(n) , implying

(2 · 4`(n))
2
β V4`(n)+1 < n

2
β Vn < (4`(n)+1)

2
β V2·4`(n) .

Because
lim

n→∞
(2 · 4`(n))

2
β V4`(n)+1 =

1
12

, and lim
n→∞

(4`(n)+1)
2
β V2·4`(n) =

5
4

,

it follows that lim infn n
2
β Vn = 1

12 < 5
4 = lim supn n

2
β Vn.

By Case 1 and Case 2, for n ∈ N, we see that

lim inf
n

n
2
β Vn =

1
12

<
5
4
= lim sup

n
n

2
β Vn,

which yields the fact that the accumulation points of {n
2
β Vn}n∈N lie in the closed interval

[ 1
12 , 5

4 ]. Thus, the proof of the proposition is complete.

7. Discussion and Concluding Remarks

Motivation. As it has been mentioned in Introduction, the main motivation for this
article is completion of the programme initiated in [14]. In the meantime, we extend the
results in [12] to the setting of infinite affine transformations. Analogously to [10], this
completes the programme of providing complete quantization for affine measures on R2.

Observations and Remarks. Quantization of continuous random signals (or random
variables and processes) is an important part of digital representation of analog signals for
various coding techniques (e.g., source coding, data compression, archiving, restoration).
The oldest example of quantization in statistics is rounding off. Sheppard (see [19]) was the
first who analyzed rounding off for estimating densities by histograms. Any real number x
can be rounded off (or quantized) to the nearest integer, say q(x) = [x], with a resulting
quantization error e(x) = x− q(x). Hence, the restored signal may differ from the original
one and some information can be lost. Thus, in quantization of a continuous set of values
there is always a distortion (also known as noise or error) between the original set of
values and the quantized set of values. The main goal in quantization theory is finding
a set of quantizers with minimum distortion, which has been extensively investigated
by numerous authors [2,20–24]. A different approach for uniform scalar quantization is
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developed in [25], where the correlation properties of a Gaussian process are exploited to
evaluate the asymptotic behavior of the random quantization rate for uniform quantizers.
General quantization problems for Gaussian processes in infinite-dimensional functional
spaces are considered in [26]. In estimating weighted integrals of time series with no
quadratic mean derivatives, by means of samples at discrete times, it is known that the
rate of convergence of mean-square error is reduced from n−2 to n−1.5 when the samples
are quantized (see [27]). For smoother time series, with k = 1, 2, · · · quadratic mean
derivatives, the rate of convergence is reduced from n−2k−2 to n−2 when the samples are
quantized, which is a very significant reduction (see [28]). The interplay between sampling
and quantization is also studied in [28], which asymptotically leads to optimal allocation
between the number of samples and the number of levels of quantization. Quantization
also seems to be a promising tool in recent development in numerical probability (see,
e.g., [29]).

By Proposition 1 the points in an optimal set are the centroids of their own Voronoi
regions. Consequently, the points in an optimal set are an evenly spaced distribution of sites
in the domain with minimum distortion error with respect to a given probability measure
and is therefore very useful in many fields, such as clustering, data compression, optimal
mesh generation, cellular biology, optimal quadrature, coverage control and geographical
optimization; for more details one can see [7,30]. In addition, it has applications in energy-
efficient distribution of base stations in a cellular network [31–33]. In both geographical
and cellular applications the distribution of users is highly complex and often modeled by
a fractal [34,35].

Future Directions. k-means clustering is a method of vector quantization, origi-
nally from signal processing, that aims to partition n observations, or the underlying
data set into k clusters in which each observation belongs to the cluster with the near-
est mean, also known as cluster center or cluster centroid. For a given k and a given
probability distribution in a dataset there can be two or more different sets of k-means
clusters: for example, with respect to a uniform distribution the unit square {(x1, x2) :
|x1| ≤ 1, |x2| ≤ 1} has four different sets of two-means clusters with cluster centers
{( 1

2 , 1
2 ), (−

1
2 ,− 1

2 )}, {(−
1
2 , 1

2 ), (
1
2 ,− 1

2 )}, {(−
1
2 , 0), ( 1

2 , 0)}, and {(0, 1
2 ), (0,− 1

2 )}. Among
these only {(− 1

2 , 0), ( 1
2 , 0)}, and {(0, 1

2 ), (0,− 1
2 )} form two different optimal sets of two-

means. In other words, we can say that for a given k, among the multiple sets of k-means
clusters, the centers of a set with the smallest distortion error form an optimal set of k-means.
Thus, it is much more difficult to calculate an optimal set of k-means than to calculate a set
of k-means clusters. There are several work done in the direction of k-means clustering. On
the other hand, there is not much work in the direction of finding optimal sets of k-means
clusters, and the work in this paper is an addition in this direction.

The probability measure P considered in this study has identical marginal distributions,
which is instrumental in determining optimal sets of 2-, 3-, and 4-means accurately. Besides,
it enables us to bridge infinitely generated affine measures with finitely generated ones, and
consequently, connect optimal sets of n-means for P and PC × PC. It would be interesting
to investigate if similar results can be achieved when P is induced by different infinite
probability vectors {pij} than considered in this article.
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